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Vll

PBEFATOBY NOTE.

The death of Professor Cayley, which occurred on the 26th of January,

1895, has deprived the later part of this volume, as it will deprive the

succeeding volumes, of the advantage of his supervision. The Syndics of

the Press desired that the collection of the papers should be completed ;

and on the 15th of February, they asked me to undertake the duty of

editing the remaining volumes. I willingly acceded to their request.

Professor Cayley had himself passed the first thirty-eight sheets of this

volume for press ; his illness prevented him from even revising any succeeding

sheets. He had prepared one Note for the volume : it is printed at the end.

The remaining volumes must appear without Notes and References : the

reason being that he did not prepare these Notes in advance but only

when the corresponding papers came before him in the proof-sheets.

The actual manuscript of the Note has been reproduced in facsimile

upon the kind of paper which he regularly used during his mathematical

investigations. As it refers to the memoir that ends only in the last sheet

but one which he passed for press, it is one of the last pieces of his writing.

He left no instructions as to the Collection of his Mathematical

Papers ; the statement, prefixed to the first volume, is the only account of

his method of arrangement. A comparison of the contents of the first

seven volumes with the list of his papers in the Royal Society's Catalogue

of Scientific Papers has enabled me to make out the detailed course of

the method which will, of course, be followed in the remaining volumes.

c. vni. b



Vlll PREFATORY NOTE.

The Syndics expressed their desire that I should insert some biographical

notice of Professor Cayley in a volume of the series. Accordingly, one

is inserted in the present volume ; it is a reprint (with only slight verbal

changes) of the notice which was written for the Proceedings of the Royal

Society. And I have ventured to add a complete list of the lectures

which he announced from year to year after his return to Cambridge in

.1863 as Sadlerian Professor.

A. R FORSYTH.

8 June, 1895.



IX

ARTHUR CAYLEY.

[From the Obituary Notices in the Proceedings of the Royal Society, vol. lviii. 1895.]

Arthur Cayley was the second son of Henry Cayley and Maria Antonia Doughty ;

he was born at Richmond, in Surrey, on 16 August, 1821.

The family, to whose fame so much honour has been added by one of the greatest

mathematicians of all time, is of old origin and illustrious descent. Its name, like not

a few English names, is derived from a locality in Normandy; there was a Castellum

Cailleii, near Rouen, held by baronial tenure. The head of the house appears to

have come to England with William the Conqueror and to have settled in Norfolk,

becoming Lord of Massingham, Oranwich, Brodercross, and Hiburgh in that county. The

influence of the family increased and, by the time of Edward II., Sir Thomas de Cailli

possessed estates also in Yorkshire. On his decease without issue, the Yorkshire

property was transferred to a younger branch of the family and was inherited by a

long succession of Cayleys who made their home at Thormanby. One of these was

knighted, as Sir William Cayley, in 1641 ; in 1661 he was created a baronet in

recognition of his services during the Civil Wars, the title surviving to the present

day. The fourth son of Sir William, Cornelius, settled at York ; and the eldest son

of the latter, also Cornelius, born in 1692, was a barrister and in 1725 was appointed

Recorder of Kingston-upon-Hull, an office which he held until a few years before his

death in 1779. Probably the advantages offered by Hull, then, as now, the greatest

port on the northern coast of England, suggested commerce as an occupation for some

members of the Recorder s large family ; two of his sons became Russia merchants,

settling in St Petersburg. The younger of these, being the fifth son of the Recorder,

was Henry Cayley, born in 1768 ; he married, in 1814, Maria Antonia Doughty, a

daughter of William Doughty. The eldest son of this marriage died in infancy. The

youngest son, Charles Bagot, was a scholar, possessed of linguistic genius; he was

particularly interested in the Romance Languages and he made verse-translations of

Homers Iliad, Dante's Divine Comedy, and the Sonnets of Petrarch. The second son

was Arthur, the subject of the present sketch; he was born during a visit of his

parents to England. Before passing to the details of his life, it may be added that

the second of his father's sisters married Edward Moberly—also a Russia merchant

living in St Petersburg—and was the mother of the late Dr. George Moberly, Bishop

of Salisbury.

62



X BIOGRAPHICAL NOTICE OF ARTHUR CAYLEY.

Mr. Henry Cayley took his young family to Kussia and remained there for a few

years. On retiring from business in 1829, he returned to England and settled into

residence at Blackheath. Arthur was sent soon afterwards to a private school there,

kept by the Rev. G. B. F. Potticary; and when he was fourteen he was transferred

to King's College School, London. At a very early age he had begun to show some

of those preferences by which the existence of mathematical ability is wont to reveal

itself; he had a great liking for numerical calculations and he developed a great

aptitude for them.

In his new school the boy showed himself to be possessed of remarkable ability:

his power of grasping a new subject very rapidly and of seizing its central principles

was certainly unusual. An old friend tells of an examination in chemistry : the subject

had not been studied by Cayley before, but he soon acquired sufficient knowledge to

carry off the medal from the professedly chemical students, to their surprise and morti

fication*'. But it was most of all by the indications of mathematical genius that he

astonished his teachers. It had been Mr. Cayley's intention to educate his son with

the view of placing him in his former business—an intention not abandoned without

reluctance. The impression, however, produced upon his teachers could not lightly be

set aside ; and the advice of the Principal to send him to Cambridge, where his

abilities promised to secure brilliant distinction, was adopted.

Accordingly, he went to Cambridge. He was entered at Trinity College on 2nd May,

1838, as a pensioner, and he began residence in the succeeding October at the unusually

early age of seventeen. He passed through the ordinary stages in the career of a

successful student of mathematics. Like the other able undergraduates of his period,

he " coached " with William Hopkins of Peterhouse, who has been described as a great

and stimulating teacher—a description justified by the high achievements of a long

line of distinguished and grateful pupils.

Cayley's fame grew rapidly: and, as is the way of Cambridge undergraduates, he

soon was pointed out as the future Senior Wrangler of the year. It is interesting to

find a record of him written about this time and published not long afterwards by an

acquaintance ■(% who says that :—

"As an undergraduate he had generally the reputation of a mere mathe

matician, which did him great injustice, for he was really a man of much varied

information, and that on some subjects the very opposite of scientific—for instance,

he was well up in all the current novels, an uncommon thing at Cambridge

where novel-reading is not one of the popular weaknesses."

* It may be added that he maintained his interest in chemistry throughout his life, and acquired a con

siderable knowledge of it. When he was at Baltimore, in 1882, lecturing at the Johns Hopkins University

by special invitation, he attended Professor Eemsen's lectures with a pleasure which found expression in his

letters home to his children in England. And on one occasion, at Professor Eemsen's request, he lectured

to the chemistry class on the hydrocarbon "trees" (Brit. Assoc. Report, 1875, pp. 257—305).

t Bristed, Five Years in an English University (second edition, 1852), p. 95.

It may be added that Cayley declared the story about him in the tripos, recorded by Bristed, to be quite

apocryphal.

So also was another story, belonging to a later part of his life, according to which he is reported to

have said that "the object of law was to say a thing in the greatest number of words, and of mathematics

to say it in the fewest " : this view, and the possibility of his ever having held it, he repudiated entirely.
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Novel-readers are more frequent in Cambridge now than they appear to have been

in 1842, and Cayley in his later days avoided reading some of the modern novels ;

but it is worth noting, as will subsequently be seen more in detail, that he had this

" popular weakness" all his life.

He was admitted a scholar of the College on 1st May, 1840, winning his scholar

ship at the earliest time when it was possible to do so : and he secured a first class

in each of the annual examinations of the College. No record of marks for the first

and the second years is given in the Trinity Head Examiners Book; but in the third

year the marks are given and, as he then scored more than twice the marks of the

second candidate, the Head Examiner separated him from the rest of the first class

by drawing a line under his name. This presage of his powers was confirmed in the

following year, 1842, when he graduated as Senior Wrangler; the Examiners were so

definitely satisfied that he was first as to dispense in his case with the viva voce

tests which at that time were a customary part of the Tripos. And in due course

the first Smith's Prize was awarded to him in the succeeding examination.

Cayley's own "year" at Trinity was a distinguished one; for, in addition to himself,

it contained Mr. (now the Right Honourable) George Denman, for many years a Judge

of the High Court of Justice, and Mr. Hugh Andrew Johnstone Munro, one of the

foremost of Latin Scholars of any period. And the distinction of Cayley's contemporaries

in neighbouring years is marked : it is impossible to avoid noticing the names of some

of the graduates in the Mathematical Tripos about that time. Sylvester and Green

(second and fourth wranglers respectively in 1837), Leslie Ellis (senior in 1840), Stokes

(senior in 1841), Cayley (senior in 1842), Adams (senior in 1843), Thomson—now

Lord Kelvin—(second in 1845), constitute an extraordinary succession of mathematicians

of whom England is justly proud. Their achievements in mathematical science have

done much to render their University one of the acknowledged chief mathematical

schools of the world.

Cayley was elected a Fellow of Trinity and admitted to fellowship on 3rd October,

1842, at an age younger than any other Fellow of the College, at least in the present

century ; and he was promoted from the position of Minor Fellow to that of Major

Fellow on 2nd July, 1845, the year in which he proceeded to his M.A. degree. He

was an Assistant Tutor of the College for three years ; but such a post was then of

an almost nominal character, and there appears to be no indication that any of the

mathematical teaching of the College fell to him. He did, indeed, accept some private

pupils : his lifelong friend, Canon Venables, has given a pleasant account* of a reading-

party which Cayley took to Aberfeldie in 1842.

His pupils, however, did not tie him strictly to Cambridge, for it appears that

the latter half of the year 1843 was devoted to continental rambles. The summer

was spent in Switzerland, where his zest for walking and for mountain-climbing, a

pleasure that never failed while his health lasted, found an active outlet : he had

become a member of the Alpine Club in its comparatively early days. The last four

months of the year were spent in Italy, partly in the North and in Florence, partly

in Rome and Naples. It may have been on this tour that he acquired his love for

* Guardian, 6th Feb. 1895, p. 201.
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both painting and architecture. The works of painters such as Masaccio, Giovanni

Bellini, Perugino, and Luini, then first became known to him ; they proved a delight

at the time and remained a happy remembrance with him.

These and other continental journeys from time to time, while he remained in

residence as a Fellow of his College, were his relaxations. He had no formal lecturing

and he did not attempt to obtain a large number of private pupils. The leisure that

he thus secured was turned to the best, and to him the most pleasant, of uses, in

carrying out mathematical researches. It was, indeed, as an undergraduate that Oayley

began the marvellous series of publications which, extending over more than fifty years

of his life, have been concerned with practically every branch of pure mathematics as

well as with theoretical dynamics and physical astronomy.

The time seemed ripe for the outburst of some mathematical activity. By the

efforts of Herschel, Peacock, and Whewell, Cambridge teaching had been set free from

the bonds that restricted methods of procedure to those which had proved effective

in Newton's days; and the struggle to secure the admittance of analytical methods

had been successfully completed. One sign of the new freedom was the foundation

of the Cambridge Mathematical Journal, in 1837, by D. F. Gregory and Leslie Ellis.

Before that time, practically the only English means of publication open to mathe

maticians was in the Philosophical Transactions of the Royal Society ; and young writers,

whether modest or not about the value of their researches, might well have hesitated

before seeking publication in a quarter that exacts so high a standard. The new journal

then founded was open to young students and gave them an opportunity, previously

difficult to obtain, of making their researches known ; and it proved a great stimulus

to the intellectual activity of those members of the University. Only four volumes of

the journal appeared; but it was continued, first under the name of the Cambridge

and Dublin Mathematical Journal, and, subsequently down to the present time, under

that of the Quarterly Journal of Pure and Applied Mathematics. Though the oppor

tunities of publication, which now are afforded to mathematicians both in England and

abroad, are vastly more numerous than they were half a century ago, the undoubted

service rendered to English mathematics by the initial venture of the two young

Cambridge men should not be forgotten.

It was in the second volume of this journal that Cayley's earliest paper, written

in 1841, was printed: and two other papers bearing the same date—it was the year

before his degree—are included in the third volume. Though the results are not

remarkable, the freshness and the independence of these early investigations are worthy

of notice. Cayley had evidently read with enquiring and critical care the Mecanique

Analytique of Lagrange, some of the work of Laplace, and several memoirs in the two

continental journals of the time, those of Liouville and Crelle. These achievements of

an undergraduate of nineteen or twenty, which are rarely accomplished now and were

still rarer in his day, recall Abel's dictum * :—

"Si Ton veut faire des progres dans les mathematiques, il faut etudier les

maitres et non pas les ecoliers."

* Niels-Henrik Abel (par Bjerknes, Paris, 1885), p. 173.
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It was as certainly one of the characteristics of Cayley to find a stimulus to new

developments in the main ideas of other writers as it was one of his characteristics

to be able to follow out his own ideas with the insistent unwearying patience of an

investigator creating a new work complete. And it is interesting to see how this

faculty of receiving inspiration reveals itself from the beginning of his career.

Once free from the necessity of preparing for his Tripos and his Fellowship

examination, he was able to throw himself into the work of production. His activity

may be estimated from the fact that he produced three papers in 1842, eight in

1843, four in 1844, and thirteen in 1845. Moreover, these papers deal with a great

variety of subjects. Thus he makes his first investigations in the numerative calculus

of plane curves : he initiates his discussions about geometry of n dimensions : he

founds the theory of invariants and covariants : and he elucidates the connexion between

doubly-infinite products and elliptic functions. Some of these early papers are now

classical; and the briefest inspection of them is sufficient to reveal the suggestiveness

and the easy strength of the young mathematician who was not yet in his twenty-fifth

year.

Even by this date the opportunities of publication in England had become

inadequate to his needs. Curiously enough, he does not appear to have sent any paper

to the Royal Society until the year 1852, when Sylvester communicated the "Analytical

Researches connected with Steiner's Extension of Malfatti's Problem* " to that Society.

Later in the same year, Cayley was elected a Fellow of the Society, and thereafter many

of his papers appear in its Philosophical Transactions. Before 1852, there were few

journals either at home or abroad which did not receive communications from him: and

even in the quite early years of his researches, several of his papers, written in French,

appeared in Liouville's journal and in Crelle's journal. As societies and journals grew

in number, so the area over which his papers spread became ever wider.

At first, after winning his Trinity Fellowship, he remained at Cambridge, and his

time must then have been largely at his own disposal. This freedom, in his circum

stances, could last for only a limited time because, unless he either entered holy

orders or devoted himself to teaching in some permanent post (if obtainable) in the

College, the Fellowship could be held for not more than seven years after his M.A.

degree—a period that would expire in 1852. He was unwilling to take holy orders—

not that there was any religious obstacle in his way, for he was not harassed either

by philosophical doubts or critical difficulties. His simple reason for remaining a

layman was that, though devout in spirit and an active Churchman, he felt no

vocation for the sacred office.

In consequence, it became necessary to choose some profession. Cayley selected

the law, left Cambridge in 1846, entered at Lincoln's Inn, and became a pupil of

the famous conveyancer, Mr. Christie. A story of their first interview, that Mr. Christie

used to tell in after years, is an illustration of the modesty and the lack of self

* Cayley's Collected Mathematical Papers, vol. n. No. 114. Subsequent references to this series will be

made in the form G. M. P.
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assertiveness which were leading features of Cayley's character : and this impression

is confirmed by the recollections of a fellow-pupil, Mr. T. C. Wright, who says:—-

"...We fellow-pupils knew that Arthur Cayley had been the Senior Wrangler

of his year, and that he possessed extraordinary abilities; but they were not

indicated by his personal bearing, and the retiring modesty of his disposition

prevented him from ever alluding to the honours he had won at Cambridge.

He had one of the most unsophisticated minds I have ever known ; jokes, and

the badinage of the pupil-room, seemed to be delightful novelties to him, and

his face beamed with amusement as he listened to them without taking much

part in the conversation, being content to devote his time assiduously to work

which I suspect was not altogether congenial to his taste...."

But if the modest, almost shy, man did not display his honours, he could not

conceal his powers ; and very soon his clearness of head, his almost intuitive grasp of

the principles of any subject that came before him, his capacity for work and his

power of concentration, made him a favourite pupil. He was called to the Bar on

3rd May, 1849, and thereafter he had no occasion to wait for business. Mr. Christie

was always ready to supply him with at least as much conveyancing work as he was

willing to undertake : but no advice, no encouragement, no opening however favourable,

least of all any wish for fame or fortune, could tempt him to subside into a large

practice. He restricted himself to "devilling" for Mr. Christie, and he limited the

amount of work he would undertake in this way, always refusing work that came to

him at first hand. There is no doubt that, had he remained at the Bar and devoted

himself to its business, he could have made a great legal reputation and a substantial

fortune: even as it was, some of his drafts* have been made to serve as models. But

the spirit of research possessed him; it was not merely will but an irresistible impulse

that made the pursuit of mathematics, not the practice of law, his chief desire. To

achieve this desire, he reserved with jealous care a due portion of his time; and he

regarded his legal occupations mainly as the means of providing a livelihood.

He remained at the Bar for fourteen years. Between two and three hundred papers

are the mathematical outcome of that period; and they include some of the most

brilliant of his discoveries. Among these papers are to be found the majority of his

famous memoirs on quantics (particularly the sixth memoir, in which he develops his

theory of geometry, and shows that all geometry can be made entirely descriptive),

his work upon matrices, numerous contributions to the theory of symmetric functions

of the roots of an equation, the elaborate calculations connected with the development

of functions arising in the planetary and the lunar theories, and his valuable reports

on theoretical dynamics. The enormous range over which his papers of these fourteen

years extend is not more remarkable than the vigour of his contributions to knowledge;

and a reference to them will show that he frequently recurs to some given problem,

always adding something to the development.

* In Davidson's Precedents and Forms in Conveijanting (third edition, 1873), vol. in. Part II. p. 1067,

the author adds a footnote, calling "attention to the remarkable skill exhibited in [a] settlement, the work

of Mr. Arthur Cayley."
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In judging of this persistent and unflagging activity, some account ought to be

taken of his surroundings. It can hardly be that 2, Stone Court, from which many

of his papers are dated, proved an inspiration to mathematical research. For part of

the time, his friend Sylvester was in London—then as an actuary; and I have heard

Cayley describe how Sylvester and he walked round the Courts of Lincoln's Inn discussing

the theory of invariants and covariants which occupied (and occasionally absorbed) the

attention of both of them during the fifties. And on matters which related to analytical

geometry he was in frequent (but formal) correspondence with Salmon; indeed, the

relation that existed between the two men developed ultimately into one of warm

friendship and deep mutual regard : its sincerity can be gathered from the spirit

animating Salmon's notice of Cayley, published in Nature in 1883, at the time when

the latter was President of the British Association. But, with special exceptions of

the types indicated, his work was so largely of the kind that is called path-breaking

that he was bound to do it alone: he did it with a simple unconscious courage and

with unfailing resolution.

It may easily be imagined that his links with life at Cambridge had now become

slight. During the earliest of the years spent at the bar, he had returned on a few

occasions. In 1848, the year before his call, he was the junior mathematical examiner

in the regular annual examinations of Trinity; in 1849, and also in 1850, he was the

senior mathematical examiner in the same examinations. In 1851 he was Senior

Moderator for the Mathematical Tripos; one of the wranglers, Lightfoot, becoming

subsequently his friend, and his colleague in the University, before going to his great

work in the diocese of Durham as Bishop. In 1852 he was Senior Examiner for

the Tripos, the senior wrangler of the year being Tait (also afterwards one of his

intimate friends), now Professor of Natural Philosophy at Edinburgh. These seem to

have been the only occasions when he was recalled to Cambridge; and they did not

require any permanent connexion with the College or the University. He was settled

in London, his allegiance divided between law and mathematics.

A change, however, in the statutes of the University offered an opportunity for

his return to Cambridge; a professorship of pure mathematics was established upon an

old foundation. Lady Mary Sadleir (who endowed the Croonian Lecture Fund of the

Royal College of Physicians of London and also that of the Royal Society in memory

of her first husband, Dr. William Croone, a physician and one of the earliest Fellows

of the Royal Society) had, by her will, dated 25th September, 1701, and proved 6th

November, 1706, given to the University an estate, which was to be used as an

endowment of lectureships in algebra at nine of the colleges in Cambridge. These posts

were duly established. The great developments of analysis, which took place at the end

of the last century and during the first half of the present century, gradually proved

that the restriction to algebra prevented the lectureships from being as adequate an

encouragement to the advancement of mathematics as they were designed to be at the

time of their establishment. Moreover, the lecturers had ceased to attract undergraduates

to their lectures: so that the purpose of the foundation was not being fulfilled. Con

sequently, in 1857, a proposal was made by the Council of the Senate of the

University that a new direction should be given to the endowment by the establishment

C. VIII. c
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of a professorship, to be called the Sadlerian Professorship of Pure Mathematics : the

duty of the professor was "to explain and teach the principles of pure mathematics,

and to apply himself to the advancement of that science." The proposal was approved

by the Senate on 3rd December, 1857, and the new statute was sanctioned by an Order

of the Queen in Council on 7th March, 1860. Some time had to elapse before certain

provisional arrangements could be completed, and it was not until after three years

that the University was in a position to act.

On 10th June, 1863, Cayley was elected Sadlerian professor: he held the chair for

the rest of his life. The stipend attached to the professorship was modest, though it

was improved in the course of subsequent legislation; these changes, however, could

not have been foreseen at the time when Cayley was elected. Yet he had no hesitation

about returning to Cambridge : for the post enabled him to devote his life to the

pursuit he liked best. He never showed the slightest regret at having neglected the

prospects of distinction at the bar, or at having chosen to return to his University ;

and he always expressed perfect satisfaction and content with his life in Cambridge,

which was one of great happiness.

His appointment as Sadlerian professor marks a turning point in his life. Hence

forward he lived, for the most part, in the quiet of the University ; yet it was by no

means in seclusion, for he took his share in administration, which claims a part (often

too large a part) of the leisure of men fitted for this necessary duty. But he was

not burdened by heavy claims arising out of his official position: and he was directed

by the statutes governing him to do what was, as a matter of fact, his ideal in life.

No man could have been better suited than Cayley was to fulfil the charge of the

statutes: his knowledge and his power of research pointed him out as the obvious

choice of the electors.

He settled in Cambridge at once. On 8th September, 1863, he married Susan,

daughter of Eobert Moline, of Greenwich. This is not the place to dwell upon his

domestic life ; but it is impossible to omit in silence all reference to its singular

happiness, based upon the affection felt by its members for one another. Friends and

visitors who have been in that home will not soon forget the kindness and the gracious

courtesy of the welcome they received, or the atmosphere of peace into which they

were raised. Sometimes in the old garden by the river-side, more often in the drawing-

room, the talk went on; the professor himself listening, attentive and watchful, frequently

taking only a slight share, but ever ready to join in. No cynicism or paradox in

speech was ventured upon in his presence ; no harshness of judgment was tolerated

without a quiet protest; no sense of bustle or ambition was felt there; in all things

the charm of an old-world home, centred round him. His widow and their two children,

Mary and Henry, remain to mourn their loss.

His teaching duty was limited to the delivery of one course of lectures in the

academic year, and he usually chose the Michaelmas term. This practice was maintained

for twenty-three years until he was placed under the new statutes, which in 1882

had come into operation so far as concerned all future appointments. After that

change, he delivered two courses of lectures, one in the Michaelmas term, the other

in the Lent term. An inspection of the list of his lectures* shows that he chose his

* The list is given on pp. xlv, xlvi.
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subjects by preference from analytical geometry, dynamics (in his view, theoretical

dynamics is a portion of pure mathematics), differential equations, theory of equations,

Abelian functions, elliptic functions, and modern algebra. The titles of the lectures,

as announced, were sometimes vague, nor were they intended to limit his range ; in

all cases he went far beyond the boundary that so frequently limits Cambridge studies.

Thus a course of lectures on differential equations, announced for the Michaelmas term

in 1879, was chiefly concerned with conformal representation, polyhedral functions, and

Schwarz's investigations on the hypergeometric series.

For many years he dispensed with the use of blackboard and chalk in his class

room ; this was possible because his class usually was small. He brought his work

written out upon the blue draft-paper,* which was regularly used by him in all his

writing of mathematics ; the exposition consisted partly of verbal explanations made

as he showed the manuscript, partly of details written out at the moment. A change

came in 1881, when his class amounted to fifteen or sixteen: he was then obliged

to use the blackboard, and he subsequently maintained the new practice. Occasionally

his older habit of explaining his manuscript recurred—he then placed it upon the

board. This was especially the case when he brought carefully prepared diagrams,

such as those used in the modular-function division of the plane : these diagrams

were made much clearer by the use of water-colours to distinguish different sets of

regions, and their preparation evidently gave him pleasure.

But, as may be surmised, his influence as a teacher was overshadowed by his

influence as an investigator. Those whom he affected by his lectures belonged for the

most part to the mathematical teachers in Cambridge : the number of undergraduates

whom he influenced was small, though, when any one of them did come under his

influence, the effect was well marked. His starting point in any subject was usually

beyond the range of all other than quite advanced students ; but to any able under

graduate who was willing to devote time, not merely to the comprehension of the

matter in the lectures but also to collateral reading, the lectures were stimulating and

inspiring. This effect was partly due to the easy strength with which he worked^

partly to the spirit in which he approached old and new subjects alike ; an independent

suggestiveness and a singular freshness marked his views, and gave an added interest

to his exposition even of a well-known theory. One reason of this freshness may be

found in the fact that his lectures consisted of the current researches upon which he

was engaged at the time ; sometimes, even, a lecture would be devoted to results

which he had obtained since the preceding lecture. Though the titles of the courses

occasionally recur from one year to another, the same course was never given twice.

The new matter in any course, once given, was usually incorporated in a paper or

memoir ; and when the same subject was nominally lectured upon again, it was a

distinct part of the subject—old notes were never used a second time.

It was not alone by his lectures that he acted as professor. Students, seeking

help or desiring to interest him in their work, found him always willing to give them

the benefit of his advice, his criticism, and his knowledge. Nor was it merely mathe

maticians in Cambridge whom he helped in this way. He was continually consulted by

* It was the customary " scribbling paper " of his undergraduate days.
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foreigners, who appreciated the promptness no less than the fulness of information in

his replies.

It frequently happens that a man of genius, great enough to leave a distinct

impress of his originality upon his science, finds it irksome to study what others have

written. With the growth of all sciences during the last fifty years, especially—it may

be said—with the growth of pure mathematics in that time, the tendency of workers

is to become specialists in their own subject and, perhaps, in subjects immediately

cognate with it, and to acquire only a slight acquaintance with what is being done

outside the circle of their limited interests. Not so was Cayley : he was singularly

learned in the work of other men, and catholic in his range of knowledge. Yet he

did not read a memoir completely through : his custom was to read only so much as

would enable him to grasp the meaning of the symbols and understand its scope.

The main result would then become to him a subject of investigation : he would

establish it (or test it) by algebraical analysis and, not infrequently, develop it so as

to obtain other results. This faculty of grasping and testing rapidly the work of others,

together with his great knowledge, made him an invaluable referee ; his services in this

capacity were used through a long series of years by a number of societies to which

he almost was in the position of standing mathematical adviser.

Concurrently with his teaching, he continued his investigations. He wrote only one

book—a Treatise on Elliptic Functions, published in 1876, which was intended to bridge

over the gap from Legendre's Traite des Fonctions Flliptiques to Jacobi's Fundamenta

Nova; it contains a considerable amount of new matter. But paper after paper was

published in a long unfailing succession almost until his death ; their tale amounts to

more than 800. Happily for the convenience of mathematicians, the republication of

his papers in collected form was undertaken by the Cambridge University Press,—

perhaps the most enduring, certainly not the least fitting, monument of his fame. The

request was made to him in 1889 by the Syndics of the Press ; he willingly acceded

to it and deeply appreciated, both then and afterwards, what he regarded as a great

compliment to himself. Seven large quarto volumes, under his own editorship, have

already appeared. The preparation of them was always a great happiness to him ; and,

especially in the later years of his life, it gave him an occupation in his science

which was still within the range of his failing strength. At the time when the collection

was begun it was estimated that ten volumes wTould suffice for the purpose, but it is

now evident that ten will be certainly insufficient. The Syndics of the Press intend

to complete the series of volumes ; it is a matter of regret that the illustrious author

of the papers has not lived to complete it himself.

Even his teaching and investigations did not fully occupy his time. For the first

few years after his return he was left comparatively free from a large share in

administration, but gradually it was assigned to him. As he became better known for

his effective business capacity, his share in administration grew until he came to be

regarded as an indispensable member of the Council of the Senate. He was elected

a member of that body on 7th November, 1876, and with the exception of some six

months when he was absent in America, he continued a member of it until 1892,

when failing health compelled him to resign. During this period of service he was
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re-elected three times. Party feeling ran rather strongly at times during the discussions

that led to the new statutes ; but both parties included his name among their

lists of nominations—an adequate proof that he possessed the confidence of the Senate.

He was free from party bias, and he became established in his position of strength

by his fairmindedness, his sound judgment, and his calm temperament. He would listen

to a discussion, speaking only when he had something of importance to add ; when

speaking he was listened to wTith full attention. More frequently he would take no

part in the discussion until his opinion was asked, as was usually the case in difficult

questions ; his opinion was always valued and sometimes final. Similarly, on syndicates,

his co-operation was much sought, and in particular the services which he rendered

to the Library Syndicate and the Press Syndicate were of substantial importance. He

also took great interest in the movement for the higher education of women. In the

early days of Girton College he gave direct help in teaching, and for some years he

was Chairman of the Council of Newnham College, in the progress of which he took

the keenest interest even to the last.

But, with all his general aptitude for business, he was perhaps most specially

helpful by his legal knowledge. The training he had undergone and the knowledge

he had acquired at the bar ultimately proved invaluable. His opinion on legal matters

was sought by the University, by his own college, and by the scientific societies with

which he was connected ; when given, it frequently had the effect of a judicial

decision. His powers of drafting were constantly being called into requisition ; he

responded to the calls upon him and, with unstinted generosity, placed his time and

skill at the disposal of these bodies, so that the new statutes of Trinity College, and

not a few of the statutes and ordinances of the University, owe much to him.

One other illustration, at once of his general business capacity and of the confidence

reposed in him, may be given. The elections for representatives of the Universities

in the House of Commons are still conducted openly and by means of voting papers,

delivered either by the elector himself or by another elector whom he has nominated ;

objections may be raised against any voting paper, but they must be decided at once.

In Cambridge the Vice-Chancellor, being the returning officer, nominates a number of

assessors to act with him in the case of a contested election. At a bye-election in

1882, when the candidates were Mr. H. C. Raikes and Professor James Stuart, Cayley

was nominated as presiding officer at one of the polling places. His imperturbable

firmness, his calm courtesy, and the justice of his decisions secured for his effectiveness

in this capacity the admiration of the University.

This brief account of his participation in business affairs is necessary; without

some such indication a proper estimate of his position in Cambridge cannot be framed.

And it also may help to show that his supremacy in the subjects of his investigations

neither made him a recluse, nor limited his other interests, nor restricted his practical

usefulness.

The merits of such a man were recognised by the only means at the disposal

of a grateful and appreciative University. He was elected an honorary Fellow of

Trinity College on 22nd May, 1872, at the same time as Dr. Lightfoot, Mr. James
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Spedding, and Professor Clerk Maxwell; and on 11th October, 1875, he was made an

ordinary Fellow, a position which he retained for the rest of his life. His friends

subscribed for a presentation portrait* painted by Lowes Dickenson in 1874; it now

hangs in the College Hall. The simplest of inscriptions is on its frame, but the

humorous lines which Clerk Maxwell^ wrote at the time should not readily be for

gotten. The graver element, seldom absent from his verses, is ncj entirely repressed

even by his wit, and the lines were based upon a deep admiration of the man

"Whose soul, too large for vulgar space,

In n dimensions nourished unrestricted."

His bust, by Mr. Henry Wiles, was given to Trinity College by a donor who wished

to remain anonymous. It was placed in the beautiful library of the College on 3rd

December, 1888, an honour that has been conferred during life in only two other

cases—Tennyson and Sedgwick.

After the new statutes came into operation, the Senate on 27th May, 1886, de

cided that the Sadlerian Professorship should at once be made subject to the improved

provisions, a decision which, though it increased the amount of lecturing required,

gave him the benefit of the full stipend. At the same time the Lucasian Professor

ship, held by Professor Stokes, was also made subject to the new statutes; and it

was currently believed that the Lowndean Professorship would have been included in

the proposal had Professor Adams been willing to have the change made. There was

a wish on the part of members of the University to give some recognition to the

glory conferred upon the mathematical school by Stokes, Adams, and Cayley; one

possibility remained. The opportunity came in 1888 when Prince Edward (as he was

known in Cambridge), afterwards Duke of Clarence, received the degree of LL.D.

Such an occasion is customarily marked by the conferment of a number of honorary

degrees upon distinguished men ; among them, on this particular occasion, were the

three professors who had been colleagues for a quarter of a century. On the 9th of

June in that year a great assembly gathered to see these degrees conferred upon

the recipients. It need hardly be said that the men singled out for honour received

ovations on being presented; among the most enthusiastic ovations were those accorded

to the three professors.

Nor were external bodies and learned societies, both at home and abroad, backward

in recognising the merits of his work; the honours he received were numerous and

came from all quarters. Honorary degrees were conferred upon him by several univer

sities as well as his own, among them being Oxford, Dublin, Edinburgh, Gottingen,

Heidelberg, Leyden, and Bologna. President Carnot nominated him an Officer of the

Legion of Honour. He was either a Fellow or a foreign corresponding member of most

of the scientific societies of the Continent, among them being the French Institute, the

Academies of Berlin, Gottingen, St. Petersburg, Milan, Rome, Leyden, Upsala, and

Hungary. He was also a Fellow of the Boyal Society of Edinburgh, of the Royal Irish

* A photographic reproduction of the portrait is prefixed to vol. vi. of the C. M. P.

+ See Campbell and Garnett's Life of James Clerk Maxwell, p. 636.
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Academy, and of the Royal Astronomical Society. He had been President of the Cam

bridge Philosophical Society, and he sat on its Council for many years; also President

of the London Mathematical Society and of the Royal Astronomical Society. He was

elected a Fellow of the Royal Society on 3rd June, 1852, and he served as a member

of its Council for six periods of office. In 1859 he received from the Royal Society a

Royal medal, and in 1882 the Copley Medal, the highest scientific distinction it is in its

power to bestow. When the De Morgan Medal was instituted in connexion with the

London Mathematical Society, the first award was fitly made to Cayley. And from

Leyden he received the Huyghens Medal.

Mention should be made of one other honour which he received: it is of a kind

seldom conferred. The high opinion of his work which was held in America was indi

cated by an invitation in 1881 to deliver a course of lectures in the Johns Hopkins

University, Baltimore, where his friend and fellow investigator, Sylvester, was then

professor. He accepted the invitation, and left England in December of that year.

During the next five months he lectured on Abelian and Theta Functions ; the substance

of these lectures was incorporated in a memoir subsequently published in the American

Journal of Mathematics*. He returned to England in June, 1882, bringing back

pleasant remembrances of kindnesses and friendships.

His life, spent in mathematical research and in the quiet round of activity in the

University, offered little of either interest or incident to make his name known by the

outside world to the same extent or in the same way as the names of many scientific

men, engaged in other lines of enquiry, are known. Once, however, in his life circum

stances brought him prominently into notice. In 1883 he was President of the British

Association for the Advancement of Science, the meeting being held at Southport; and,

in that capacity at the opening of the meeting, he had to deliver a formal address,

an abstract of which appeared as usual in the leading newspapers of the country.

In the early days of the Association, the President's address frequently reviewed

the whole field of science; but as knowledge has developed, a tendency has set in,

according to which each later President has confined himself more particularly to those

matters within whose range he is an authority. And, subject to this restriction, it is

hoped that the address may be legitimately popular. There have been critics of presi

dential addresses prepared to assert that science was sacrificed to popularity; there

have been immense audiences convinced that popularity was sacrificed to science. Taken

together, the presidential addresses, some severe and others popular, form an interesting

series of reviews of the successive stages in scientific achievements.

Cayley's address belonged to the severely scientific class. From the nature of his

subject—the progress of mathematics, more particularly of pure mathematics—it was

bound to have this character. Few of the members of a regular Association audience

have more than a slight acquaintance with pure mathematics; and, consequently, it is

impossible to deliver to such a gathering an address which, in a reasonable time, can

give them any real idea of the condition or the progress of the science. Cayley felt

* Vol. v. (1883), pp. 137—179 ; vol. vn. (1885), pp. 101—167.



XX11 BIOGRAPHICAL NOTICE OF ARTHUR CAYLEY.

this and confessed to the feeling in a passage which is perhaps the best known in

the address :—

"It is difficult to give an idea of the vast extent of modern mathematics.

The word 'extent' is not the right one: I mean extent crowded with beautiful

detail—not an extent of mere uniformity such as an objectless plain, but of a

tract of beautiful country seen at first in the distance, but which will bear to

be rambled through and studied in every detail of hillside and valley, stream,

rock, wood, and flower. But, as for everything else, so for a mathematical theory

—beauty can be perceived but not explained."

But he also felt that the respect due to the Association requires its President to deal

with that branch of science about which, as he knows it best, he is best fitted to

tell them, so that different subjects may thus in turn be brought before successive

meetings.

"So much the worse," he added, "it may be, for a particular meeting; but

the meeting is the individual which on evolution principles must be sacrificed

for the development of the race."

Granting then the inevitably stern character (as popularly estimated) that must

mark any proper exposition of his subject, the address is one of singular interest. It

undoubtedly made a great impression. Parts of it were incomprehensible to all but

mathematicians : still, there was much which others could understand and, understanding,

found excellent. Even leader-writers at the time recognised its lucidity, its finish, its

native elegance, and its instructive and stimulating essence. To mathematicians it counts

for much. . Not merely is it a valuable historical review of various mathematical theories ;

but the exposition possesses all the freshness, the independence of view, the suggestive-

ness and the amazing knowledge that were so characteristic of Cayley. And, conse

quently, it can often be recurred to with unfailing profit.

After this event, his life pursued the unbroken tenor of its scientific course. Ever

thinking, working, writing, he maintained the flow of his papers with the same unslacken-

ing vigour, and he showed the same sympathetic encouragement of others, as had marked

him before the scientific world had tried to acknowledge his genius by showering its

honours upon him.

It is now some years since the painful internal malady, which ultimately was the

cause of death, began to show itself. At first, its action was slow; and there was

reasonable hope that his naturally strong constitution would enable him to throw it

off. Unfortunately these hopes were not realised; its growth was steady, its under

mining influence persistent. Change of scene was tried once or twice, but without good

effect; and it soon appeared that Cambridge itself troubled him least. Three years ago

his friends saw that his health began to fail : he had occasional attacks of severe illness

which confined him to his bed for weeks together, each of them leaving him gravely

frailer than before. Gradually he became confined to his house and his garden ; he

could see only very few friends, and usually even them only for a short time. When
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they did see him, they found only too clearly how rare and brief were his intervals

of relief from pain, though occasionally his gentleness and his patience would almost

delude them into hope.

The last of the severe attacks began on the 8th of January; he seemed to be

getting better when, on the 21st, his strength suddenly began to collapse. He died

about six o'clock on the evening of Saturday, 26th January, 1895. The funeral took

place on the succeeding Friday when, in Trinity Chapel, a great assemblage, composed

of members of the University, of representatives of the embassies of Russia and America,

as well as of various learned societies and of personal friends, gathered to pay him

their last homage of respect and reverence.

Sufficient has been said to show that Cayley was a man of general activities;

but his scientific work and his public duties by no means exhausted or limited his

general interests.

It has already been stated that, as an undergraduate, he was fond of reading

novels; this practice remained with him all his days. He preferred a novel of the old

orthodox type with a " happy ending " ; and though his greatest delight was in the

older novels, a modern book, such as Beside the Bonnie Briar Bush (which he read

quite late in 1894), met with words of warm praise. He had a good memory, and

used to discuss plots and characters with considerable animation. The two novelists,

by whose works many English people are divided into one or other of two classes,

did not affect him much; Thackeray he read but did not like, and he would not read

Dickens. His favourite authors were Scott and Jane Austen ; all their works had been

read by him many times, and they were read aloud to him during the long period

of his illness. Guy Mannering and The Heart of Midlothian, among Scott's, and Persua

sion, among Jane Austen's, were the books he liked the best. He also was fond of

George Eliot's novels, particularly of Romola. Indeed, though he had aversions, his taste

was somewhat general. Commendation of a book was enough to make him willing to

try it; and there was only one limitation to his range of novel-reading—he had an

instinctive abhorrence of anything that suggested either coarseness or vulgarity.

His English reading was not confined to novels. He had a keen liking for many

of Shakespeare's plays, notably Much Ado About Nothing, and some of the historical

dramas. He delighted in Milton's shorter poems, though he would not tolerate Paradise

Lost. Scott's poems were frequently read ; and he had a great appreciation of Byron's

Tales and of Coleridge's Ancient Mariner. Grote's History of Greece and Macaulay's

History of England he read repeatedly and with zest ; and he never seemed tired of

Lockhart's Life of Scott.

He was also a good linguist. He knew French well; it was a second writing-

language to him, as will be seen from the large number of papers, written in French,

which occur in his collected mathematical papers. He read (but he did not talk) German

and Italian with ease, and his Greek remained fresh throughout his life. This last

power may have been due to the admiration he felt for Plato; he referred to the

Republic and the Theoetetus in his Presidential Address ; and, on the afternoon of the

c. viii. d
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day of the "Greek division"* in the Senate House, I remember finding him at home

reading the Gorgias.

He had the keenest interest, amounting almost to a passionate delight, in travelling ;

cities of historic or artistic fame delighted him equally with beautiful scenery. Long

after he had become an invalid, he found a fascination in guide-books and maps ;

and all his younger friends will recall the sympathetic zeal with which he entered

into their projected journeys, and the happy pleasure he took in hearing them speak

of recent journeyings and in recalling, with a wonderful vivid memory, his own

experiences and ideas about places they had visited.

Eeference has been made to his early pleasure in the old Italian masters. Yet,

if any inferences can be drawn from the likings of his later years, architecture attracted

him even as much as pictures. He had a true feeling and a clear judgment as to

genuine excellence: he sketched well, and had a quick eye for proportions, perspective,

light and shade. One of his relaxations was to make coloured sketches of buildings

that he liked, notably sepia drawings of some of the great Gothic cathedrals and

churches of northern France. He kept up his practice of water-colour painting all his

life, and in his closing years it proved a great solace to him at times when his

strength was so far reduced that he could not work. He had great happiness in

looking at architectural pictures and at books on architecture, one of his favourites

among the latter being Street's Brick and Marble in the Middle Ages.

Financial matters and accounts also interested him; and only a few months before

his death he published a brief pamphlet on book-keeping by double entry, which he has

been known to declare one of the two perfect sciences. He could not resist some reference

to the subject in his Presidential Address, making the remark that the notion of a

negative magnitude "is used in a very refined manner in book-keeping by double-entry.''

His bearing was gentle, and it was marked by a courtesy that was unfailing.

On questions of administration and in discussions, his opinions were stated clearly and

quietly. Not that he did not hold decided views or that he would abate one jot of

his firm, even chivalrous, defence of what he held to be right; but there was a

judicial temper in his mind which prevented the subjective element in a discussion

from disturbing his equanimity. The even balance of his mind enabled him to

recognise and appreciate the position of one who differed from him, and his quiet

'"I do not think so" was all the more effective because its very calmness excluded

the slightest suggestion of hostile spirit.

His figure was spare: until his illness, he could easily endure the fatigue of long

walks, in which he delighted, especially in hill country. In later years it became

rather bent, and he had the appearance of being frail. His head was very impressive,

* In 1891 a proposal was made by the Council of the Senate for the appointment of a Syndicate to

enquire, among other things, into the expediency of allowing alternatives for one of the two classical languages

in the Previous Examination. Many members of the Senate were convinced that the adoption of an alternative

would lead to the extinction of the study of Greek except in the greater public schools; they consequently

opposed the proposal, which, on 29th October, 1891, was rejected by a great majority (525 to 185).

It may be added that Cayley was in the minority. He allowed his signature to be added to a letter

which was sent to the London newspapers as an appeal for assistance in defeating the attempt to resist

enquiry.
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as may be seen from his portrait and from photographs. In repose, and when his

attention was not concentrated upon what was passing, his face had a grave air and

the blue-grey eyes suggested that he was far away in thought; but when attentive

or amused, and when expressing pleasure, the eyes became singularly keen and a

peculiar charm lightened up the whole face.

He was absolutely modest. The honours conferred on him in full profusion never

injured in the least degree the grand simplicity of his character, never gave rise to

the slightest trace of vanity, which was alien to his nature. He rarely spoke of

them, and, when he did, it never was as of honours: they pleased him, but, perhaps,

rather as recognition of his work than as tributes to the worker. If any one expressed

appreciation of any of his papers, owing to the help it had given, he would reply

very quietly: but he did not stint the expression of his pleasure at advances beyond

his own results when they were made by others. Public appearances were rather

distressing to him at first, for his disposition was retiring and he could be reserved;

but as time wore on, duty often compelled him to take part in them. In such cases

he accepted the claim and discharged it with a straightforward simplicity that was

entirely devoid of self-consciousness; but he gladly avoided demonstrations whenever

it was possible.

In the spirit of his work one great quality was his generosity to others, particularly

to young men, whose work he was always willing to recognise. He ignored the fact

that he was a great mathematician—probably it never occurred to him to think of

his doings: but it may be doubted whether this unconsciousness of his greatness ever

proved at once more fascinating or more bewildering than when he was discussing

scientific results with young men. He so evidently had his wishes centred on a single-

hearted desire for the right result that it was difficult to conceive him approaching

a question merely as a learner : yet he was ever a learner. There are few men, if

any, with not even a tithe of his scientific achievements, who have had less of con

troversy or have had such immunity from questions as to priority of discovery. This

arose not merely from the indisputable priority of his results: it was partly owing to

his nature. Salmon says of him :—

"His motto has always been 'esse quam videri,' and I do not know any

one to whom it would be more repulsive to engage in a personal contest by

claiming for himself a particle of honour or of money more than was spontaneously

conceded. He would be apt to take for his model the patriarch Isaac, who,

when the Philistines claimed a well which he had dug, went on and dug

another, and when they claimed that, too, went on and dug a third":

an exceedingly happy description of the man the tide of whose genius was

" Too full for sound or foam."

Some account of his work, some estimate of its character, some indication of the

original contributions made by him to his science, may not improperly be given here.

It is, of course, impossible to predict what his permanent influence will be upon

mathematics, or what opinion coming generations of workers will hold of him : certainly,

by his own contemporaries, he was deemed one of the greatest mathematicians the

d2
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world has seen. Bertrand, Darboux, and Glaisher have compared him to Euler, alike

for his range, his analytical power, and, not least, for his prolific production of new

views and fertile theories. There is hardly a subject in the whole of pure mathe

matics at which he has not worked. Some new subjects owe their existence to him;

to others he has made very definite contributions, so that their boundaries have been

enlarged often to an enormous extent ; there are few upon which he has not left the

mark of his genius.

In several of the notices that appeared at his death he was described as a great

explorer. Such he undoubtedly was, but he was more. He not merely discovered new

countries but he also opened them up, so that others were able to enter into some

possession of those regions without undergoing the difficulties that he had overcome.

And if the metaphor may be carried further, he had the restlessness of the explorer:

he could not long remain satisfied with an achievement concluded, but must try his

fortune again and elsewhere.

Varying opinions have been expressed as to Cayley's style ; the variations are

largely due to preconceived views of what a mathematical paper should be. It certainly

is not easy to skim one of his papers ; any attempt to do so leads to an inadequate

estimate of what it usually establishes. It is not difficult to read one of his papers,

even to grasp the contents well, provided proper care be devoted to it, because

difficulties that occur are completely solved, and nothing lies in the background to

cause doubt or suggest incompleteness. He has been well described by Glaisher as

an unequalled master of analytical processes ; it is especially in algebraical manipulation

that his strength and his facility stand out in clear view. His success in this direction

was achieved by a skill that cannot be explained by describing it as due to acquired

knowledge, or to practice, or to long consideration and patient selection. It was rather

an instinct for the management of the most complicated processes, and the way in which

he controls the most elaborate calculations is sometimes little short of extraordinary.

As regards his methods, he does not seem to have cast about so as to choose

one rather than another. As soon as he had thought of any method the possible

effectiveness of which he could settle almost intuitively ("one's best things are done in

five minutes," he once said to me, in confirmation of the satisfaction I was expressing

at the fruitfulness of an idea that had occurred to me unexpectedly), the rest was

the exercise of his powers. Among the methods he preferred, especially during the

last twenty-five years of his life, was that of verification; in his hands it proved a

weapon of great force. Indeed, only less remarkable than his algebraical skill, was the

insight which enabled him to preserve the exact equivalence of all the equations in

any particular process, so that he could have reversed each process merely by reversing

the steps as they were made, and could have proceeded to the required theorem from

the initial expression of an algebraical fact. Numerous instances of this quality in

his work could be adduced ; it will be sufficient to refer to some parts of his paper *

'" On the centro-surface of an ellipsoid/'

But though Cayley was specially happy in the treatment of algebraical develop

ments, an inadequate estimate of his genius would be obtained by supposing that he

* C. M. P. vol. viii. No. 520 : Camb. Phil. Trans, vol. xn. (1873), pp. 319—365.
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was almost entirely an analyst. Much of his thinking, not a little of his writings, is

completely geometrical ; and his contributions to line geometry, his introduction of the

Absolute into geometry, his continued recurrence to the methods in pure geometry

invented by Poncelet and Chasles, should be sufficient to range him among geometricians.

Moreover, even in strictly analytical work, the synthetic element is often not far

away though it does not always appear on the surface. In this connexion an acute

suggestion, made by Salmon and perhaps based upon his remembrance of their mathe

matical correspondence that lasted through many years, is confirmed by one of the

Notes Cayley himself added at the end of the second volume of his Collected Mathe

matical Papers. An enquiry sometimes begins by a comparatively easy problem which,

when solved, leads to wider inferences ; so that, ultimately in the development, con

siderable generalisations are effected. Now the usual writer, in publishing the results

of such an enquiry, draws them up in a sequence that partly marks the order of

their connected discovery : and, in doing so, he makes his work easier for his readers.

But Cayley was not the usual writer. When he had reached his most advanced

generalisations he proceeded to establish them directly by some method or other, though

he seldom gave the clue by which they had first been obtained: a proceeding which

does not tend to make his papers easy reading. An instance of the fact occurs* in

his " Memoir on the Theory of Matrices," where he proves that a matrix satisfies an

algebraical equation of his own order ; he proves it by verification in simple cases,

but he gives no clue as to his line of discovery. An instance of the method occurs

in a note "|" added to one of his papers, where he says that the general equations

{ydx} - ydx = 0, {xdy} - xdy = 0,

characteristic of covariants and invariants of binary quantics, were initially suggested by

considering the relation of the quadratic ax2 4- 2bxy + cy2 and its discriminant ac — b2 to

these equations. In the paper he drops linear transformation as connected with the

covariantive property and defines a covariant as a function satisfying these two equations.

His literary style is direct, simple and clear. His legal training had an influence,

not merely upon his mode of arrangement but also upon his expression; the result is

that his papers are severe and present a curious contrast to the luxuriant enthusiasm

which pervades so many of Sylvester's papers. He used to prepare his work for

publication as soon as he had carried his investigations in any subject far enough for

his immediate purpose. He found it an easy matter to do this part of his work, and

thus differed widely in experience from those to whom the preparation of a paper is

laborious even when the results to be incorporated have been obtained. As a matter

of fact, he took the straightforward course of saying what he had to say in a clear

and simple manner, fixing his mind upon the substance and never going out of his

way in order to secure beautiful form for the presentation of results. Yet not infre

quently his papers are so admirably written that they satisfy the exacting critics; thus

it is perhaps not too much to affirm that his " Sixth Memoir on Quantics \ " could not

be presented in more attractive form—a character due, however, to the tendency of

* G. M. P. vol. ii. No. 152, pp. 482, 483 ; Phil. Trans. (1858), pp. 24, 25.

t G. M. P. vol. ii. p. 600.

X G. M. P. vol. ii. No. 158 ; Phil. Trans. (1859), pp. 61—90.
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his method and to his results, but not acquired by any effort specially devoted to

elaboration of clear expression. Again, a paper once written out was promptly sent

for publication; this practice he maintained throughout his life. He undoubtedly formed

projects for the immediate future ; thus to the second edition * of his Treatise on

Elliptic Functions he intended to add a couple of chapters, which, however, remained

unwritten solely for the reason that all such projects were carried into effect only

about the time when the need arose. The consequence is that he has left few arrears

of unfinished or unpublished papers; his work has been given by himself to the world.

Only one other remark as to the form of his papers need be made. Readers

must be struck with the number of exact references he makes to other writers. It

was a practice about which he had very decided opinions : he wished not merely to

make honourable acknowledgment of indebtedness but also to give indications of the

history of the subject. In the latter particular he was always careful to insert in the

reference the year in which the book or the paper had appeared; and he steadily urged

others to insert dates in their references.

Cayley made additions to every important subject that lies within the range of pure

mathematics. Their importance and their amount have varied in different subjects ; thus

on geometry his writings have a dominating influence: while on the general theory of

functions, though he knew the subject well, he has left little mark, for he concerned

himself chiefly with details such as the solution of more or less special problems in

conformal representation. His papers in general have such value that he is the author

most frequently quoted by the great body of current mathematicians. A full record

of what he has done in pure mathematics could be made only by writing its history

during the last half century; all that is attempted here consists of some brief indica

tions of a selection among his more obviously important contributions to mathematical

knowledge.

One of the subjects with which Cayley's name will probably be most closely asso

ciated is the theory of invariance. It is easy to cite simple cases of what is implied

by an invariantive function: two will suffice.

It is known that, in solving an ordinary algebraical equation with literal coef

ficients, a certain functional combination of these coefficients (called the discriminant)

must vanish in order that two roots of the equation may be equal; for example, the

equation ax2 + 2bx + c = 0, has equal roots if (and only if) the quantity ac — b2 vanishes.

When the variable is transformed from x to y by a relation (l'x + m!) y = lx + m, where

I, m, l\ m are constants, then evidently two values of y, corresponding to the two equal

values of x, are equal. When x is eliminated from the equation by means of the assumed

relation, a new quadratic arises having y for its variable ; let it be dy2 + 2b'y + c — 0,

where a', b\ c' depend upon a, &, c and I, m, l\ m'. The two values of y determined

by this equation are equal if (and only if) the quantity a'c' — b'2 vanishes. But the

equality of the two values of y depends upon and is determined by the equality of

the two values of x, the latter equality being secured if the quantity ac — b2 vanishes.

It follows that the vanishing of either of the quantities a!c — b'2 and ac — b2 requires

* It was published four months after his death; only the earlier sheets had the benefit of his revision.
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the vanishing of the other; and it is therefore inferred that, when neither of them

vanishes, one of them contains the other as a factor. When the actual calculation is

made, it is found that a'c' — &'2 is the product of ac — b2 and {lmf — I'm)*, the latter being

a quantity that depends solely upon the transforming relation. Consequently it appears

that a combination of the coefficients in the original equation exists, such that when

the equation is transformed by any relation of the type indicated and exactly the same

combination of the new coefficients is constructed, the two combinations are equal to

one another save as to a factor depending solely upon the transforming relation, Such

a combination of the coefficients is called an invariant.

Again, it is known that every curve (of degree higher than two) possesses a

number of points where a tangent to the curve not merely touches it but, having

contact of one degree closer, crosses it; and it is found that all these points, called

points of inflexion, also lie upon another curve uniquely derived from the first.

When the curves are represented by means of equations, the statement is that the

points of inflexion of a curve TJ = 0 are given as the intersections of this curve

with a curve H = 0, the latter equation being uniquely derived from U=0. Now

suppose that the axes, to which the curves have been referred, are changed to

another system, so that new co-ordinates x', y' are connected with the former co

ordinates by relations

rf = yf 1

axx + bxy + <?i a2% -f- b2y + c2 ax + by +' c '

A new equation TJ' — 0, obtained by eliminating x and y between these relations

and TJ = 0, will now represent the curve. The change thus made does not affect the

geometrical properties of the curve: its points of inflexion are still given as its

intersections with the curve H — 0. But the points of inflexion of the curve

represented by TJ' — 0 are the intersections of this curve with another curve repre

sented by H' = 0, an equation derived from TJ' = 0 in exactly the same way as H = 0

is derived from TJ = 0. It therefore appears that the associated curve H' — 0 cuts

the given curve in precisely the same points as the associated curve 11=0, a result

which suggests that the associated curves are the same. Now H! — 0 has been

derived from TJ' = 0 ; but actual calculation shows that, if the relations between

x\ y' and x, y be used to eliminate x, y from H = 0, the resulting equation is

H' = 0 ; in other words, the relations between x\ y' and x, y transform the equation

H = 0, derived from TJ = 0, into the equation H! = 0, derived in the same way from

TJf — 0. Moreover, as in the case of the invariant, it is found that H\ a specially

constructed function of x\ yf and the coefficients in TJ, is divisible by H, the same

function of x, y and the coefficients in TJ \ the quotient being a quantity depending

again only upon the constants in the transforming relations. Consequently it appears

that a combination of the coefficients and the variables in the original equation exists

such that, when the equation is transformed by means of relations of the type indicated,

and exactly the • same combination of the new coefficients and the new variables is

constructed, the two combinations are equal to one another save as to a factor depen

dent solely upon the transforming relations. Such a combination of the coefficients and

the variables is called a covariant.
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The first notice of such a property appears to have been made by Lagrange.

And Gauss discussed the invariance of the discriminants of certain expressions when

the latter are subjected to linear transformations. Again, Boole in 1841 had shown

that this invariantive property belongs to all discriminants, and he gave a method of

deducing some other functions of this kind. Boole's paper suggested to Cayley a

much more general subject—the permanence of invariantive form—so that he set

himself the question of finding "all the derivatives of any number of functions which

have the property of preserving their form unaltered after any linear transformation

of the variables." The first set of results obtained by his investigations related to

invariants ; they appeared in his famous paper,* " On the Theory of Linear Trans

formations," published half a century ago. The second set of results related to

covariants ; they appeared in the paper,-)- " On Linear Transformations," published in

the succeeding year. In these two papers Cayley demonstrated the general existence

of a number of functions, both invariants and covariants (at first he called them

hyperdeterminants), which preserve their form under linear transformation.

These discoveries of Cayley establish him as the founder of what is called

sometimes modern algebra, sometimes invariants and covariants, sometimes theory of

forms; the origination of the theory is incontestably his, and it is universally ascribed

to him.

A discovery of this general importance and complete novelty soon attracted the

attention of other workers. It is not too much to say that the subsequent in

vestigations long absorbed the active interest of many mathematicians, and, as a result,

the theory has influenced all that domain of mathematical science which is in any

way connected with algebraical form. Among the first to enter the field was

Sylvester, then living in London; he and Cayley were in constant communication,

alike oral and written, and carried on their work in the most friendly relations with

one another. Boole also resumed his investigations, and both he and Salmon made

substantial additions to the theory. The continental mathematicians also had begun

their important contributions, chief among them being Aronhold, Hesse, and, at a

later date, Hermite. Aronhold, indeed, devised the so-called symbolical method, now

the favourite method with German workers; in its origin it is nearly the same as

the symbolical method introduced by Cayley, but the subsequent developments—due

largely also to Clebsch and to Gordan—run on lines entirely different from Cayley's.

After a time, Cayley began his series of ten memoirs on quantics ; they must

rank among the most wonderful combinations of original researches and papers upon

a single theory ever produced. They contain a splendid exposition of the theory as

already established; they are full of original contributions to the subject, and as they

take account of the work done by other authors, they have the further interest of

showing how the subject grew between the appearance of the "Introductory Memoir"

in 1854 and the appearance of the "Tenth Memoir" in 1878. This is hardly the

* C. M. P. vol. i. No. 13 ; Garni. Math. Jour. vol. iv. (1845), pp. 193—209.

f C. M. P. vol. i. No. 14 ; Garnb. and Bull. Math. Jour. vol. i. (1846), pp. 104—122. The two papers were

rewritten, and appeared in Grelle, vol. xxx. (1846), pp. 1—37, under the title " Memoire sur les Hyper

determinants."
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opportunity to write a history of the subject by apportioning among the various

investigators the sections which they respectively originated;* yet reference should be

made to two matters.

First, one of the problems that greatly interested Cayley was the determination

of the complete asyzygetic system of irreducible invariants and covariants appertaining

to a binary form, that is, the system such that every invariant and every covariant

of the form can be expressed as a rational integral algebraical function of the

members of the system, the coefficients in the function being numerical only. In his

" Second Memoir on Quantics "*|* he had accurately determined the number (and their

degrees) of the asyzygetic invariants for binary forms of orders 2, 3, 4, 5, 6 ; he

had also accurately inferred the number (together with their degrees and their orders)

of the asyzygetic covariants for binary forms of orders 2, 3, 4, all these concomitants

being subsequently tabulated. But, in regard to the invariants of forms of order

higher than 6 and the covariants of forms of order higher than 4, he came to the

erroneous conclusion that the respective numbers are infinite. The error was not

corrected until Gordan in his memoirJ, dated 8th June, 1868, and entitled "Beweis

dass jede Covariante und Invariante einer binaren Form eine ganze Function mit

numerischen Coefficienten einer endlichen Anzahl solcher Formen ist," showed that the

complete system for a binary quantic of any order contains only a limited number

of members. Cayley at once returned to the question, and having found a source of

error (it was the neglected interdependence of certain syzygies, reducing the numbers

of invariants and covariants ; the interdependence had not previously been suspected),

he dedicated his "Ninth Memoir on Quantics §" (dated 7th April, 1870), to the

correction of the error and a further development of the theory in the light of

Gordan's results. His promptness in recognising and giving immediate prominence to

the work of the younger author possibly prevented some controversy among unwise

partisans ; it was characteristic of the man.

And, secondly, though his series of memoirs was brought to an end with the

tenth, his interest in the subject did not cease, and he frequently wrote upon parts

of it under other titles. In particular, Captain P. A. MacMahon's discovery of a

relation of a new character between seminvariants and symmetric functions (viz., that

the leading coefficients of the covariants of a binary quantic are the same as the

non-unitary partition symmetric functions of the roots of an equation connected

with a modified quantic) proved of the keenest satisfaction to him. From time

to time he wrote in the American Journal of Mathematics upon this subject

and upon symmetric functions generally in this connexion, always sympathetic

and appreciative of the advances made by others, able to grasp and assimilate

* Some information will be found in an appendix to Salmon's Lessons on Higher Algebra ; also in the

notes and references at the end of the second volume (pp. 598—601) of the Collected Mathematical Papers.

A valuable and exhaustive report, containing a full history of the subject, was drawn up by Prof. Dr. Franz Meyer,

and published under the title "Bericht iiber den gegenwartigen Stand der Invariantentheorie " (Jahresber. d*

Deutschen Mathem.-Vereinigung, I. 1892).

f G. M. P. vol. ii. No. 250 ; Phil. Trans. (1856), pp. 101—126.

X Grelle, vol. lxix. (1869), pp. 323—354.

§ G. M. P. vol. vii. No. 462 ; Phil. Trans. (1871), pp. 17—50.

c. vni. e
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their ideas, but using them as a master and not as a follower. It was not

alone, however, to symmetric functions, upon which he had written long and

important memoirs as early as 1857, but to many other cognate subjects that he

extended his researches upon invariants and covariants. The theory of equations of

the fifth and higher degrees, Sturm's functions, Tschirnhausen's transformation, partition

of numbers, Arbogast's method of derivation, skew determinants*—to quote no others

—are titles and subjects of papers, all of which contain investigations of great value.

The reason that they are less known (if such be the case) than his other work in

the same line of ideas is perhaps due to the fact that the direct theory of in

variants and covariants was rapidly brought within the range of students through

Salmon's Lessons on Higher Algebra, dedicated by the author to Cayley and

Sylvester.

Another subject, of which he must be regarded as the creator, is the theory of

matrices. His first memoirf upon this theory, "wherein/' to quote Sylvester,J "he

may be said to have laid the foundation-stone of multiple quantity," was published

in 1858. A couple of isolated results had been obtained by Hamilton in 1852 through

the methods of quaternions ; but they were unknown to Cayley at the time of his

memoir, and, owing to the connexion in which they occur, they have an entirely

detached aspect.

A matrix may initially be defined as a symbol of linear operation; thus, when

the equations

X = ax + by + cz, Y == dx + Vy 4- c'z, Z= d'z + b"y + c"z

are expressed in the form

(X, F, Z) = ( a , b , c $*, y} z) = M(x, y, z\

a\ V, g'

a", b"y c"

the symbol if is a matrix. Cayley was the first to discuss the theory of such symbols

as subjects of functional operation and to dispense with the hitherto regular return

at each stage to the equations of substitution in which the symbol first arises ; in

fact, he replaces the notion of substitutional operation by the notion of a new class

of quantity.

Matrices (being of the same order or dimension) can be added like ordinary

algebraical quantities; as regards multiplication, they are subject to the associative law,

but not to the commutative law. Hence powers of a matrix (positive and negative,

integral and fractional) can be obtained, and likewise algebraical functions of a matrix.

It also follows that two general matrices are not convertible, that is, LM is not the

same as ML save under special conditions; and it is a part of the theory to find the

most general matrix convertible with a given matrix. The expression of this convertible

* His discoveries in this subject alone, have done much to simplify the analytical investigations connected

with Pfaff's problem and the allied theory.

+ G. M. P. vol. ii. No. 152 ; Phil. Trans. (1858), pp. 17—37.

t Amer. Jour. Math. vol. vi. (1884), p. 271.
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matrix can be deduced by means of the fundamental equation which every matrix

satisfies, viz., an algebraical equation of its own order, the coefficient of the highest

term being unity, and the last term being the determinant of the constants in the

matrix. All these results were given by Cayley in his initial memoir; and, at the

same time, they were applied by him to obtain the most general automorphic linear

transformation of a bipartite quadric function, an extension of the problem which requires

the most general (orthogonal) substitution transforming the function x2 + y2 + z2 +

into the function x'2 + y'2 4- z'2 -f

How fruitful the subject has proved may be inferred by noting the subsequent

investigations of Sylvester, who has developed it on Cayley's lines, and has added to

it many new ideas; of Tait, who developed the theory of quaternions on parallel lines:

of the Peirces, father and son, whose researches on linear associate algebra* gave rise

to the notion of matrices from a different source; of Clifford and Buchheim, who

connected the theory with Grassmann's methods; of Laguerre, in whose memoirf the

treatment of a "linear system" (the same as a Cayley matrix) is similar to Cayley's;

and of many other writers, among whom Taber should be mentioned.

Connected with non-commutative algebraical quantities, Cayley's researches on the

theory of groups require a passing notice. He devoted several papers to questions in

this theory. Some of them relate to those groups of substitutions, the introduction of

which by Galois made an epoch in the theory of equations, others of them relate to

groups of homographic transformations, particularly those related to the polyhedral

functions. But, so far as can be seen, he limited his published investigations to those

groups wThich are finite and discontinuous.

Abstract geometry—the ideal geometry of n dimensions—is a subject that he may

almost be said to have created; no other name than his has been associated with its

origin. More than anything else, it marks the line of difference between the kinds

of homage accorded to him. Experts regard it as an illustration of his imaginative

power: the unlearned regard it as an incomprehensible mystery.

It finds a place among his earliest investigations, J it was steadily present to his

mind, illuminating many of his researches; arid occasionally it found explicit treatment,

e.g.. in his "Memoir on Abstract Geometry," § and in his Presidential Address at South-

port. The theory presents itself in two connexions : one, as a need in analysis, the

other as a generalisation of the ordinary geometries of two dimensions and of three

dimensions.

The former origin can be indicated in a brief statement. When an occasion

arises for dealing with a number of variables, connected in any manner and regarded

as either variable or determinate (wholly or partially), the nature of the relations

among them is frequently indicated, and often is made more easily intelligible, by

associating some geometrical interpretation with the given system of relations. Thus

* Amer. Jour. Math. vol. iv. (1881), pp. 97—229.

+ " Sur le Calcul des Syst&mes Lindaires (Journal de VEc. Poly. vol. xxv. 1867, pp. 215—264).

t G. M. P. vol. i. No, 11; Camb. Math. Jour. vol. iv. (1845), pp. 119—127.

§ G. M. P. vol. vi. No. 413 ; Phil. Trans. (1870), pp. 51—63.

e 2
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the momental ellipsoid is of great use in the discussion of moments of inertia, in

representing the motion of a body round a fixed point when there are no impressed

forces, and in other questions in dynamics. Again, two non-homogeneous (or three

homogeneous) variables can be regarded as the co-ordinates of a point in a two-

dimensional geometry, such as that of a plane or the surface of a sphere or any

analytical surface; and any equation among the co-ordinates is then interpreted as

representing a curve (or curves, or portion of a curve or curves) upon the surface.

Similarly, when there are three non-homogeneous (or four homogeneous) variables, they

can be regarded as the co-ordinates of a point in a three-dimensional geometry, such

as that of ordinary space; corresponding to an equation among the variables, there is

a surface (or surfaces) in space; corresponding to two independent equations among the

variables, there is a curve (or curves) in space; and corresponding to three independent

equations, there is a point (or points) in space. In such cases the analytical relations

can often, with great advantage, be exhibited as geometrical properties. When the

number of non-homogeneous co-ordinates is greater than three (or the number of

homogeneous co-ordinates is greater than four), the circumstances have greater need of

such a representation, while there is a greater difficulty in constructing some geometrical

illustration; and then it can be obtained in a corresponding form only by the idea

of a space of the proper number of dimensions. To secure the possibility of such a

representation, it is necessary to evolve the geometry of multiple space.

For example, there are four single theta-functions, and their squares are connected

by linear homogeneous relations. In order to obtain other properties of the functions

themselves, it is convenient to regard them as homogeneous co-ordinates of a point in

(ordinary) space; the amplitude in space that then is to be selected is the quadri-

quadric tortuous curve represented by those linear relations, viz., the curve which is

common to two quadric cylinders with intersecting axes. Similarly there are sixteen

double theta-functions, with corresponding linear relations among their squares. The

associated geometry is fifteen-dimensional ; the manifoldness in this space to be selected

for the discussion of the properties is the quadri-quadric two-dimensional amplitude

common to thirteen quadric hyper-cylinders.

An initial difficulty in the construction of an analytical geometry of n dimensions

is the expression of an amplitude of less than n — 1 dimensions by means of equations

that shall represent the complete amplitude, and nothing besides the amplitude. It

occurs in ordinary solid geometry, the difficulty there being to obtain the expression

of a tortuous curve in space by means of equations that represent it alone. For

instance, a twisted cubic is frequently taken as the intersection of two quadrics having

one common generator; but the equations of the quadrics taken together represent not

the cubic curve alone but also the common generator. And the like for other cases.

Cayley's purpose in his "Memoir on Abstract Geometry," already referred to, was

the exposition of some of the elementary principles of the subject. The paper is a

remarkable instance of his power of presentation of abstract ideas, and of his clear

precision of statement. Moreover, he makes it an explanatory paper; and, in view

of the prevailing estimate of him as an analyst, it is worthy of notice that the

paper does not contain a single equation, and contains only a few symbols. It is
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unnecessary to summarise its contents; the furthest stage reached is the establishment

of the notion that underlies the principle of duality in geometry.

But though the necessity for hyperdimensional geometry can thus be met so far

as it arises in connexion with analysis, it is a different matter when the geometry

is to be regarded as the generalisation of the geometries of two-dimensional space

and of three-dimensional space. Cayley's reply to his own question as to the meaning

to be attached to hyperdimensional space is* that

"It may be at once admitted that we cannot conceive of a fourth di

mension of space; that space as we conceive of it, and the physical space of

our experience, are alike three-dimensional; but we can, I think, conceive of

space as being two- or even one-dimensional; we can imagine rational beings

living in a one-dimensional space (a line) or in a two-dimensional space (a

surface), and conceiving of space accordingly, and to whom, therefore, a two-

dimensional space, or (as the case may be) a three-dimensional space would be

as inconceivable as a four-dimensional space is to us."

By not a few people the first clause in this passage has been neglected and the

later clauses have not always been read rightly; and his further remark, "I need

hardly say that the first step is the difficulty, and that granting a fourth dimension

we may assume as many more dimensions as we please," has left some readers rather

puzzled as to whether Cayley had not, after all, some mysterious incommunicable con

ception of a fourth dimension. His position is stated in the first clause of the

former passage; his conclusion is that hypergeometry is, and is only, a branch of

mathematics.

Before passing from the consideration of his larger contributions to hypergeometry,

it is proper to mention his introduction of the six co-ordinates of a line. These are

six quantities connected by a homogeneous equation af+bg + ch = 0; and as only

their ratios are used, they are thus equivalent to only four independent magnitudes,

sufficient for the unique specification of a right line. They were first established, and

primarily used by him, in connexion with his new analytical representation of curves

in space ;*f* and he often recurred to the subject, devoting in particular one paper J

to the calculus of the six co-ordinates and to a discussion of Sylvesters involution

of six lines. It should, however, be stated that these co-ordinates presented themselves

independently to Pliicker; the development of Pliicker's theory as set forth in his

memoir § On a New Geometry of Space, and in his book|| Neue Geometrie des Raumes, is

entirely different from that obtained by Cayley, and it ought to be regarded as a separate

creation. And it need hardly be remarked that while the introduction of a line, as an

entity represented by a set of co-ordinates, leads to a new geometry of space, it is

also clear that line-geometry can be regarded as a geometry of four dimensions.

* Brit. Assoc. Report, 1883, President's Address, p. 9.

t G. M. P. vol. iv. Nos. 284, 294.

X C. M. P. vol. vn. No. 435.

§ Phil. Trans. 1865, pp. 725—791.

|| Leipzig, Teubner, 1868.
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Another notion, entirely due to Cayley in its first form, is that of the Absolute ;

it was first introduced in his Sixth Memoir on Quantics* which was devoted chiefly

to his investigations on the generalised theory of metrical geometry.

It is a known property that the angle between two lines AB, AG, when mul

tiplied by 2 V — 1, is equal to the logarithm of the cross-ratio of the pencil made up

of the lines AB, AG and (conjugate imaginary) lines joining A to the circular points

at infinity; and the measure of the angle between two lines can thus be replaced

by the consideration of a projective property of an extended system of lines. Other

examples of similar changes could easily be quoted. The purpose of Cayley's theory

was to replace metrical properties of a figure or figures by projective properties of an

extended system composed of a given figure or figures and of an added figure.

But it is not solely owing to the generalisation of distance that the memoir is

famous. It has revolutionised the theory of the so-called non-Euclidian geometry;

and it has important bearings on the logical and philosophical analysis of the axioms

of space-intuition. The independence and the importance of the ideas, originated by

Cayley in this memoir, have never been questioned ; but, as is often (and naturally)

the case with the discoverer of a fertile subject, Cayley himself did not explain or

foresee the full range of application of his new ideas. He did not recognise, at the

time when his memoir was first published, the beautiful identification of his generalised

theory of metrical geometry with the non-Euclidian geometry of Lobatchewsky and

Bolyai. This fundamental step was taken by Klein in his admirable memoir*}*, Ueber

die sogenannte Nicht-EuMidische Geometrie, which contains a considerable simplification

in statement of Cayley's original point of view, and contributes one of the most im

portant results of the whole theory. The work of the two mathematicians now being

an organic whole, there is no advantage—at least here—in attempting to subdivide

the subject for the purpose of specifying the exact share of each in its construction.

The scope of the Cayley-Klein ideas may briefly be gathered from the following

sketch. Let A1 and A2 be two points, often called a point-pair; they are to be

either both real or, if not both real, then conjugate imaginaries so far as their co

ordinates are concerned. Let P, Q, R be three other points on the line Ax A2\ and

let the symbol (PQ) denote

~ , AiJr . A2U ~ . -, -o-i-r . A2U

2^A&-d °r 2ly l0g A&7AJ»

according as Ax and A2 are a real point-pair, or an imaginary point-pair. Then it

is manifest that

(PQ) + (QR) = (PR),

so that the functions (PQ), (QR), (PR) satisfy the fundamental property of the dis

tances between P and Q, Q and R, and P and R. Consequently (PQ) may be taken

as a generalised conception of the distance between the points P and Q.

* G. M. P. vol. ii. No. 158; Phil. Trans. (1859), pp. 61—90.

f Math. Ann. vol. iv. (1871), pp. 573—625.
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Now let a conic be described in a plane, either imaginary, say, of the form

w2 + y2 + z2 = Q or real, say, of the form #2 + 2/2-£2 = 0. Choosing the latter case, let

attention be confined to points lying within the conic, so that every straight line

through a point cuts the conic in a real point-pair. Take two points, P and Q;

and let the line joining them cut the conic in two points, Ax and A2. Then (PQ),

as defined above (the constant 7 being the same for all such lines), is the generalised

distance between P and Q. This conic, which has been arbitrarily assumed, and

upon which the generalised conception of distance depends, is termed by Cayley the

Absolute.

Cayley, however, avoided the unsatisfactory procedure of using one conception of

distance to define a more general conception. As he himself explains more fully,*

he regarded the co-ordinates of points as some quantities which define the relative

properties of points, considered without any reference to the idea of distance but

conceived as ordered elements of a manifold. Thus if aly ft, <yx and a2, /32, <y2 be the

co-ordinates of the point-pair A1 and A2} the co-ordinates of the points P and Q on

the line A1A2 can be taken as X1a1 + X2a2J \1/31 + \2B2, Vyi + ^272 and yu^ + /u2a2}

/^ft + fi2/32, fi1y1 -j- fju2y2 respectively. The function (PQ) can then be defined as

27log^lor2i7log^l;

Aa/^2 Aj/^a

the generalised idea of distance thus finds its definition without any antecedent use

of the conception in its ordinary form. Cayley's view is summed up in his sentencef:—

" the theory in effect is, that the metrical properties of a figure are not the pro

perties of the figure considered per se apart from everything else, but its properties

when considered in connexion with another figure, viz. the conic termed the absolute."

The metrical formula obtained when the absolute is real are identical with those

of Lobatchewsky's and Bolyai's "hyperbolic" geometry: when the absolute is imaginary

the formulae are identical with those of Riemann's "elliptic" geometry; the limiting

case between the two being that of ordinary Euclidian ("parabolic") geometry.

Cayley's memoir leads inevitably to the question, as to how far projective geometry

can be defined in terms of space perception without the introduction of distance. This

has been discussed by von StaudtJ (in 1847, previous to Cayley's memoir), by Klein§ and

by Lindemann||. The memoir thus points to a division of our space intuitions into two

distinct parts : one, the more fundamental as not involving the idea of distance, the

other, the more artificial as adding the idea of distance to the former. The considera

tion of the relation of these ideas to the philosophical account of space has not yet

been brought to its ultimate issue.

* See the note which he added, C. M. P. vol. 11. p. 604, to the Sixth Memoir; it contains some interesting

historical and critical remarks.

+ Loc. cit. § 230.

$ Geometrie der Lage; also in his later Beitrdge zur Geometrie der Lage, 1857.

§ Math. Ann. vol. vi. (1873), pp. 112—145.

|| Vorlesungen ilber Geometrie (Clebsch-Lindemann), vol. 11. part 1.; the third section is devoted to the

subject.
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It is in analytical geometry, both of curves and of surfaces, that the greatest variety

of Cayley's contributions is to be found. There is hardly an important question in the

whole range of either subject in the solution of which he has not had some share;

and there are many properties our acquaintance with which is due chiefly, if not entirely,

to him. How widely he has advanced the boundaries of knowledge in analytical geometry

can be inferred even from the amount of his researches already incorporated in treatises

such as those by Salmon, Clebsch and Frost; and yet they represent only a portion

of what he has done. In these circumstances only a selection among his contributions

can be indicated: it must be understood that, here as elsewhere, the statement does not

pretend to be a complete account.

It is an old-established property that two curves of degrees m and n cut in mn

points, but that it is not possible to draw a curve of degree n through any mn arbitra

rily selected points on a curve of degree m. As early as 1843, Cayley extended the

property and showed that when a curve of degree r higher than either m or n is to

be drawn through the mn points common to the two curves, they do not count for

mn conditions in its determination, but only for a number of conditions smaller than

mn hy ^ (m+n — r—1) (m + n — r — 2). A single addition was made to the theorem by

Bacharach* in 1886—taking account of the case when the undetermining points lie on

a curve of degree m + n — r — 3 ; with this exception the algebraical problem was com

pletely solved by Cayley in his original paperf. The result is often called Cayley's

intersection-theorem.

Another geometrical research of fundamental importance was embodied by him in

a memoirJ, "On the higher singularities of a plane curve," published in 1866: it

is there proved that any singularity whatever on a plane algebraical curve can be

reckoned as equivalent to a definite number of the simple singularities constituted by

the node, the ordinary cusp, the double tangent and the ordinary inflexional tangent.

The theory has, since that date, been developed on lines different from Cayley's—owing

to its importance in other theories, such as Abelian functions, variety in its development

has proved both necessary and useful; but it was Cayley's investigations in continuation

of Plticker's theory that have cleared the path for the later work of others.

The classification of cubic curves had been effected by Newton in his tract "Enu-

meratio linearum tertii ordinis," published in 1704: and six species had been added by

Stirling and Cramer, the total then being 78. Pliicker effected a new classification in

his " System der analytischen Geometrie," published in 1835 : his total number of species

is 219, the division into species being more detailed than Newton's. Cayley re-examined

the subject in his memoir§, "On the classification of cubic curves," expounding the prin

ciples of the two classifications and bringing them into comparison with one another;

and entering into the discussion with full minuteness, he obtains the exact relation of

the two classifications to one another—a result of great value in the theory.

* Math. Ann. vol. xxvi. (1886), pp. 275—299.

f G. M. P. vol. i. No. 5; Gamb. Math. Jour. vol. m. (1843), pp. 211—213.

X G. M. P. vol. v. No. 374; Quart. Math. Jour. vol. vn. (1866), pp. 212—223.

§ G. M. P. vol. v. No. 350; Gamb. Phil. Trans, vol. xi. (1864), pp. 81—128.
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To the theories of rational transformation and correspondence he made considerable

additions. Two figures are said to be rationally transformable into one another when

to a variable point of one of them corresponds reciprocally one (and only one) variable

point of the other. The figure may be a space or it may be a locus in a space.

Eational transformations between two spaces give rational transformations between loci

in those spaces; but it is not in general true that rational transformations between

two loci necessarily give rational transformations between the spaces in which those loci

exist. There is thus a distinction between the theory of transformation of spaces and

the theory of correspondence of loci. Both theories have occupied many investigators,

the latter in particular; and Cayley's work may fairly be claimed to have added much

to the knowledge of the theory as due* to Riemann, Cremona and others.

Further, there may be singled out for special mention, his investigations on the

bitangents of plane curves, and, in particular, on the 28 bitangents of a non-singular

quartic; his developments of Plticker's conception of foci; his discussion of the osculating

conies of curves, and of the sextactic points on a plane curve (these are the places

where a conic can be drawn through six consecutive points); his contributions to the

geometrical theory of the invariants and covariants of plane curves; and his memoirs

on systems of curves subjected to specified conditions. Moreover, he was fond of making

models and of constructing apparatus intended for the mechanical description of curves.

The latter finds record in various of his papers; even so lately as 1893 he exhibited,

at a meeting of the Cambridge Philosophical Society, a curve-tracing mechanism con

nected with three-bar motion.

All the preceding results belong to plane geometry; no less important or less

numerous were the results he contributed to solid geometry. The twenty-seven lines

that lie upon a cubic surface were first announced in his memoir-f-, "On the triple

tangent planes of surfaces of the third order," published in 1849, after a corre

spondence between Salmon and himself. Cayley devised a new method for the analytical

expression of curves in space by introducing into the representation the cone passing

through the curve and having its vertex at an arbitrary point. Again, by using

Plticker's equations that connect the ordinary (simple) singularities of plane curves, he

deduced equations connecting the ordinary (simple) singularities of the developable surface

that is generated by the osculating plane of a given tortuous curve, and, therefore, also

of any developable surface. He greatly extended Salmon's theory of reciprocal surfaces;

and resuming a subject already discussed by Schlafli he producedJ in 1869 his "Memoir

on cubic surfaces," in which he dealt with their complete classification. Many of his

memoirs are devoted to the theory of skew ruled surfaces, or scrolls as he called them.

Our knowledge of geodesies, of orthogonal systems of surfaces, of the centro-surface of

an ellipsoid, of the wave-surface, of the 16-nodal quartic surface, not to mention more,

* In this connexion a report by Brill and Noether, "Bericht iiber die Entwicklung der Theorie der

algebraischen Functionen in alterer und neuerer Zeit " (Jahresber. d. Deutschen Mathem.-Vereinigung, vol. in.

1894) will be found—particularly the sixth and the tenth sections—to give a very valuable resume of the

theory and its history.

fC. I. P. vol. i. No. 76 ; Camb. and Dull. Math. 'Jour. vol. iv. (1849), pp. 118—132. See also Salmon's

Solid Geometry (third edition, 1874), p. 464, note.

X G. M. P. vol. vi. p. 412; Phil. Trans. (1869), pp. 231—326.

C. VIII. /
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is due in part to the extensions he achieved. It is difficult to indicate parts of the

general theory of surfaces and of twisted curves that do not owe at least something

and frequently much to his labours; a mere reference to the index of a book like

Salmon's Solid Geometry will show how vast has been his influence.

One group of subjects interested him throughout his life, the theory of periodic

functions, in particular, of elliptic functions: it was to, the latter that his only book was

devoted. But in a subject, the main lines of which were established so definitely before

he began to write*, it is impossible, without entering into great detail, to mark out the

contributions that are directly due to him. When a theory is in such a stage as was

that of elliptic functions about 1842, the work of one writer sometimes helps to fill the

gaps left by that of another, sometimes develops another writers results from a different

point of view; the composite theory depends, in part, upon the coordination of comple

mentary results.

Abel's famous paper-f% " Memoire sur une propriete g&ierale d'une classe tres-etendue

de fonctions transcendantes," presented to the French Academy of Sciences in 1826, and

unfortunately delayed in publication* for nearly fifteen years, attracted Cayley's attention

quite early in his scientific career. In 1845 Cayley published his "M&noire sur les

fonctions doublement periodiques,"§ in which he considered Abel's doubly-infinite products

of the form

«(«) = flinn(i + ?j),

where w = (m, n) = mil 4- nT, the ratio 12 : T is not real, and the product is taken for

all positive and all negative integer values of m and of n between positive and

negative infinity, except simultaneous zero values. He showed that such products' can

be used to obtain Jacobi's elliptic functions by constructing fractions such as

u(w + -|fl) -7- u (oo) ;

and he also showed that the actual value of any product involves an exponential factor

e*Bx2, where the value of the constant B depends upon the relation || between the

infinities of m and of n. The results were of definite importance at the time of

their discovery, and they still hold their place. But the form of the doubly-infinite

product has been modified 1T by Weierstrass, who takes

a (x) = tfllll If1 + -) e ~^H ,
w,

* The history will be found in Casorati, Teorica delle funzioni di variabili complesse, 1868, and in

Enneper, Elliptische Functionen, Theorie und Geschichte, second edition, 1890, where other references are given.

f (Euvres computes d'Abel (Christiania, 1881), vol. i. pp. 145—211.

X The circumstances are recited in § 9 of the appendix to the volume, by Bjerknes, Niels Henrik Abel,

Tableau de sa vie et de son action scientijique (Gauthier-Villars, Paris, 1885).

§ C. M. P. vol. i. No. 25 ; Liouville, vol. x. (1845), pp. 385—420.

|| This is sometimes expressed differently, as follows. Points are taken having m and n for their Cartesian

co-ordinates ; those which occur for infinite values of m and of n lie at infinity, and may be considered to

lie upon a curve altogether at infinity, the shape of which is determined by the relation between the

infinities of m and of n.

The value of the constant B is said to depend upon the shape of this bounding curve.

U Weierstrass's investigations on infinite products are contained in his memoir ** Zur Theorie der

eindeutigen analytischen Functionen " (Abh. d. K. Akad. d. Wiss. zu Berlin, 1876) ; also in his book Abhand-

lungen aus der Functionenlehre, 1886.
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a function the value of which is independent of any particular form of relation between

the infinities of m and of n. Owing to the latter simplification, Cayley's results are,

as he himself remarked*, partly superseded by those of Weierstrass.

Cayley had great admiration for the works of both Abel and Jacobi; he had

begun to read the latter s Fundamenta Nova immediately after his degree. The

prominent position occupied in that work by the theory of transformation naturally

attracted his interest; and, even as early as 1844 and 1846, he wrote short memoirs

upon the subject, obtaining in one of them a function, due to Abel and now known

as the octahedral function. Further memoirs of a similar tenor appeared occasionally;

they deal chiefly with transformation as concerned with the known differential relation

of the form

{(1 - a2) (1 - to2)} -* da? = M {( 1 - y2) (1 - \y)} -* dy.

The contributions made to the transformation theory by Sohnke, Joubert, and Hermite,

as well as Jaeobi's original investigations, all depend upon the use of transcendental

functions of the quantity q(=e n K): yet the results are such that they ought to be

deducible by ordinary algebraical processes. It was Cayley's wish to deal with this

theory by pure algebra ; two simple cases had already thus been discussed by Jacobi,

but the extension to the less simple cases proved difficult. Cayley's "Memoir on the

transformation of elliptic functions-JV' carries on the algebraical theory and places it in

a clearer light than before. But though he made a distinct advance in dealing with

particular cases, he still found it necessary to use the g'-transcendents for making any

definite advance in the general case. And the same compulsion occurs in the chapters

of his Treatise on Elliptic Functions, where transformation is discussed at considerable

length.

He resumed his investigations in 1886, still dealing with the algebraical method,

but applying it to a simplified form of elliptic integral due to Brioschi. Though the

problem is not solved £ completely for the general case, he has devised a method which

is effective at least in part; it easily leads to new results connected with the modular

equations in the known simpler cases previously solved.

The theta-functions are the subject of several of his papers. He began § with a

direct establishment of Jaeobi's relation

V& snu = H (u) -r © (u),

obtained in the Fundamenta Nova by a long and cumbrous process; and he proceeded

to the construction of the linear differential equations satisfied by the theta-functions.

Except, however, in so far as they arise in the transformation theory, they do not

appear to have occupied him until about 1877. In that year and in the succeeding

* G. M. P. vol. i. p. 586.

+ G. M. P. vol. ix. No. 577 ; Phil. Trans. 1874, pp. 397—456.

t The memoirs of this period belonging to the transformation of elliptic functions were published in the

American Journal of Mathematics, vol. ix. (1887), pp. 193—224; vol. x. (1888), pp. 71—93.

§ " On the Theory of Elliptic Functions," G. M. P. vol. i. No. 45 ; Gamb. and Dubl. Math. Jour. vol. n.

(1847), pp. 256—266.

/2
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years he wrote a number of papers dealing with the theta-functions as on an inde

pendent basis and not as a detail in elliptic functions. Though the investigations are

concerned with p-tuple functions, yet, partly for simplicity, and partly in order to secure

the greater detailed development of the theory, the papers deal chiefly with the cases

p = 1, p = 2.

Previous to Cayley's investigations, the most valuable algebraical results in this sub

ject were those of Kosenhain* and Gopelf which had connected the double theta-functions

with the theory of the Abelian functions of two variables, and those of Weierstrass, deve

loped by KonigsbergerJ to give the "addition-theorem." Proceeding in his "Memoir on

the single and double theta-functions "§ more by Gopel's method than by Rosenhains,

Cayley resumes the whole theory. He pays special attention to the relations among

the squares of the functions and to the derivation of the biquadratic relation among

four of the functions, which is the same as the equation of Kummers sixteen-nodal

quartic surface. To this relation and to the geometry of this associated surface he

frequently recurred, both specifically in isolated papers and generally in researches upon

quartic surfaces.

As connected, in part, with elliptic functions, his investigations on the porism of

the in- and circumscribed polygon should be mentioned. The porismatic property of two

conies, viz. that they may be related to each other so that one polygon (and, if one

polygon, then an infinite number of polygons) can be inscribed in one and circumscribed

about the other, is due to the geometrician Poncelet. The special case when the conies

are two circles had been discussed analytically by Jacobi||, using elliptic functions for

the purpose. Cayley undertook, first in 1853, the analytical discussion of the most

general case of two conies, also using elliptic functions; and he obtainedIT the relations,

necessary for the porism, for the several polygons as far as the enneagon. And it may

be remarked, as a characteristic instance of Cayley's habit of proceeding to general

cases, that he did not leave the matter at this stage. In a memoir** "On the

problem of the in- and circumscribed triangle" he raises the question as to the number

of polygons which are such that their angular points lie on a given curve or given

curves of any order and their sides touch another given curve or given curves of any

class. Using the theory of correspondence, he solves the question completely in the

case of a triangle—taking account of the fifty-two cases that arise through the

possibility of two curves, or more than two curves, being one and the same curve.

From time to time Cayley turned his attention to questions in theoretical dynamics,

choosing them as subjects of his lectures during his earlier years as professor. Among

them may be mentioned his investigations on attractions, specially those on the attraction

of ellipsoids, to which he devotes five memoirs*f~f-, discussing the methods of Legendre,

* Mem. des Sav. Etr. vol. xi. (1851), pp. 361—468; the paper is dated 1846.

t Crelle, vol. xxxv. (1847), pp. 277—312.

X Crelle, vol. lxiv. (1865), pp. 17—42.

§ Phil. Trans. 1880, pp. 897—1002.

II Ges. Werke, vol. i. pp. 277—293; this paper was published first in Crelle, vol. in. (1828), pp. 376—389.

IT In a set of five papers, C. M. P. vol. n. Nos. 113, 115, 116, 128 ; ibid., vol. iv. No. 267.

** C. M. P. vol. vni. No. 514 ; Phil. Trans. (1871), pp. 369—412.

ft G. M. P. vol. i. Nos. 75, 89 ; vol. n. Nos. 164, 173, 193.
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Jacobi, Gauss, Laplace, and Rodrigues; and his evaluations or reductions of multiple

definite integrals connected with attractions and potentials in general, particularly his

" Memoir on Prepotentials*," in which he discusses the reduction of the most general

integral of the type that can occur in dealing with the potential-problem related to

hyperspace. He also frequently recurred at intervals, before drawing up his reports about

to be quoted, to the consideration of the motion of rotation of a solid body about a

fixed point under no forces. By introducing Rodrigues's co-ordinates into the equations of

motion he was able to reduce the solution of the problem to quadratures; but the

final solution of this case, in the most elegant form, is due to Jacobi himself; it

involves single theta-functions. It may be remarked that the next substantial advance

made in the theory of motion of a body under the action of forces is due to the

late Madame Sophie Kovalewsky, who, in a memoirf, to which the Bordin Prize of

1888 was awarded by the Paris Academy of Sciences, has shown that the motion can,

in a particular case, be determined in terms of double theta-functions when the body

rotating round a fixed point is subject to the force of gravity.

Sometimes, after reading widely upon a subject, Cayley would draw up a report

recounting the chief researches in it made by the great writers. It occasionally happens

in the development of a theory that periods come when the incorporation and the

marshalling of created ideas seem almost necessary preliminaries to further progress.

Cayley was admirably fitted for work of this kind, owing not only to his faculty of

clear and concise exposition, but also to his wide and accurate knowledge. Among such

reports, two are of particular importance ; his " Report on the recent progress of

theoretical dynamics £" and his "Report on the progress of the solution of certain

special problems of dynamics §" have proved of signal service to other writers and

to students. His knowledge and his power of summarising are shown also in some

interesting articles on mathematical topics, written by him for the Encyclopaedia

Britannica.

Cayley also had a great enthusiasm for some of the branches of physical astro

nomy. Some idea of the value and importance of his labours in this subject, par

ticularly in connexion with the development of the disturbing function in both the

lunar theory and the planetary theory, and with the general developments of the

functions that arise in elliptic motion, may be gathered by consulting the series of

memoirs || which he communicated to the Royal Astronomical Society.

Special reference should be made to one of Cayley's astronomical papers. In 1853

Adams had made a new investigation of the value of the secular acceleration of the

moon's mean motion, and, taking account of the variation in the eccentricity of the

earth's orbit, had obtained a value which differed from that given by Laplace. Unfor

tunately, Adams's result was disputed by some of the great school of French physical

* Phil. Trans. 1875, pp. 675—774.

t Mem. des Sav. Etr., vol. xxxi. (1894), No. 1.

% C. M. P. vol. in. No. 195 ; Brit. Assoc. Report (1857), pp. 1—-42.

§ .0. M. P. vol. iv. No. 298 ; Brit. Assoc. Report (1862), pp. 184—252.

|| They are included, with very few exceptions, in the third and the seventh volumes of the Collected Mathe

matical Papers.
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astronomers, notably by Ponte'coulant, and, in consequence, some hesitation about accept

ance was felt by some English astronomers, perhaps not unnaturally in view of the

severe criticisms expressed. Cayley made an independent investigation of the necessary

approximations, and devised a new method for introducing the variation of the eccen

tricity in question—a method effective perhaps chiefly owing to the instinct and power

with which he carried out the laborious analysis required. 'The> memoir, in which he

embodied his results and which was entitled " On the secular acceleration of the moon's

mean motion*," completely confirmed the value obtained by Adams, and was of substantial

help in settling the controversy.

And, in the last place, the preceding sketch of Cayley's contributions to mathe

matical science seems to refer, for the most part, only to long memoirs. Yet it must

not therefore be supposed that his shorter papers (which are very numerous) can safely

be neglected. Sometimes he wrote a simple note not so much to convey new results

as to set out his view of some particular theorem; these notes were always fresh and

often suggestive. He was specially gratified when he had obtained a brief solution of

some question, and his quite short papers frequently contain most important results.

For instance, in the brief paper -f-, " On the theory of the singular solutions of differential

equations of the first order," he was the first to give a clear exposition of the theory

which in Boole's book had been left in an imperfect state. He there obtained the

broad essential results of the theory, and it is particularly on his work, and on the

work of Darboux published very soon after Cayley's, that ulterior researches are based.

What has been said may be sufficient to point out Cayley's place among the

mathematicians of his time, and to indicate the services he rendered to the science

which he loved so well. But he was more than a mathematician. With a singleness

of aim, which Wordsworth could have chosen for his " Happy Warrior," he persevered to

the last in his nobly lived ideal. His life had a significant influence on those who

knew him : they admired his character as much as they respected his genius : and they

felt that, at his death, a great man had passed from the world.

A. R. F.

1 June, 1895.

* C. M. P. vol. in. No. 221; Monthly Not. R. A. S. vol. xxn. (1862), pp. 171—231.

t G. M. P. vol. vin.. No. 545 ; Messenger of Math. vol. n. (1873), pp. 6—12.
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486.

NOTE ON DR GLAISHER'S PAPER ON A THEOREM IN DEFINITE

INTEGRATION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. x. (1870),

pp. 355, 356.]

It is worth noticing how easily the case when </> = 1 may be proved independently

of the general formula with © ; for (1) the equation

(Xi a2 a™

x — X1 x — X2 x —Xn

is

{ax — v)(x — \) (x — X2) ... — a1(x — X2) ... — ...= 0,

and has n + 1 roots, say x1} x2...xn+1 where

_ v
Xi + x2 ... H~ xnjrl — Xi "T X2 . . . + Xn H ,

a

and (2) the equation

v = — ■

X ~~ A/j X ——" /V2 X -~~ A/J2,

is

— v(x — X1)(x — X2)... — a1(x — X2)... — ... = 0}

and has n roots ooly x2...xn where

a-± ~p ^2 • • • ~i~ tt^

a?x + x2 . . . + xn = X2 + X2 ... +Xn —

V

wherefore

/v dx1 +fv dx2 . . . =fu {dx1 + cfe2 . . . )

and

=fv— in the first case

, (a1 + a2...+ an) dv .
= fv - — in the second

[which are the two formulae in question].

C. VIII.
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487.

ON THE QUARTIC SURFACES (*$J7, T, Wf = 0.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XI. (1871),

pp. 15—25.]

Among the surfaces of the form in question are included the reciprocals of several

interesting surfaces of the orders 6, 8, 9, 10, and 12, viz.

Order 6, parabolic ring.

„ 8, elliptic ring.

„ 9, centro-surface of a paraboloid.

„ 10, parallel surface of a paraboloid.

„ „ envelope of planes through the points of an ellipsoid at right angles to

the radius vectors from the centre.

„ 12, centro-surface of an ellipsoid.

„ „ parallel surface of an ellipsoid.

I propose to consider these surfaces, nob at present in any detail, but merely for

the purpose of presenting them in connexion with each other and with the present

theory. It will be convenient to use homogeneous equations, but for the metrical

interpretation the coordinate W or w may be considered as equal to unity: I have

not thought it necessary so to adjust the constants that the equations shall be homo

geneous in regard to the constants ; this can of course be done without difficulty, and

in many cases it would be analytically advantageous to make the change.

I take throughout {X, Y, Z, W) for the coordinates of a point on the quartic

surface (so that (£7, V, W) in the equation (*$£/, V, W)2 = 0 are to be considered as

quadric functions of (X, Y, Z, W)\ reserving (x, y, 2, w) for the coordinates of a

point on the reciprocal surface of the order 6, 8, 9, 10, or 12. The reciprocation is

performed in regard to the imaginary sphere x2 + y2 + z2 + w2 = 0 : the relation between
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the coordinates (X, F, Z, W) and (x, y, z} w) is then Xx + Yy + Zz + Ww = 0, and the

equation (X, Y, Z, W)4 = 0 is the equation in point-coordinates of the quartic surface,

or in line-coordinates of the reciprocal surface : and similarly the equation (x, y, z, w)n = 0

is the equation in point-coordinates of the reciprocal surface, or in line-coordinates of

the quartic surface.

Parabolic ring, or envelope of a sphere of constant radius having its centre on a

parabola.

Taking k for the radius of the sphere, and z = 0, y2 = 4<ax for the equations of

the parabola, then the coordinates of a point on the parabola are a82, 2a8, 0 ; where

8 is a variable parameter. The equation of the sphere therefore is

(x - a62wf + (y- 2a6w)2 + z2- k2w2 = 0,

and the ring is the envelope of this sphere.

The reciprocal of the sphere is

k2 (X2 + F2 + Z2) - (a82X + 2a0Y+ W)2 = 0 ;

writing this in the form

a62X + 2a8Y+ W+ k V(X2 + F2 + Z2) = 0,

and taking the envelope in regard to 8, we have

X [W+ k V(X2 + Y2 + Z2)} - aY2= 0,

or, what is the same thing,

(aY2 - XW)2-k2X2 (X2 +Y2 + Z2) = 0,

for the equation of the quartic surface. This has the line X = 0, F= 0 for a tacnodal

line, but I am not in possession of a theory enabling me thence to infer that the

parabolic ring is of the order 6.

To show that it is so, I revert to the equation of the variable sphere

O - a82wf + (y- 2a8wf + z2- k2w2 = 0,

or, what is the same thing,

(A, By (7, D, E%0, 1)4 = 0,

where

A — 3a2w2,

J3= 0,

G — a (2aw2 — xw),

D = — Sayw,

E= 3(x2 + y2 + z2- k2w2).

1—2
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Then I = Sa2w2I\ J=a3w3J', and the equation is I'3 — J'2 = 0, viz. this is

{^x2 + Sy2 - ^axw + 4a%2 + 3 (z2 - &2w2)}3

- {(2aw - x) [8x2 + 9y2 + 4» - 4<a2w2 + 9(z2- &2w2)] - 27a;?/2w}2 = 0,

or, as this may also be written,

{4<x2 + 3y* - 4iaxw + 4a2w2 + 3 {z2 - k2w2)}3

- {- 8x3 - 9xy2 + \2ax2w + 12a2xw2 - 8ahu3 -9(x- 2aw) (z2 - h2w2)} = 0.

Developing, the whole divides by 27, and the equation of the ring finally is

(y2 - 4<axw)2 {y2 + (x- aw)2}

+ {%4 + y2 (2^2 - %axw + 20a%2) + Sax3w + Sa2x2w2 - 32a3xw3 + 16a%4} (z2 - h2w2)

+ (Sy2 + x2 + 8axw - 8a2w2) {f - k2w2)2

+ (z2 - k2w2)3 = 0.

Elliptic ring, or envelope of a sphere of constant radius having its centre on an

ellipse.

x2 II2

Taking k for the radius of the sphere, and z = Q, —2Jrj^ = ^- for the equations of

the ellipse, the coordinates of a point on the ellipse are a cos 8, b sin 8 ; hence the

equation of the variable sphere is

(x — aw cos 6)2 + (y — bw sin 8)2 + z2 — khv2 = 0.

The reciprocal of this is

k2 (X2 + Y2 + Z2) - (aX cos 8 + 6Fsin 8 + W)2 = 0,

viz. writing this under the form

aZcos 8 + fcFsin 8 + W+ k ^{X2 + Y2 + Z2) = 0,

and taking the envelope in regard to 8, the equation of the reciprocal surface is

a2X2 + b2 Y2 = { W + k ^(X2 + Y2 + ^2)}2,

viz. this is

(a2 - k2) X2 + (b2 - k2) Y2 - k2Z2 - W2 =2kW *J(X2 + F2 -f Z2),

or

{(a2 - k2) X2 + (b2 - k2) Y2 - k2Z2 - W2}2 - 4<k2W2 (X2 + Y2 + Z2) = 0,

that is

{{a2 - k2) X2 + (b2 - k2) Y2 - k2Z2}2 -2W2 {(a2 + k2) X2 + (b2 + k2) Y2 + k2Z2} + W4 = 0,

which is a quartic surface having the nodal conic W = 0, (a2 — k2) X2 + (62 — A2) F2 — &2Z2 = 0.

This singularity alone would only reduce the order of the reciprocal surface to 12 ;

the reciprocal surface or elliptic ring is in fact (as I proceed to show) of the order 8.
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For this purpose reverting to the equation

(x - aw cos 6)2 + (y-bw sin 6)2 + z2 - h2w2 = 0,

this may be written

A cos 20 + B sin 20 + C cos 0 + B sin (9 + E = 0,

where

J. = (a2 - b2) w2,

B = 0,

C =— 4<axw,

B = — 4&1/W,

# = (a2 + &2) w2 + 2 (>2 + y2 + £2 - &2w2),

and the equation is

{12 (A2 + B2)-S (O2 + D2) + 4#2}8

- {27A (O2 - B2) + 54SCD - [72 (^.2 + -B2) + 9 (C2 + B2)] # + 8#3}2 =0,

or say

{12^.2- 3(C2 + D2) + 4#2}3 - {21A (G2-B2) - [72A2 + 9 (C2 + B2)] E + 8E*\2 = Q.

This is of the order 12, but it is easy to see that the terms in EQ and E4 (G2 + B2)

disappear from the equation, all the other terms divide by w4 ; and the equation is

thus of the order 8.

The equation may be obtained somewhat differently as follows. The equation of

the variable sphere is

0 - aw)2 + (y - fiw)2 + z2- k2w2 = 0,

a2 S2

where (a, /3) vary subject to the condition —+—=1. We have therefore

x — aw-X —- = 0,
a2

y — pw — X -j— = 0,

and thence

Consequently

a2x Xx
aw = ——- , x — aw = —- ,

a2 + X ' a2 + X

n b2y n Xy

x2 y2 z2-h2w2 „

(a2 + X)2 (b2 + X)2 X2

,2,2 + b?y2 w2 =0>

(a2 + X)2 (b2 + X)2
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from which X is to be eliminated. The second equation may be replaced by

x2 v2 z2 — k2w2

- + / h w2 = 0,
a2 + X 62 + X X

which has the first for its derived equation in regard to X. Hence, writing this last

equation in the form

w2 (a2 + X) (b2 + X) X - (b2 + X) \x2 - (a2 + X) Xy2 - (a2 + X) (&2 + X) (z2 - hhv2) = 0,

we have to equate to zero the discriminant of this cubic function of X. Calling the

equation

(A, B, 0, D$X, 1)3 = 0,

we have

A = 3w2,

B = (a2+ b2) w2-x2-y2- (z2 - k2w2),

G = a2b2w2 - b2x2 - a2y2 - (a2 + b2) (z2 - k2w2),

D= - Sa2b2 (z2 - k2w2).

The required equation then is

A2D2 + 4<AC* + 4J33D - SB2C2 - 6ABGD = 0.

The developed equation (Salmon's Conic Sections, Ed. v., p. 325) is

(b2x2 + a2y2 - a2b2w2)2 {(x - cw)2 + y2} {(x + cwf + y2}

( 2b2 (a2 - 2b2) xQ-2(a4- a2b2 + 364) xhf - 2 (3a4 - a2b2 + b4) xy + 2a2(b2 - 2a2) y6

- b2 (6a4 - 10a2&2 + 6b4) x4vo2 + (4a6 - 6a4b2 - 6a2b4 + 466) x2y2w2

- a2 (6a4 - 10a262 + 6b4) 2/4w2

,+ 2c2 (3a4 - a2b2 + b4) xhu4 - 2c2 (a4 - 3a262 + 3&4) y2w4 - 2a2b2c4 (a2 + b2) w6

( (a4 - 6a2&2 + 6b4) x4 + (6a4 - 1 0a2&2 + 6b4) x2y2 + (6a4 - 6a2b2 + 64) ^/4 )

+ < [■ (52 - k2w2)2
(- 2c2 (a4 - a262 + 364) #2w2 + 2c2 (3a4 - a2b2 + b4) y2w2 + c4 (a4 + 4a262 + b4) iu")x

((a2-2b2)x2 + (2a2-b2)y2)

+ \ * l2c2(*2-&2<)3

( + c2(a2 + b2)w2 )

+ c4 (^2 - k2w*)4 = 0.

I remark that the before-mentioned nodal conic W = 0, (a2 - k2) X2 + (62 -k2) Y2-k2Z2=0

is the reciprocal of a quadric cone, which is a bitangent cone of the ring : this is a

cone, vertex at the centre of the ring, and which is the envelope of the right cone,

vertex the same point, circumscribed about the variable sphere which generates the

ring.

Centro-surface of a paraboloid.

X2 Y2
For the paraboloid t-~r —2ZW =0, it may be shown that the centro-surface is

the envelope of the quadric

>■ (z2 - k2w2)

J^ + 7_M__2^-20w2 = O.

(a + 0)2^(b + 0)2
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The quartic surface is consequently the envelope of the quadric

a o

viz. this is

02 (? + t) + 20 (Z2 + Y2 + z*> + aX2 + bY2 " 2ZW = °-

Hence the quartic surface is

(? +_?) (aX2 + 6F2 " 2ZW) " (Z2 + F2 + ^2)2 = °'

or, what is the same thing,

X2Y2 (a - b)2 - 2ZW (bX2 + aY2) - 2abZ2 (X2 + Y2) - a&Z* = 0.

This has four conic nodes ; viz. considering the equations

^! + ?=0, aX-2 + bY*-2ZW=Q} X2+Y2 + Z2 = 0,

these give the point X = 0, Y = 0, Z = 0 four times, and four other points which are

the nodes in question; the point (X = 0, F=0, Z = 0) is a singular point of a higher

order; the reduction caused by these singularities should be =8 + 19, so as to make

the order of the surface of centres = 9 ; that is the reduction on account of the point

(X = 0, Y= 0, Z=0) must be = 19 ; but it is not by any means obvious how this is so.

Parallel surface of the paraboloid.

This is given, Salmon's Solid Geometry, 2nd Edit., pp. 146 and 148, [Ed. 4, p. 180],

for the paraboloid aX2 + bY2 -\-2rZW — 0, as the envelope of the quadric surface

J^_ + -^r+ 20rzw - (62r2 + h2) w2 = 0.

The reciprocal quartic is thus the envelope of

0a 6b + 6V +6r '

that is

whence the equation is

u / X2 V2 ■ 2 \2

4t-9Z2(X2+Y2 + Z2)-(~ + ~+-ZW) = 0,
r2 v \a b r J

X2 Y2
viz. this is a quartic having the nodal line-pair Z = 0, \--j- = 0 ; and a further

singularity at the point X — 0, F = 0, Z=0. It would require some consideration to

show that the order of the parallel surface is" thence =10, as it should be.
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Envelope of the planes through the points of an ellipsoid at right angles to the

radius vectors from the centre.

This is given in my paper " Sur la surface &c." in the Annali di Matematica,

t. II. (1859), [250], as the envelope of the quadric surface

+ ^+ ^-0w2 = 0.
or y* . z-

2-L 2-°- 2-6-
a2 b2 c2

The reciprocal quartic surface is thus the envelope of

(2-SZ2+(2-p)F2+(2-3^-^2=0'

or, what is the same thing,

/ X2 Y2 Z2\ 1d{j?+^ + v)-2(Xi+Y*+Z2)+dw*=0>

viz. this is

/X2 V2 Z2\

which is in fact the inverse surface

\X2+Y2 + Z2> X2 + Y2 + Z2i X2+Y2 + Z2 f°r X> F' Z.

X2 Y2 Z2
of the ellipsoid —2 +-r^+~y = 1 ; this is obvious geometrically inasmuch as the reci-

a o c

procal of the variable plane is the inverse of the point on the ellipsoid.

The quartic surface has the nodal conic

W=09 X2+F2 + ^2 = 0;

and also the node X = 0, F= 0, Z=0; there is consequently in the order of the

reciprocal surface a reduction 24 + 2 = 26, or the order of the reciprocal surface is =10.

Gentro-surface of the ellipsoid.

Writing the equation of the ellipsoid in the form — + j- + -- — w2 = 0, the centro-

a o c

surface is given as the envelope of the quadric surface

a2x2 b2y2 c2z2 n ~

i ~ /A i Z.2\2 ^ /A , ^2\2 W V>

(6 + a2)2 (6+b2)2 (6 -he2)2

(Salmon, [Ed. 2], p. 400, [Ed. 4, p. 179]), and hence the reciprocal quartic surface is the

envelope of



487] ON THE QUARTIC SURFACES (#$£7, V, W)2 = 0. 9

in regard to the variable parameter 6, viz. the equation is

%1 + J! +^ (a2^ + &*f2 + &z2 - w2) - (X2 + F2 + zj = o,

a2 o2 c2 J

(see Salmon, [Ed. 2], p. 144 [Ed. 4, p. 172]). It hence at once appears, that the quartic

surface has 12 nodes, viz. these are the four angles of the fundamental tetrahedron

(XYZW), and the eight points

a2 + b2 + c2 ~~ '

H X2+F2 + £2 = 0,

ka2X2 + b2Y2 + c2^2 - W2 = 0,

or writing as it is convenient to do

(a, /3, 7) = (b2 - c2, & - a2, a2 - b2) ;

and therefore

a + /3 + 7 = 0, <x2a + 62/3 + c27 = 0, a4a + &4/3 + c47 = - a/37 ;

these are the eight points

X2 _ _ a2 Z!-_^l ^l-_^!_.

"F2"""^' Tf2" 7a' Tf2~ a/3;

the order of the reciprocal of the quartic surface is thus 36 — 2.12, =12, which is in

fact the order of the surface of centres.

The equation of the centro-surface is given, Salmon, [Ed. 2], p. 151, and Quart

Math. Jour., t. 11. (1858), p. 220, in the form

(«, A 7)6(£ V, t *))12 = 0,

where £, 77, f, a stand for a#, by, cz, iw\ it is therefore of the degree 18 in regard to

a, b, c.

Parallel surface of the ellipsoid.

This is given, Salmon, [Ed. 2], p. 148 [Ed. 4, p. 176], as the envelope of the quadric

surface

x2 y2 z2 /, k2\ . A

The reciprocal quartic is thus the envelope of

6W2
(a2 + e)X* + (b2 + e)Y2 + (c2 + 6)Z2-¥:re = 0,

or writing k2 + 6 = \, this is

(aa - h2 + \) X2 + (&2 - k2 + \) F2 + (c2 - # + X) ^2- (l - ^) F2 = 0,

c. viii. 2
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or, what is the same thing,

\2 (X2 + F2 + Z2) + X [(a2 - &2) X2 + (62 - k2) F2 + (c2 - k2) Z2 - TF2] + k2W2 = 0,

whence the equation is

{(a2 - k2) X2 + (b2 - &2) F2 + (c2 - &2) Z2 - TT2}2 - 4&2 W2 (X2 + F2 + £2) = 0,

viz. this is a quartic having the nodal conic

W= 0, (a2 - h2) X 2 + (62 - k2) Y2 + (c2 - k2) Z2 = 0.

The order of the reciprocal or parallel surface is thus 36 — 24, = 12, as it should be.

The nodal conic of the quartic surface is the reciprocal of a bitangent or node-couple

quadric cone, vertex the centre, in the parallel surface : this cone is imaginary for the

ellipsoid, but real for either of the hyperboloids, and its existence in the case of the

hyperboloid is readily perceived.

Reverting to the equation

x2 y2 z2 (- , k2\ . A

or say

(a2 + 8) (b2 + 6) (c2 + 6) (k2 + 6) w2

^x2{b2+e)(c2+e)e^y2(c2+e)(a2 + e)e-z2(a2+e)(b2+e)e==o,

this is

(A, B, G, D, #$<9, 1)4 = 0,

where putting for shortness

a =a2 + b2 + c2+k\

/3 = b2c2 + c2a2 + a2b2 + k2 (a2 + b2 + c2),

y = a2b2c2 + k2 (b2o2 + c2a2 + a2b%

8 =a2b2c2k2,

p ■=x2 + y2 + z2,

q = (62 + c2) x2 + (c2 + a2) y2 + (a2 + b2) z\

r = b2c2x2 + c2a2y2 + a2b2z2,

and

we have

A = 12w2,

B = Saw2 — 3p,

0 = 2/3w2-2q,

B = Syw2 - 3r,

E = l2hw2.

The equation of the parallel surface is of course

(AE - 4BJD + SOJ - 27 {AGE- AD2 - B2E + 2BGD - G3)2 = 0.
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It is remarked (Salmon, [Ed. 2], p. 148 [Ed. 4, p. 176]) that there is in the plane

X2 y2 ( fc2\

z = 0, a nodal conic h j^- ( 1 H— ) w2 = 0, the complete section being made up

& — CO — C \ C J

of this conic twice, and of the curve of the eighth order which is the parallel curve

X2 U2

of the ellipse — + ~ — w2 = 0 ; the like is of course the case as to the sections by

the other two principal planes x — 0 and y = 0. For the section by the plane w = 0

(or plane infinity) we have at once p2r2 (4pr — q2) = 0, where observe that

f - tyr = {(b2 + c2) x2 + (c2 + a2) y2 + (a2 + b2) z2}2 - 4 («2 + y2 + £2) (6W+ c2ay + a2&2^2),

= (1, 1, 1, -1,-1, -l$(62-c2)^2, (c2-a2)2/2, (a2~b2)z2)2

= norm. {# V(&2 - c2) + y *J(c2 -a2)+z V(a2 - b2)}.

The section is thus made up of two conies, each twice, and of four right lines: viz.

or2 ii2 z^

the conies are x2 + y2 + z2 = 0, the circle at infinity and —2 + |^+-^ = 0, the section at

Qj 0 C

infinity of the ellipsoid ; and the lines are

x V(62 -c2)±y V(c2 -a2)±z s/(a2 - 62) = 0,

viz. these are the common tangents of the two conies. The circle at infinity is a nodal

conic on the surface, which has thus 4 nodal conies.

2—2
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488.

NOTE ON A RELATION BETWEEN TWO CIRCLES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871),

pp. 82, 83.]

Consider any two circles 0, Q ; and let AC, BD, A'U, B'C be the common

tangents touching the circles in the points A, A\ B, B\ C, C, D, D' : the locus of a

point P such that the pairs of tangents from it to the two circles respectively form

a harmonic pencil, is a conic through the 8 points A, A', P, B\ C, G\ D, D'; but

this conic may break up into two lines, viz. if (as in the figure) the points A, Bf, D', D

are in a line, then the points (7, C, A', B will be in a symmetrically situated line,

and the conic breaks up into this pair of lines, meeting suppose in K. The condition

 

for this, if a, a! are the distances of the centres from a fixed point in the line of

centres, and if the radii are c, c, is readily found to be

(a-ay = 2(c2 + c"2).

Suppose in general, that (given any two conies) the point P' is the intersection

of the polars of P in regard to the two given conies respectively; then if P describes
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a line, the locus of P' is a conic passing through the three conjugate points of the

given conies; if, however, the line which is the locus of P pass through one of the

conjugate points, then the conic the locus of P' breaks up into a pair of lines, one of

them a fixed line through the other two conjugate points, the other of them a line

through the first-mentioned conjugate point. That is, if the locus of P be a line

through a conjugate point, the locus of P' is a line through the same conjugate

point ; but in every other case the locus of P' is a conic.

Reverting to the figure of the two circles, in order that it may be possible that

the two lines AD and BG may be loci of points P, P', related as above, it is necessary

that K shall be a conjugate point of the two circles ; that is, if the two circles inter

sect in points A, A' lying symmetrically in the radical axis, which meets, suppose, the

line of centres in M, then it is necessary that K shall be one of the anti-points of

A, A' ; or, what is the same thing, the distance KM must be = i into ifA or MA! ;

this condition, if as above (a — a')2 = 2 (c2 + c'2), implies c2 = c'2, and ' we have then

(a — a')2 = 4c2, that is, the circles must be equal, and the distance of the centres must

be twice the radius, or, what is the same thing, the circles must be equal circles

touching each other ; when this is so, the two lines AD, BG (being then lines at right

angles to each other intersecting in the point of contact), have, in fact, the above-

mentioned relation. And it thus appears that given two circles, the necessary and

sufficient conditions for the coexistence of the properties mentioned in the theorem are

that they shall be equal circles touching each other.
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489.

ON THE PORISM OF THE IN-AND-CIRCUMSCRIBED POLYGON,

AND THE (2, 2) CORRESPONDENCE OF POINTS ON A CONIC.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871),

pp. 83—91.]

The present paper includes, as will at once be seen, much that is perfectly well

known; but the separate theories required, it seemed to me, to be put together; and

there are, particularly as regards the unsymmetrical case afterwards referred to, some

results which I believe to be new.

The porism of the in-and-circumscribed polygon has its foundation in the theory

of the symmetrical (2, 2) correspondence of points on a conic ; viz. a (2, 2) corre

spondence is such that to any given position of either point there correspond two

positions of the other point; and in a symmetrical (2, 2) correspondence either point

indifferently may be considered as the first point and the other of them will then be

the second point of the correspondence. Or, what is the same thing, if xy y are the

parameters which serve to determine the two points, then x, y are connected by an

equation of the form (*][#, l)2(y, 1)2=0, which is symmetrical in regard to the two

parameters (x} y). In the case of such symmetrical relation it is easy to show that

the line joining the two points envelopes a conic. For the relation may be expressed

in the form (*$1, oc + y, xy)2 = 0 ; we may imagine the coordinates (P, Q, R) fixed in

such manner that for the point (x) on the first conic we have P : Q : R = 1 : x : x2,

and for the point (y), P : Q : R = 1 : y : y2 ; the equation of the line joining the two

points is then

P, Q, R =0;

JL , X , X

i , y, u
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that is

Pxy-Q(x + y) + R = 0,

or representing this by

PS +Qv + ^C = o,

we have g:r):£ = %y:—at — y:l; and consequently (f, rj, £) are connected by a

quadric equation ; that is, the envelope is a conic.

The relation (*}[a?, l)2(y, 1)2 = 0, whether symmetrical or not, leads as will be

presently shown to a differential equation of the form

dx dy _ n

where X, Y are quartic functions of x, y respectively; viz. these are unlike or like

functions of the two variables according as the integral equation is not or is sym

metrical in regard to the two variables. In the former case, however, the functions

X, Y are so related to each other, that the two can be by a linear transformation

converted into like functions of the variables: for instance, if y be changed into

ay1+b + cy1 + d, then the constants may be determined in suchwise that Y is the

same function of y1} that I is of «; the original integral equation being hereby

converted into a symmetrical equation (*$#, l)2 (^i, l)2 = 0 between x and yl9 so that

in one point of view the unsymmetrical case is not really more general than the

symmetrical one. It is to be added that the integral equation contains really one

more constant than the differential equation (this is most readily seen in the sym

metrical case, the differential equation depends only on the ratio of five constants

a, b, c, d, e, whereas the integral equation depends on the ratio of six constants), so

that the integral equation is really the complete integral of the differential equation.

Attending now to the symmetrical case; if A and B are corresponding points,

then the corresponding points of B are A and a new point G; those of G are B

and a new point D, and so on; so that the points form a series A, B, G, D, ...;

and the porismatic property is that, if for a given position of A this series closes at

a certain term, for instance, if D = A, then it will always thus close, whatever be

the position of A. And this follows at once from the consideration of the differential

equation //v = ^L ; viz. as this is at once integrable per se in the form

VW v(-*)

n(2/)-nw=n(i)(

this equation must be a transformation of the original equation (*][#, l)2 (y, l)2 = 0, and

equally with it represent the relation between the parameters x, y of the two points

A, B\ the constant of integration k is of course completely determined in terms of

the coefficients of the last-mentioned equation, assumed to be given.

Hence forming the equations for the correspondences, B, G\ C, D; ... and assuming

that the series closes F, A ; we have

n.'(x)-ii(u) = n(k);
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where, however, the II (x) of the last equation must be regarded as differing from that

of the first equation by a period, say O, of the integral ; hence adding, we have

or

u(k) = -n,
n

which gives between, the constants of the integral equation (*]£#, l)2 (y, l)2 = 0, a

relation which must be satisfied when the series closes at the nth term (viz. when

the term after this coincides with the first term) ; and this relation is independent

of x, that is, of the position of the point A.

The analysis in regard to the differential equation is as follows :

Consider the equation

JJ = y* (ax2 +2bx + c )

+ 2y (dx2 + 2b'x + c' )

+ (aV + 2b"x + c") = 0,

say

U=(P, Q, R^y, 1)2 = (L, M, N^x, 1)2 = 0,

we have

dU=0 = (Py+Q)dy + (Lx + M)dx.

But the equation U = 0 gives (Py + Q)2 = Q2 - PR, (Lx + if)2 = M2 - NL, and the

differential equation therefore becomes

dy*/(Q2-PR)±dx*J(M2-NL) = 0,

viz. it is

dy

\/{(ay2 + 2dy + a") (cy2 + 2c y + c") - (bx2 + 2b'y + b")*\

dx

~ ^{(ax2 + 2bx + c) (aV + 26,7a? + c") - (aV + 26^ + cj

Suppose the equation is

y2 (ax2 + 2hx + g)

+ 2y (te2 + 2bx +/)

+ (^2 + 2/a? + c ) = 0,

then the differential equation is

dy

^{(ay2 + 2hy + g) (gf + 2fy + c)2 - (hy2 + 2by +f)2}

dx

= 0.

~ sj{(ax2 + 2hx + gr) (^2 + 2fx + c) - (&£2 + 2bx +f)2

say

<% _ + dx

= o,
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Now starting from the differential equation

dx _ dy

V{(«, b9 c, dy e\x, 1)4( ~~ ~ V{<>, 6, c, d, e\y, l)4} ?

the integral equation is known to be

hod &7\ii 1 VI ~|

= a (x + y)2 + 46 (a? + y) + 6(9,

V{(a, &, c, d, e$^, l)4} — V{(a> 6, o, d, 6$y, l)4!

where 6 is the constant of integration. Writing, for shortness, X = (a, b, c, d, e][x, l)4,

F= (a, by c, d, eQy, l)4, this is

X + F- 2 VCXT) = a (#2 - 2/2)2 + 46 (a? - y) (a8 - y2) + 6 0 (x - y)2 ;

or, what is the same thing,

a (x* + y*)-2 V(XF) = a (x2 - y2)2 + 46 (x - y) <>2 - y2) + 6 6 (x - y)2,

+ 46 O3 + 2/3)

+ Gc (x2 + y2)

+ 4d (# + y )

+ 2e,

viz. this gives

V(XF)= a^y

+ 26 (x2y + xy2)

+ 3c (x2 + y2)

+ 30 (x - 2/)2

+ 2d (x + ?/)

+ e,

and, rationalising, the integral equation becomes

— Qa0x2y2

— 4<adxy (x + y)

— ae(x + y)2

+ 462#y

+ 12bcxy (x + y) — \2b6xy (x + 3/)

— 8bdxy

— 4tbe (x + y)

+ 9c2 0 + y)2 - 18c0 (a2 + y2)

— 12cd(x + y)

+ 962(x-y)2-l2d6 (a? + y) - 6e<9 + 4d2 = 0 ;

c. viii. 3
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or, as it may be written,

x2y2 (4&2 - Qa0)

+ (x2y 4- xy2) (- kad + 12bc - 1260)

+ <>2 + y2) (~ ae + 9c2 - 18c0 + 9<92)

+ ^ (- 2ae - 86c? + 18c2 - 18<92)

+ (x + y) (- 4&c + 12cd - 12*9)

+ 4d2 - Qe0 = 0.

Comparing this with the original integral equation V— 0, and the form of differential

equation deduced therefrom, we ought to have identically

[(462 - 6a6) x2 + (- 2ad + 6bc - 6b0) x + (-ae + 9c2 - 18c0 + 9<92)]

x [(- ae + 9c2 - 18c<9 + 9<92) x2 + (- 2be + 6cd - 6d0) x + (U2 - 6e0)]

_ [(_ 2ad + Qbc - 6b0) x2 +(-ae- 4<bd + 9c2 - 9<92) x + (- 2be + 6cd - 6d0)]2

= multiple of X,

■= {(- 4ad2 - 4<b2e + 24<bcd) + (Qae - 246J - 54c2) 0 + 108c<92 - 5403} (a, 6, c, d, e\x, l)4,

by comparing the coefficients of x\

I obtain this otherwise :

Write

V=aU+6/3H,

then, forming the Hessian of V, we have

HV = (a2 - 3J/32) JT + (Ja/3 + 9J/32) [7,

= (a2-&r/32)(V_aU) + (/a/3 + 9J^2) ^

= ^2-3//32 F+ 1 (_ a3 + 9/a/32 + 54//33) ^

that is

d£Y&*V- (dxdyV)2 - 2(a2"g8J/32) (^242F+ 2^4^^+ 2/2^2F) = ^ (_ a» + 9Ja/32 + 54J/33) Z7,

Er 2 (a2 -3J/32)

or writing it = ~ ,

this is

94

(42 V + Ky2) (dy2V + Kx2) - (dxdyV- Kxy)2 = ^ (- a3 + 9Ja/32 + 54J/32) U,

so that the components are

d2V + Ky2, dxdyV - Kxy, d2V + Kx2,

V=aU+6f3H =

a (a, b, c, d, e^x, l)4 + 6/3 (ac-b2, 2ad-2bc, ae + 2bd-3c2, 2be-2cd, ce-d2\x, I)4,
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viz. the components are

(aa + 6/3 (ac - b% ab + 3/3 (ad - 6c), ac + /3 (ae + 26d - 3c2) + ^ #3>, 1 )2,

(a6 + 3/3 (acZ - 6c), ac + /3 (ac + 26a7 - 3c2) + ^ K, ad + 3>S (6c - cd)$>, l)2,

(ac + /8(ac + 26^-3c2) + IV^ ad + 3/3 (6c - cd), ae + 6/3 (cc - d2) $>?, I)2,

where as before

g= 2(tta-3J/y)

0

I assume

/3 = -f, a = 4c-60, K = S {(4c - 60)2 -£/}.

aa + 6/3 (ac - 62 ) = a (4c - 60) - 4 (ac - 62 ) = 462 - 6a0,

a6 + 3£ (ad - 6c) = 6 (4c - 60) - 2 (aa7 - 6c) = - 2ad + 66c - 660,

aa7 + 3/3 (6c -cd) = d (4c - 60) - 2 (6c - ccZ) = - 26c + 6cd - 6d6,

ae + 6/3 (cc -d2) = e (4c - 60) - 4 (ce - d2) = 4d2 - 6c0,

ac + /3 (ac + 26d - 3c2) - faK = c (4c - 60) - 1 (ac + 26a7 - 3c2) - \ {(4c - 60)2 - §1}

= --|ac-26a7 + |c2-f02,

ac +/3(ac + 26a7-3c2) + 1^Z'

= c (4c - 60) - f (ac + 26a7 - 3c2) + J {(4c - 60)2 - f /}

= -ac+9c2-18c0+902,

agreeing with the former result.

I return to the general form

if (a , 6 , c $>, l)2

+ 2y(a', 6', c']^, l)2

+ (a", 6", e"$0, 1)2 = 0,

giving

dx

V[(a, 6, c$>, l)2(a"; 6", d'\x, l)2-{« 6', c'$>, l)2}2]

dy

V[(a, a', a"$y, I)2 (c, a7, d"$y, l)2-{(6, &', &"$y, l)2}2] '

Operate a linear transformation on the x} say

_ \x' + fJb

vx +p

3—2
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the new coefficients .are

(a , b , c $>, v)\ (a , b , c $\, i/$>, p), (a , b , c $/*, p)2,

(a', V, c'$X, v)\ (a', &', c'$\, *&*, /*), {*' , V , J T&, pf,

(a", 6", <J'\\ v)\ (a", b", c"$X, *&*, p), (a", &", c"$* p)2:

assume now

a'X + (b' -0)v- aft,- bp = 0,

(b' + 0)X + c'v- bfi- cp = 0,

a"X + b"v - a'ft -(b' + 0)p = 0,

b"X + c"v -(b'-6)fi- c'p = 0,

then it is easy to show that

(a, b, c£\, v$ji, p) = (a', V , c'$\, v)\

(a', b', c'Iim, pf = (a", b", c"JX, v^fi, P),

(a,b,cTfr,Py =(a",b",c"^\vy

[= (a' , V , c' $>, vlfi, p) + 6 (Xp - /h/)],

and the equations give

a' , b'-d, a

b' + 6, c' , b

a" , b" , a

b

c

b' + e

b" b'-e,

= o,

that is

(a'c' - V* + 0J + (a"c" - b"*) (ac - 62)

- (a'b" - a"b' + a"0) {be' - b'c + off)

+ (a'c" - b"b' + b"0) (W - a'c + bff)

+ (b'b" - a"c' + b"6) {ac' - b'b + bd)

- (b'c" - b"c' + c"0) (ab' - a'b + ad) = 0,

which is

(a'c'-b'*y + (a"c"--b"*)(ac-
-62)

-20 a , b , c

+ a'*(-cc") a', b', c'

+ b'*(-ac"-2bb"-- a"c) a", b", c"

+ c'*(-aa")

+ 2b'c'(ab" + a"b) + 02(2(a'c'-b'*)-a

+ 2c'a' (- bb")

+ 2a'b'(bc" + b"c) + 6'-.= 0.
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iginal matrix be symmetrical = a, h, , this is

h, b, f

9

9> f> o

(fh-¥)2 + (ag-h2)(cg-
-/■)

-26 a, h, g

+ h2(-cg) h, b, f

+ b2(-ac-g2-2fh) 9> /> o

+f2(-w)

+ 2bf(af+gh) + 0*[2(fh-b2)-ac--f + Wl

+ 2fh(-fh)

+ 2bh(fg + ch)
+ 64 =--o,

that is

(b - g) {(62 - ac) (b+g) + 2 (a/2 + ch? - 2bfh)}

- 26 (abc - af* - bg* - ch? + 2fgh) + 6" (4/A - 263 - ac - g*) + 6* = 0,

satisfied by

6 + b-g = 0,

viz. the equation in 6 is

(6 + b-g){6s-(b-g)6^(4lfh-ac-2bg-bi)d + (¥-ac)(b + g) + 2(af" + c¥-2bfh)} = 0.
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490.

ON A PROBLEM OF ELIMINATION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871),

pp. 99—101.]

I WRITE

P =(«, ...$>?, y, zf , Q = («', ...$#, y, zf,

U=(a,. . .$*, y, *)", F = (6 ,...$*, y, *)»,

and I seek for the form of the relation between the coefficients (a, ...), (a , ...),

(a,...), (6,...), in order that there may exist in the pencil

XP + pQ = 0

a curve passing through two of the intersections of the curves U=0, V=0.

The ratio X : fi may be determined so as that the curve XP + pQ = 0 shall pass

through one of the intersections of the curves 17=0, F=0; or, what is the same

thing, so as that the three curves shall have a common point ; the condition for

this is

Resit. (XP + fjiQ, U, V) = 0,

a condition of the form

(\a + pat, . . .)mn (a, . . ,)hn (6, . . .fm = 0 ;

or, what is the same thing,

(a, . . . , a', . . . )mn (a, . . .fn (b, ... fm (X, fi)mn = 0,

which, for shortness, may be written

(A,..J\, /jL)mn = 0.
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Suppose this equation has equal roots, then we have

Disct. Resit. (\P+nQ, U, V) = 0,

the discriminant being taken in regard to X, fi. This is of the form

(A, ...f(mn-v = 0;

/a q' ymn {mn—i) /^ \2ftft (mn—i) /^ ^ yikm {mn—i) _. Q^

that is

It is moreover clear that the nilfactum is a combinant of the functions P, Q ;

and the form of the equation is therefore

a, £,.....

a', #,...

mn (mw-i)

(Yi . . V^1 (mn—x) (h ykm (mn—i) _. Q

Now the equation in question will be satisfied, 1°. if the curves 27 = 0, V= 0 touch

each other ; let the condition for this be V = 0. 2°. If there exists a curve

XP + fiQ = 0 passing through two of the intersections of the curves U = 0, F = 0 ; let

the condition be XI = 0. There is reason to think that the equation contains the

factor I22, and that the form thereof is H2V = 0.

Assuming that this is so, and observing that V, the osculant or discriminant of

the functions U, V, is of the form

V=(a,...)
pi (n+2m—3)

(b,...y
tm im+m-

we have

na =
a, £,...

a', £',

mn (mn—i)

id ... Y671 (n~1^ (2m—1) + ^_1)n (W+2WI—3) X

/^ \ftm (m—l) (2ft—l) + (ft—l) m {m+2n—3)

and consequently

12 =

Jmn (mn—l)
a, /3,...

a', £',

((X ^w ^—1^ ^ (2m—1) +J (ft—i)^ (ft+2m—3) x

fA \Jm (771—1) ft {271—1) +£ (ft—i) m (m+2?i—3)

which is the solution of the proposed question. Suppose for instance w = l, then

km (m—i)ft+J (ft—l) (m—l)

"-(

\ Jm (7ft—l)

a', /3',

J (a,. ^ ^ \ (ft-i) (m-i) / ^ ^ ^ \Jm (m-

If moreover &=1, then

M
a, /S,...

\ Jm (7ft—i)

) (&, ...)im(w*-1)
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this is right, for writing P = ax + f3y + yz, Q= a'x + ft'y + yz, V=bx + b'y + b"z, then

if two of the intersections of the curve Z7=0 with the line V=0 lie in a line

with the point P = 0, Q = 0, then the point in question, that is the point

(/3y — fly, ya' — y'cL, a/3' — a/3), must lie in the line V=0; and the condition reduces

itself to

{({3y'-fly, ya!-ya, afl - a'fl$b, b', b")}** {m~l) = 0,

where the index \m (m— 1) is accounted for as denoting the number of pairs of

points out of the m intersections of the curve £7=0 with the line V=0.

If in general k=l, then writing as before P = ax + /3y + yz, Q = a'x + fly + yz,

we have

£2 = (ftry' _ flyy . . .)l™^ (mn-i) /^ ^ \%n (n-i) (am-i) /^ \|m (m-i) (aw-i) ?

where 12 = 0 is the condition in order that the point (/3y — fly, ...) may lie m lined

with two of the intersections of the curves ?7=0, V=0. Or writing (X, Y, Z) for

the coordinates of the given point, the condition is

£1 _ /^ tt\in (n-i) (2m-i) /^ \|m (m-i) (2n-i) /Jf^ JT ^\|m?i (row-i) _ Q

I have found that if

U = (a, ...&*, y, *)™ F = (6, ...\x, y, *)»

F = (c, ...$0, y, z)v, T = (d, ...$>, y, *)*,

the condition in order that the point (X, Y, Z) may lie in lined with one of the

intersections of the curves ?7=0, F=0, and one of the intersections of the curves

W=0, T=0, is

fl = (a, ...)n^ Q>,... )m^(c, ...)mn<*(d, ...)mnP(X, F, Z)mnw = 0.

Supposing that the curves W = 0, T = Q become identical with the curves 17=0,

V=0 respectively, this becomes

O = (a, . . .)n2,2m (&, . . .)m2,2n (-3T* F, Z)™""™* = 0,

and the variation from the correct form given above is what might have been expected.
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491.

ON THE QUARTIC SURFACES (#$?7, F, JF)2 = 0.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XL (1871),

pp. 111—113.]

The general Torus, or surface generated by the rotation of a conic about a fixed

axis anywise situate, has been investigated by M. De La Gournerie, Jour, de Vficole

Polyty t. xxiii. (1863), pp. 1—74. The surface is one of the fourth order, having a

nodal circle ; and with its equation of the form V2 — UW = 0, consequently of the form

in question. The leading points of the theory are as follows:

Consider (fig. 1) the plane of the conic in any particular position thereof; let this

Fig. 1.

 

meet the axis of rotation 00' in the point M, and let the projection of 00' on the plane

of the conic be MJST. Take P any point of the conic; draw PQ in the plane of the

c. vhi. 4
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conic, perpendicular to MN, and QR perpendicular to 00', and join PR : the point

P of the conic describes a circle radius RP, = ^/(RQ2+QP2). Hence if /.0MN=ct,

and if MQ = x, QP = y are the coordinates in the plane of the conic of the point P ;

and if the coordinates x, y, z are measured, z upwards from M in the direction MO,

and x, y in the plane at right angles to the axis 00' : we have

z = x cos a, \J(x2 + y2) = \/(x2 sin2 a + y2) ;

or, what is the same thing,

x = z sec a, y — *J(x2 + y2— z2 tan2 a).

Hence the equation of the conic being F(x, y) = 0, that of the torus is

F (z sec a, >J(x2 + y2-z2 tan2 a)) = 0.

Thus taking the equation of the conic to be

(a, b, c, / #, A£x, y, l)2 = 0 ;

or, as this may be written,

(ax2 + 2gx + c + by2)2 = 4y2 (hx +/ )2,

we have at once the equation of the torus in the form

{az2 sec2 a -f 2#2 sec a + c + b (x2 + y2 — £2 tan2 a)}2 = 4<(x2 + y2 — z2 tan2 a) (As sec a +/)2,

which is of the form V2 — 4Z7JT = 0; or, as it is better to write it, V2 — 4 [7L2 = 0, where

F= as2 sec2 a + 2gz sec a + c + b (x2 + ?/2 - z2 tan2 a),

L = hz sec a -\- f, W = L2.

There is thus a nodal circle V= 0, Z = 0, that is

/
s = — t cos a,

6A2 (x2 + 7/2) - 6/2 sin2 a + a/2 - 2#/A + ch2 = 0.

But the origin of this nodal circle is better seen geometrically. For observe that the

radius of the circle described by the point P of the conic depends only on the

square of the ordinate PQ: hence if we have on the conic two points S, S' situate

symmetrically in regard to the line MN, these points S, S' will describe one and the

same circle, which will be a nodal circle on the surface. And there is in fact one

such pair of points S, $'; for (see fig. 2) considering in the plane of the conic the

equal conic situate symmetrically thereto on the other side of the line MN, the two

conies intersect in two points T, T' (real or imaginary) on the line MN, and in two
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other points 8, S' (real or imaginary) situate symmetrically in regard to MN ; we have

thus the required pair of points which generate the nodal circle.

 

A meridian section of the torus (or section through the axis 00') is a quartic

curve symmetrical in regard to this axis, and having two (real or imaginary) nodes

the intersections of the plane by the nodal circle : see fig. 3, which shows the section

for the surface generated by a conic such as in fig. 2. The quartic curve has 8 double

tangents, 2 of them at right angles to the axis 00', the remaining 6 forming 3 pairs

Fig. 3.

 

of tangents situate symmetrically in regard to this axis; so that attending only to

one tangent of each pair, we may say that there are 3 oblique bitangents: one of

these is the line TTf ; and the section of the torus by a plane through this line at

right angles to the plane of the meridian section is in fact the two conies of fig. 2,

either of which by its rotation about 00' generates the torus. But taking either of

the other two oblique bitangents, the section by a plane through the bitangent at

right angles to the meridian plane is in like manner a pair of conies situate

symmetrically in regard to the bitangent, and such that either of them by its rotation

4—2
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about the axis 00' generates the torus. It thus appears that the same torus may be

generated in three different ways by the rotation of a conic about the axis 00'.

In the particular case where the plane of the conic passes through the axis, the

meridian section consists it is clear of two symmetrically situate conies, intersecting the

axis in the points T, T\ which are nodes of the surface, the surface having as before

a nodal circle generated by the rotation of the two symmetrically situate intersections

J3, S' of the two conies. The equation is included under the foregoing form, but it is

at once obtained from that of the conic,

(ax2 + 2gx + c + &y2)2 = 4y2 (Ax +/)2,

by writing therein z for x and \J(x2 + y2) for y ; viz. the equation of the torus here is

{az2 + 2gz + c + b(x2 + y2)}2 = 4 {x2 + y2) Qiz +/)2,

and the two nodes thus are x — 0, y = 0, az2 + 2gz + c = 0.
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492.

NOTE ON A SYSTEM OF ALGEBRAICAL EQUATIONS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XI. (1871),

pp. 132, 133.]

Consider the system of equations

a + b (y -h z)2 + cy2z2 = 0,

a + b(z + xf + czV = 0,

a + b(x±y)2 + caty = 0,

which is a particular case of that belonging to the porism of the in-and-circumscribed

triangle. We have y and z the roots of

a + bx2 + 2u .bx + u2(b + ex2) = 0 ;

consequently

_ a + bx2
yZ ~ b + cx2'

or substituting in the equation between y and z, this becomes

(ac + b2) (a + 46#2 + c#4) = 0,

so that if ac + 62 is not = 0, we have

a + 4<bx2 + ex4- = 0,
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and moreover

/ \ / x %bx2 a + bx2 1 , . 7 0 A.
(x -y)(x-z) = x2 + =— - + y— , = T-] (a + 4te2 + ex4) = 0,v ^ b + ex2 o + ex2 6 + c#2 '

so that x — y or else % = z. If x = z, the three equations reduce themselves to the two

a + bx2 + 2y . 6a? + £/2 (6 + ex2) = 0;

a + 4<bx2 + c#4 = 0,

giving y = x, or else y = — —= — ; and it hence appears that if from this last

equation and a + 4<bx2 + ex4" = 0 we eliminate #, the result must be a + 4&?/2 + c^/4 = 0.

For in the same way that the elimination of y, z from the original three equations

gives a -f 4<bx2 + ex4* — 0, the elimination of xy z from the same three equations will give

a + 4%2 + cy4 = 0, so that in any case y is a root of this equation.
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493.

ON EVOLUTES AND PARALLEL CURVES.

[From the Quarterly Journal of Pare and Applied Mathematics, vol. XI. (1871),

pp. 183—200.]

In abstract geometry we have a conic called the Absolute ; lines which are

harmonics of each other in regard to the absolute, or, what is the same thing, which

are such that each contains the pole of the other in regard to the absolute, are said

to be at right angles. Similarly, points which are harmonics of each other in regard

to the absolute, or, what is the same thing, which are such that each lies in the

polar of the other, are said to be quadrantal.

A conic having double contact with the absolute is said to be a circle; the inter

section of the two common tangents is the centre of the circle ; the line joining the

two points of contact, or chord of contact, is the axis of the circle.

Taking as a definition of equidistance that the points of a circle are equidistant

from the centre, we arrive at the notion of distance generally, and we can thence

pass down to that of equal circles ; but the notion of equal circles may be established

descriptively in a more simple manner :

Any two circles have an axis of symmetry, viz. this is the line joining their

centres ; and they have a centre of homology, viz. this is the intersection of their

axes. They intersect in four points, lying in pairs on two lines through the centre of

homology : they have also four tangents meeting in pairs in two points on the axis

of symmetry. Now if the two lines through the centre of homology are harmonically

related to the two axes, or, what is the same thing, if the two points on the axis

of symmetry are harmonically related to the two centres, then the circles are equal.

Circles which are equal to the same circle are equal to each other, and the entire

series of circles which are equal to a given circle, are said to be a system of circles of

constant magnitude.

Starting from these general considerations, I pass to the question of evolutes and

parallel curves: it will be understood that everything—lines at right angles, circles,

poles, polars, reciprocal curves, &c.—refers to the absolute.
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At any point of a curve we have a normal, viz. this is a line at right angles to

the tangent; or, what is the same thing, it is the line joining the point with the pole

of the tangent. The locus of the pole of the tangent is the reciprocal curve, and for

any point of a given curve, the pole of the tangent at that point is the corresponding

point of the reciprocal curve. Hence, also the normal is the line from the point to

the corresponding point of the reciprocal curve. And the curve and its reciprocal have

at corresponding points the same normal.

The envelope of the normals is the evolute ; any curve having with the given

curve the same normals (and therefore the same evolute) is a parallel curve ; in other

words, the parallel curve is any orthogonal trajectory of the normals of the given curve.

The parallel curve is also the envelope of a circle of constant radius having its

centre on the given curve ; or, again, it is the envelope of a circle of constant

radius touching the given curve.

The theory in the above form is directly applicable to spherical, or rather conical,

geometry ; but in ordinary plane geometry the absolute degenerates into a point-pair,

the two circular points at infinity, or say the points /, /; and this is a case that

requires to be separately treated. The theory in the general case, the absolute a conic,

is the more symmetrical and elegant, and it might appear advantageous to commence

with this ; but upon the whole I prefer the opposite course, and will commence with

the case of plane geometry, the absolute a point-pair.

The subject connects itself with that of foci : I call to mind that a common

tangent of the curve and the absolute is a focal tangent, and the intersection of two

focal tangents a focus. In the case where the absolute is a point-pair, the focal

tangents are the tangents from I to the curve, and the tangents from J to the curve,

or say these are the /-tangents and the /-tangents; a focus is the intersection of an

/-tangent and a /-tangent ; the line //, w7hen it touches the curve, and (when the

curve passes through / and J or either of them) the tangents at / or J to the curve

are usually not reckoned as focal tangents ; and other singular tangents, for instance a

double or stationary tangent through / or J, are also excluded from the focal tangents;

and the number of foci is of course reckoned accordingly, viz. it is the product of the

number of the /-tangents into that of the /-tangents. So when the absolute is a

conic ; if this is touched by the curve, the common tangent at the point of contact

is not reckoned as a focal tangent ; and we may also exclude any singular tangents

which touch the absolute ; and the number of foci is reckoned accordingly, viz. it is

equal to the number of pairs of focal tangents.

Let the Pluckerian numbers for the given curve be (m, n, S, k, t, t), viz. m the

order, n the class, 8 the number of nodes, k of cusps, t of bitangents, i of inflexions ;

and suppose moreover that D is the deficiency, and a the. statitude ; viz.

a — 3m + t, = 3w + k\

2D = (m- 1) (m - 2) - 2S - 2/e, = (n - 1) (n - 2) - 2r - 2i, = -2m-2n + 2 + a

= n — 2m + 2 + k, =m—2n+2+t,,
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And let the corresponding numbers for the evolute be

(m , n , o , k , r , i ; 1) , a ).

These are most readily obtained, as in Clebsch's paper, " Ueber die Singularitaten alge-

braischer Curven," Grelle, t. lxiv. (1864), pp. 98—100, viz. it being assumed that we

have

n" = m + n, d' — 0,

then by reason that the evolute has a (1, 1) correspondence with the original curve,

the two curves have the same deficiency, or writing this relation under the form

m" - Zn" + l" = m-2n + i,

we have m" = 3m + c, = a ; and the Pluckerian relations then give the values of k", S", t"»

In regard to these equations n" = m + n, l" = 0, I remark that if we have two

curves of the orders rn, m', and on these points P, Q having an (a, a!) correspondence,

the line PQ envelopes a curve of the class ma' + m'a, and the number of inflexions

is in general =0. Now in the present case, taking P on the given curve and Q the

point of intersection with IJ of the normal (or harmonic of the tangent), the orders of

the curves are (m, 1), and the correspondence is (n, 1) ; whence as stated m" = m + n, i' = 0.

The formulae thus are

m" = a,

n" = m + n,

i" = 0,

K" = _ 3m _ 3n + 3a,

a" = 3a,

D"= D,

in which formula it is assumed that the curve has no special relations to the points

/, J; or, what is the same thing, that the line IJ intersects the curve in m points

distinct from each other, and from the points /, J.

It is to be added (see Salmon's Higher Plane Curves, [Ed. 2], (1852), pp. 109 et seq.)

that m of the k' cusps arise from the intersections of the curve with IJ, these cusps

being situate on the line IJ, and each of them the harmonic of one of the intersections

in question, and the cuspidal tangent being for each of them the line IJ. Tfie inter

sections of the evolute by the line /J" are these m cusps each 3 times, and besides

i points arising from the i inflexions of the curve; viz. at any inflexion the two con

secutive normals intersect in a point on the line IJ, being in fact the harmonic of

the intersection of IJ with the tangent at the inflexion. It was in this manner that

Salmon obtained the number 3m + i of the points at infinity of the evolute, that is

the expression m" = 3m + 1 (= a) for the order of the evolute.

The remaining — 4m — 3w + 3a cusps arise from the points on the curve where

there is a circle of 4-pointic intersection, or contact of the third order, and in this

c. viii. 5
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manner the number of them was found, Salmon, [Ed. 2], p. 113, in the particular case of

a curve without nodes or cusps, and generally in Zeuthen's Nyt Bidrag &c, p. 91 ; the

number of the points in question, in the foregoing form — 4m — 3n + 3a, is also obtained

in my Memoir, "On the curves which satisfy given conditions" Phil. Trans. (1868),

pp. 75—143, see p. 97, [406].

It is further to be noticed that the m + n tangents to the evolute from either of

the points /, J are made up of the line IJ counting m times (in respect that it is

a tangent at each of the above-mentioned m cusps) and of the n tangents from the

points in question to the original curve. Or taking the two points 1, J conjointly, say

the 2m + 2n common tangents of the absolute and the evolute are made up of the

line IJ (or axis of the absolute) counting m times, and of the 2n focal tangents of

the original curve. The focal tangents of the original curve and of the evolute are

thus the same 2n lines ; and the two curves have the same foci.

The above are the ordinary values of m", n", i", k!\ but if the given curve touch

the line IJ, then the evolute has at the point of contact an inflexion, the stationary

tangent being the line IJ\ and if the given curve pass through one or other of the

points /, /, the evolute has in this case an inflexion on the tangent at the point in

question, this tangent being the stationary tangent of the evolute : but observe that

the inflexion is not at the point i" or J in question : and for each inflexion there is

a diminution =1 in the class, 3 in the order, and 5 in the number of cusps. Suppose

that the point J is a /2-tuple point on the given curve ; then the evolute has fx

inflexions ; and similarly if the point J" is a /2-tuple point on the given curve, then

the evolute has f2 inflexions. Hence writing /i +/2 = /, we have thus f inflexions; and

if moreover the number of contacts with the line IJ be — g, then we have on this

account g inflexions; or in aliy+<7 inflexions, and the formula3 become

m" = a. - 3/- 3g,

n" = m + n - f~ 9>

i" = f+ 9>

K" = - 3m - 3^ + 3a - 5f- 5g.

It is to be noticed here that the number of the intersections of the given curve with

the line IJ (other than the points /, J and the points of contact) is = m —fY —f2— 2g,

that is m—f—2g: each of these gives as before a cusp on the evolute, the cuspidal

tangent being //; we have besides on the line IJ (in respect of the g contacts)

g inflexions, the stationary tangent being the line IJ; and each of the i inflexions

gives for the evolute a point on -the line IJ; hence the whole number of intersections

with the line IJ is 3 (m —/— 2g) + Sg + iy =3m + t — 3f—3g, which is thus the order

of the evolute.

The tangents from the point i" or J to the evolute are the line // counting

m —f— 2g times in respect of the cusps on this line and 2g times in respect to the

inflexions, that is m —/ times ; the tangents at the point in question to the given

curve each twice as touching the evolute at an inflexion, 2/2 or 2f2: and the remaining
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n—2f1—g, or n — 2f2-g tangents from the point in question to the given curve ; the whole

number is thus (m —/) -f 2/i + (n — 2/i — g) or (m—/)+ 2/2 + (n — 2f2 — g), — m + n—f—g,

the class of the evolute. The two values of n" give

2n" = 2m + (n-2f1-g) + (n-2f2-g),

viz. twice the class of the evolute = twice the order of the curve + the number of

the focal /-tangents + that of the focal /-tangents ; but this is not true for all relations

whatever of the curve to the absolute.

The tangents from / to the given curve (excluding the line IJ and the tangents

at 2) are n—2f1 — g tangents ; and similarly the tangents from / to the evolute

(excluding the line IJ and the stationary tangents through /) are the same n — 2fl — g

tangents ; say the curve and the evolute have the same n — 2f1 — g /-tangents. Similarly

they have the same n — 2f2—g /"-tangents; or together the same 2(n—f1—f2—g),

= 2(n—f—g) focal tangents. And the curve and evolute have the same (n—2f1—g)(n—2f2—g)

foci.

The foregoing specialities f and g refer, g to the ordinary contacts of the line //

with the curve, viz. the curve is supposed to have with the curve at an ordinary or

non-singular point thereof a contact or 2-pointic intersection, and f, that is fx or f2>

to the multiple points having fx or f2 ordinary branches, none of them touching the

line IJ. Thus the formulae do not apply to the cases of IJ passing through a node

or a cusp of the given curve, or touching it at an inflexion ; nor to the cases where

at / or J the curve touches IJ, or where there is at / or J an ordinary double

point with one of its branches touching //, or where there is at / or J a cusp,

where the cuspidal tangent is or is not //.

It is easy to see that in the case of a multiple point of any kind whether

situate on IJ or at / or /*, each branch of the curve produces its own separate effect

on the singularities of the evolute : thus if we have on IJ a double point neither

branch touching IJ, then the separate effect of each branch is nil, therefore the effect

of the double point is also nil : but if one branch touch the line IJ, then the whole

effect is the same as if we had this branch only; viz. we have here the case g = l~

And so if there is at / or J a double point with one branch touching the line IJ,

then the effect of this branch is as if we had this branch only (a case not yet

investigated) but the other branch is the case f= 1. And so if we have at / or J a

double point with two ordinary branches touching each other (tacnode or, if the two

branches have a contact higher than the first order, oscnode), then if the branches

do not touch the line // the case is f—2, but if they do, then the effect is twice

that of an ordinary branch touching IJ In support of these conclusions, observe that

such multiple points, with ordinary branches, present themselves in the case of two

or more curves which intersect or touch each other in any manner; and that the

evolute of a system of two or more curves is simply the system of the evolutes of

the several curves.

5—2
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It follows as regards the relations of the given curve to the points /, J, and the

effect thereby produced on the evolute, we only need to consider the case of a single

branch ; viz. the cases are

the given curve intersects the line IJ at a point other than / or J} and belonging

thereto there is a branch ordinary or singular,

not touching IJ,

touching IJ;

and the given curve passes through the point / or J, and belonging thereto there

is a branch ordinary or singular,

not touching IJ,

touching IJ.

I have succeeded in determining the effect, not for a singular branch of any kind

whatever, but for branches of the form y = xk, yk~Y = xk ; viz. k = 2, each of these is an

ordinary branch, k = 3, the first y = xs is an inflexional branch and the second y = x% &

cuspidal branch ; and so k > 3 the two branches are respectively inflexional and cuspidal

of a higher order. I do this very simply by consideration of the curve xk~Y z = yk.

The curve in question xk~1z = yk, is a unicursal curve, and it has a reciprocal of

the same form Xk~1Z= Yk, hence

m = n = k ; 0 = n — 2m + 2 + k,

whence

L = K = k - 2, t = 8 = i (k - 2) (k - 3) ;

viz. the point % = 0, y = 0 is a cusp equivalent to k—2 cusps and -^ (k — 2) (k — 3)

nodes ; and the point z = 0, y = 0 is an inflexion equivalent to k—2 inflexions and

^ (k - 2) (k - 3) bitangents.

The equation U = xk~1z — yk = 0 of the curve is satisfied by writing therein

x : y : z — 1 : 9 : 6k ; and these values give

dxU :dyU : dzU=(k-l)xk-2z : - fcy*"1 : xk~\ =(k-l)6k : - M*"1 : 1.

Taking the coordinates of /, J to be (a, ft, y) and (a', /3', 7') respectively, and

X, F, ^ as current coordinates, the equation of the normal at the point (x, y, z) of

the curve U = 0 is readily found to be

(0L'dxU + (3'dyU+v%U)

+ (adxU + /3dyU+ydzU)

x, Y, z

a , £, 7

x ,
y > z

X, 7, Z

«', ff,
r

y

x , y >
z

= 0.
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Hence for the curve in question the equation of the normal is

{(k - 1) a'8k - kpff*-1 + y] {(fiX - olY) 8* + (aZ-yX) 8 + (yY- f3Z)}

+ \(k - 1) a& - k/30*-1 + 7} . {(/3'X - aCY) 6k + (atZ- y'X) 9 + (7T- &Z)} = 0,

or, expanding and reducing, this equation is

<92* . (k - 1) {(a/3' + a'j3) X - 2aa' 7}

+ (J*-1 . - & {2/3/3'X - (a/3' + a'0) Y}

+ ^+1 . (k - 1) [2 aa' £ - (ay + a'y) X}

+ 0* . \(k + 1) (/37' + /3'7) X + (A - 2) (7a' + 7'a) F- (2k - 1 ) (a/3' + a'/3) £}

+ 0*"1 . - k {(/3y' + /3'7) F - 2/3/3'£}

+ (9 . {(7a' +7,a)^-277/Z}

+ {277'F-(/37'+/3'7)^} = o,

where k is a positive integer not less than 2 ; hence except in the case k = 2, all

the terms 0'2k, 02fc-1, ... 8, 8°, have different indices, and the coefficients k — 1, &, &c.

none of them vanish ; if however k = 2, then the terms 02&_1, 8k+1 coalesce into a single

term, as do also the terms ^-1 and 8 ; moreover the coefficient k — 2 is =0.

The evolute is the envelope of the line represented by the foregoing equation,

considering therein 8 as an arbitrary parameter ; viz. the equation is obtained by

equating to zero the discriminant of the foregoing equation in 8. Hence in general

the class of the evolute is = 2k, and its order is = 2 (2k — 1) ; results which agree

with the formulae for n"> m", since in the present case m + n, = k + k, =2k, a — 3?i + k,

= ok + (k~2), = &k — 2. And moreover there are not any inflexions, */' = () as before.

The equation may however contain a factor in 8 independent of (X, F, Z\ and

throwing out this factor, say its order is = s, the expression for the class is 2k — s,

= m + n — s, and that for the order is 4<k — 2 — 2s, = a — 2s. Moreover, in the original

equation or in the equation thus reduced, it may happen that the equation will on

writing therein X2 = 0 (12 a linear function of X, F, Z) acquire a factor of the order

o), independent of (X, Y, Z) ; the line 12 = 0 is in this case a stationary tangent,

= co — 1 inflexions ; and the discriminant contains the factor I2"-1, which may be thrown

out; that is we have here n" = 2k — s, l" = co — I, m" = 4<k — 2 — 2s — (o) — l); agreeing

with the relation m" — 2n" + 2 + 4" = 0 which holds good in virtue of the evolute being

a unicursal curve. It is in this manner that the values of m" , n", 1" are obtained

in the several cases to be considered, viz. :

Ajc Inflexion situate on IJ, which is not a tangent.

Bit Inflexion situate on IJ, which is a tangent.

Gk Cusp situate on IJ, which is not a tangent.

D]c Cusp situate on IJ, which is a tangent.

Pfc Inflexion at J, IJ not a tangent.

Qk Inflexion at J, IJ a tangent.

Rh Cusp at J, IJ not a tangent.

Sk Cusp at J, IJ a tangent.
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The results are respectively as follows :

Ah Bk Ck Dh Pk

m — a —

n" = m + n —

i" = 0 +

- 3m - 3n + 3a —

-R& s*

0 3k -3 k-2 & + 1 k 3k- 2 2&-2 2k

0 k-l 0 1 1 & &-1 k

0 k- 1 k~ 2 k- 1 k-2 &- 2 0 0

0 5k -5 2&-4 2&+ 1 2k- 1 5&-4 3&-3 3&

A2G2 B2B2
^3 £3

C3 Ds
^2 $2^2 ^3 Qs Rs

#3

m" = a — 0 3 0 6 0 4 3 4 3 7 4 6

n" — m + n — 0 1 0 2 0 1 1 2 1 3 2 3

{' - 0 + 0 1 0 2 0 2 1 0 1 1 0 0

3m — 3w + 3a — 0 5 0 10 0 7 5 6 5 11 6 9

read for instance in Bk, m" = a — (3& — 3), n" = m + n — (k— 1), t" = 0 + (k — l), and

k," — — om — Sn + 3a + (ok — 5) ; and so in other cases.

A2G2 (that is indifferently A2 or C2) is when there is on IJ an ordinary point,

IJ not a tangent ; and so BJD2 when there is on // an ordinary point, IJ a tangent.

Similarly P2R2 when there is at J an ordinary point, IJ not a tangent; only instead

thereof I have written P2R2 to indicate that (for a reason which will appear) the

numbers are not deducible from those for P2 or B2 by writing therein k = 2; and

Q2S2 is when there is at J an ordinary point, IJ a tangent.

Case Ak. We have to take the line IJ passing through the inflexion; the con

dition for this is /3y' — ft'y = 0 : there is no speciality, or we have n" = 2k, m" = 4& - 2,

1" = 0 ; whence also k" = 0 ; the value of k" being in every case deduced from those

of ra", n"} i' by the formula

3m" + *" = 3w" + *".

Case Bk. I write y = y = 0, the equation of the normal is

0*+1(X, F)0* . (k - 1) {(a/3' + <£) X - 2aa' 7}

+ e^-i . - & {2/3/3'X - (a/3r + a'£) 7}

+ <9*+1 . (& - 1) 2olo!Z

+ 0* . -(2&-l)(a/3'+a73)^

+ 0*-1 . &. 2£/3'^ =0,

+ 0* (X, 7)

+ <92 ^

+ Z = 0,
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where throwing out the factor 0k~1, the form is as shown on the right hand. Writing

Z = Q, we have a factor 0&, whence i" = k— 1, and then n" = k + l, m" = 2k — (k — 1) — k + 1,

agreeing with the table. The process holds good for k = 2.

Case C*. I write /3 = ft' = 0 ; this brings as well the inflexion as the cusp upon

the line IJ; but it has been seen (Case A^) that there is not any reduction on

account of this position of the inflexion, hence the whole effect will be due to the

cusp. The equation is

6*k . (k - 1) {- 2aa'Y} 0ik Y

+ 0k+1 .(k-1) {2<xa'Z - (ay' + a'y) X\ + 0k+1 (Z, X)

+ 0k .(k - 2) (ya! + y'a) Y + 0k(k-2)Y

+ 6 . {(7a' + y'a) Z- 2yy'X] + 0 (Z, X)

+ 2yy'Y=0, ! + 7=0,

0\*-i

so that here n" = 2k. On writing Y—0, there is a factor (1 —— ] thrown out

(indicated by the reduction of the order from 2k to k + 1), whence

t" = yfe-2, m"=2(2k-l)-(k-2), =3ft.

The process holds good for k = 2.

Case Dk. We may write a = a' = 0 ; the equation is

(92*-1 . - k . 2/3/3'X

+ 0" . (k + l)(/3y' + ft'y)X

+ 0*-1 . - k [(fir/ + ft'y) Y - 2ftft'Z]

+ 0 . - 277'Z

+ 2yy'Y-(fty' + ft'y)Z=0,

I 0\k

so that n" = 2k — l. Writing X — 0, we have the factor (1 j (indicated by the

reduction of order from 2k — 1 to k — 1), whence 1" = k- 1, and then m" =(4&— 2)-2 - (k-1),

= 3k — 3, agreeing with the table. The process holds good for k=2.

Case Pj;. We have ft' = y = 0 ; the equation is

0* .(k-l){ot'ftX-2oia'Y}

+ 0*-K-k {-a'ftY}

+ ff*1 .(k-1) {- a'yX]

+ 0k .(k-2) ya'Y- (2k - 1) a'ftZ

+ 0 . ya'Z=0,

+ 0k X

+ 0k~1(Y, Z)

+ 0 X

+ (Y,Z) = 0,

+ &*-* Y

+ 0k X

+ 0k~i(k-2)Y+Z

+ Z=0,

so that here n" = 2k — 1. Writing Z = 0, we have the factor 0k~x, whence t" = k — 2,

m" — 4<k — 4' — (k — 2) = '3k—2, agreeing with the table. If, however, k = 2, then on writing

£=0 the equation (instead of the factor 0k~1) acquires the factor #*(=02); so that

here n" = 3, 1" = 1, in" = 3, agreeing with the column P2^2 of the table.
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Case Qjc. We have 7 = 0, /3' = ry' = 0, viz. /3' = 0 in the formulae of Bk. The

equation is

0* . ( Jfe - 1) affiT 0* X

+ 0*+1 . ( & - 1) 2aa,£ + 0 £

+ #* .-(2Jfe-l)a//8Z=0, + Z=0,

so that rc" = k. For £ = 0 there is the factor fl*"1, hence 1" = k- 2, ra"= 2 (k - 1) -(& - 2), = A.

The process holds good for k = 2.

Case jR&. We have /3 = 0, a' = 0, /3' = 0, viz. a' = 0 in the formulae of Gk. The

equation is

0k+1 .(k-1) (- af/X)

+ 0k .(k-2)(ay'Y)

+ 0 . (av/Z -2yy'X)

+ 277'F=0,

+ 0* F(&-2)

+ ^ (£, X)

+ F=0,

so that n" = k + l, i" = 0, m" — 2k. But observe that in the particular case k — 2, the

form is 0SX + 0 (Z, X)+F=0, the term 0kY disappearing on account of the factor

k—2. Here on writing X =0, there is a factor ( 1 —
00

(indicated by the reduction

of order from 3 to 1), hence l" = 1, n" = 3, m" = 2.2 — 1 = 3, agreeing with the column

P2R2.

Case Sic. We have a = 0, a/ = /3/ = 0, viz. /3' = 0 in the formula of Dk. The

equation is

0k . (jfe + 1) ysyz

+ 0 . - 277rZ

+ 2y/Y-l3yZ=0,

0h X

+ ff-1 Y

+ 0 X

+ Y+Z = 0,

so that n" = A, 1' = 0, m" = 2k — 2. The process applies to the case k — 2.

As to the formula for As, B3,...83y there is nothing special in these; they are

simply deduced from those for Ahi Bk,...Sk by writing therein k=o. And we have

thus the foregoing series of formulae, which will apply to the greater part of the

cases which ordinarily arise. For instance suppose there is at / or J a triple

point = cusp + 2 nodes ; there is here an ordinary branch and a cuspidal (ordinary

cuspidal) branch and according as IJ touches neither branch, the ordinary branch, or

the cuspidal branch, the corrections to m'\ n'\ i\ tc" are B2 + B3, S2 + R3, R2 + $3

respectively. Observe moreover that A2C2 is no speciality, B2D2 is the speciality g = 1,

P2R2 the speciality /= 1.

There is a remarkable case in which the fundamental assumption of the (1,% 1)

correspondence of the evolute with the original curve ceases to be correct. In fact.



493] ON EVOLUTES AND PARALLEL CURVES. 41

in the case about to be considered of a parallel curve; the parallel to any given

curve is in general a curve not breaking up into two distinct curves of the same

order with such given curve, and wThen this is so (viz. when the parallel curve does

not break up) each normal of the parallel curve is a normal at two distinct points

thereof: the evolute of the parallel curve is thus the evolute of the given curve

taken twice ; and the parallel curve and its evolute have not a (1, 1) but (1, 2)

correspondence. Hence, (m, n> 8, k, t, l) the unaccented letters referring to the parallel

curve, or say rather to a curve which has a (1, 2) correspondence with its evolute,

and, as before, the twice accented letters to the evolute, it is not true that

m" — 2n" + i' = m — 2n + i ; it will subsequently appear that the values of m\ n" are

correct, those of t,", k suffering a modification; viz. the formulae are

m"= a-3f-Sg,

n" = m + n — f— g,

/+ flr-G,

K" = - 3m - Sn + Sol - of- 5g - ©,

where, for the present, I leave © undetermined.

Coming now to the parallel curve, let the numbers in regard to it be mf, n, 8',.

k', t, i\ ol\ D\ Supposing in the first instance that the given curve does not stand

in any special relation to i", J, the formulae are

ml — 2m + 2n, a = 6n + 2a,

n' = 2n, 2D' = -4mi + 2-\-2a, =-2m + 2n + a.

i = 2a — 6m,

k = 2a.

Considering the parallel curve as the envelope of a circle of constant radius having

its centre on the given curve, it appears (e.g. by consideration of the case of the

ellipse) that when the radius of the circle is =0, there is not any depression in the

order of the parallel curve, but that the parallel curve reduces itself to the given

curve twice, together with the system of tangents from the points i, J to the given

curve : the order of the parallel curve is thus m = 2m + 2n.

To find the class, consider the tangents from a given point to the parallel curve;

about the point as centre describe a circle, radius k; then the tangents in question

are respectively parallel to, and correspond each to each with, the common tangents

of the circle and the given curve, and the number of these is = 2n, that is n! = 2n.

Each inflexion of the given curve gives rise to two inflexions of the parallel

curve ; and the inflexions of the parallel curve arise in this way only : that is t = 2iy

= 2ol — 6m. And the Pluckerian relations then give k — 2a ; a value which may be

investigated independently.

Attending now to the singularities / and g; the values of n't i are unaltered:

to obtain w! wTe as before consider the particular case where the radius of the variable

c. viii. 6
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circle is = 0 : the parallel curve here breaks up into the original curve, together with

the focal tangents from the points 7, J; viz. we have

m' = 2n + (n - 2f± -g) + (n- 2/a - g), = 2m + 2n - 2f- 2g ;

and knowing m', n', i we have k.

The points on IJ of the original curve are I, J counting as /i and f2 respectively ;

or together as f points: the points of contact counting as 2g : and besides m-f—2g

points. As regards the parallel curve, we have the same points on IJ\ but here /

is {n - g) tuple point, having in respect of each branch of the /i-tuple point on the

original curve a pair of branches touching each other, and in respect of each of the

tangents from 7" to the given curve a single branch, together 2/i + (n — 2f1 — g)) —n — g

branches; and thus counting n — g times: similarly J counts n — g times. Hence also

for the parallel curve // =/2/ — n — g. In respect of each of the points g, we have a

point where there are two branches touching each other and the line IJ\ and thus

counting 4 times, or together as 4<g: moreover, on account of the two branches at each

of these points, g' = 2g. Lastly, each of the m—f—2g points is a node on the parallel

curve; and as such counts twice; m =2 {n- g) + kg + 2(m—/— 2g), =2m+2n—2f—2g

as above.

And we have thus the formulae

m' = 2m + 2n-2f-2g,

n' = 2n,

i! = - 6m + 2a, = 2t,

k' = 2a - 6/- 6g, = 6n + 2* - 6f- 6g,

f'= 2n-2g,

9f = 2^,

where observe that m is = 2n" ; that is, twice the class of the e volute (which relation

however is not in all cases true for a curve with singularities) ; and further that n! —f — g'

is =0.

The case of a curve for which 7i—f—g = 0 is very interesting and remarkable.

Recurring to the formulae for the evolute, we have here m" — /c, n" = m, i' = n,

k' — n — 3m + 3/c. And for the parallel curve wf = 2m, n' = 2n, i = 2i, k! = 2/c, f = 2/,

g' = 2g; formulas which lead to the assumption that the parallel curve here breaks

up into two distinct curves, each such as, the given curve.

Observe further that for a curve possessing the singularities / and g, but where

n—f—g is not =0; then for the parallel curve we have as above ri—f — g' = Q;

or the parallel of the parallel curve should, according to the assumption, break up

into two distinct curves such as the parallel curve; this is of course correct.

Consider the evolute of the parallel curve : since for the parallel curve n —f — g' = 0,

the formulas for the evolute thereof (viz. those containing the undetermined quantity ©)
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are m'" = k, ft'" = mf, if" = ft' - ©, k" = n'— 3m' + 3/e' - ©, or substituting for m', ft', k

their values, and comparing with the formulae in regard to the evolute, we have

m'" = 2a - 6/ - 6g9 = 2m",

?/" = 2m + 2ft - 2/- 2#, = 2?*",

r = 2n - 0, = 26,x + 2 (n -/- gr) - ©,

«'" = - 6m - 4?2 + 6a - 12/- 12# - ©, = 2*" + 2 (ft -/- #) - ©,

where m", ft", l", k" refer to the evolute. Henee by assuming © = 2 (ft —f— g), the

values of m"', w"', i"', «'" become 2m", 2ft", 2tf', 2/e", viz. the evolute of the parallel

curve is the evolute of the original curve taken twice. Observe that in the foregoing

value of ©, the letters ft, f, g refer not to the parallel curve, the evolute whereof is

under consideration, but to the curve from which such parallel curve was derived ;

this value © = 2 (ft —f— g) is not a value of © applicable to be substituted in the

evolute-formulsB for the case of a curve which has with its evolute a (1, 2) corre

spondence.

Instead of the foregoing case of the f, viz. f- and ^-singularities, we may, as

regards the parallel curve, consider the original curve as having any I- and ^-singu

larities whatever. Suppose in this case (excluding always the line IJ and the tangents

at I or J) the number of tangents from I to the curve is = ft — /, and the number

of tangents from J to the curve is = ft — J, then when the radius of the variable

curve is =0, the parallel curve becomes the original curve twice together with the

(ft — I) + (ft — J), —In — I— J tangents ; so that the order is m — 2m + 2n — I — JQ-)] we

have, as before, n = 2ft and i = 2i, and these values give #', so that the equations are

m' = 2m -h 2ft — / — J,

n — 2ft,

if = -6m + 2a, = 2i,

ttf = 2a -J -J, = 6w + 2*-3I-3J.

Suppose 2ft — I — J— 0 ; this implies n — 1=0, n — J=0 since neither n — I nor

n—J can be negative ; viz. that there are no /- or /-tangents ; and conversely, when

this is the case 2n — I—J=0: and we have then m', ft', i, /c' = 2m, 2ft, 2c, 2k, ; viz.

it is assumed, as before, that the parallel curve breaks up into two distinct curves

such as the original curve; that is, the condition in order that the parallel curve

should break up, is that the original curve has no focal tangents. Observe that the

number of foci is = (ft — i") (n — J) which is = 0 if only n — 1=0 or n — J = 0; but as

regards real curves I=J, so that the equations n — I=0 and n — J=0 are one and

the same equation, satisfied if (ft — I) (ft — J) = 0 ; so that for a real curve without foci

(real or imaginary) the parallel curve will break up. An instance given to me by

Dr Salmon is the curve #* + y* — c* = 0 or (a? + y2-c2f+ 27cVf = 0, here m = 6, n = 4,

1 That the order of the evolute is not (in every ease of a curve with singularities) one-half this, or

=m +n-i (I+J), is at once seen by remarking that there is no reason why I+J should be even.

6—2
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8 = 4, # = 6, i = 0, t = 3: the points /, J are each of them a cusp, the tangents being

the line IJ; the number of tangents from a cusp is n — 3, =1, but for the cusp

/ or J, this tangent is the line IJ itself, so that we have /= J"=4.

Theory when the Absolute is a conic.

When the Absolute is a conic the formulae for the evolute are essentially the

same as those in the former case, but the formulae for the parallel curve are modified

essentially and in a very remarkable manner. I observe that corresponding to a

passage of the given curve through / or J" we have a contact with the Absolute, so

that in the present case f will properly denote the number of contacts of the given

curve with the Absolute, and attending to this singularity only, viz. considering a given

curve (m, n, S, /c, i, r; a, D) having / contacts with the Absolute, the formulae for

the evolute are

m" = a- 3/

n" = m + n — f,

f>

K" =-3wi-3w + 3a-5/

In the case /= 0, these at once follow from the two equations n" = m + n, and t' — O.

The normal is the line joining a point of the given curve with the pole of the

tangent ; or, what is the same thing, it is the line joining the point of the given

curve with the corresponding point of the reciprocal curve: the degrees of the two

curves are m, n, and the correspondence is a (1, 1) correspondence. Hence, by the

general theorem previously referred to, it follows that we have n" = m + n, and i' = 0.

Compare herewith the demonstration of the theorem in the case where the Absolute

is a point-pair.

The formulae for the parallel curve are

m' = 2m + 2n - 2/,

n = 2m + 2n - 2/,

£ = 2a -6/,

h! = 2a - 6/,

f = 2m + 2n - 2/,

(so that m' = n', l=k). The intersections of the curve and Absolute are in this case

the points / each twice, and besides 2m — 2/ points ; similarly the common tangents

are the tangents at / each twice and besides 2n — 2f tangents. Now I remark that

the parallel curve, when the radius of the variable circle is = 0, reduces itself to the

original curve twice, together with the 2n — 2f common tangents, and the 2m — 2f

common points ; the order is thus = 2m + (2n — 2f), and the class =2n + (2m — 2f) :

and these are the values in the general case where the radius of the variable circle

is not =0.
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But in the remarkable case where the curve and its evolute have a (1, 2) corre

spondence, then I correct the formulae by adding — © to the expressions for t\ k

respectively. We have for the evolute of the parallel curve

m'" = 2m",

ri" = 2n",

£» = 2t," + (2m + 2n - 4/) - 0,

*'" = 2/c" + (2m + 2n- 4/) - ©,

viz. assuming © = 2m + 2-n — 4f, this means that the evolute is the evolute of the

original curve taken twice.

A very interesting case is when m—n —f : observe that neither m —/ nor n —f

can be negative, so that the assumed relation m + n — 2f= 0 would imply these two

relations. We have here for the parallel curve m = 2m, ri = 2n, i — 2i, /c'=2k; the

parallel curve in fact breaking up into two curves such as the given curve. And in

this case the formulae for the evolute assume the very simple form m" = /c, n" =f,

t"=f} k" = - 2/+ 3k.

Whatever the original curve may be, we have for the parallel curve m'' — n' =f\

so that the formulae for the evolute of the parallel curve are of the foregoing form

m'" = /e', n//=f) l" =/'-©, *'" = - 2/' +■ 3*' - ©, which agree with the above values of

•m'", ri", l"\ k". In the particular case m = n =/, we have © = 0, so that the evolute-

formulae, if originally written down without the terms in ©, would still be m" = 2m",

■ri" = 2n", t" = 2c", k" = 2k" ; viz. the evolute is here the original evolute taken twice ;

as already seen, the parallel curve consisted of two curves such as the original curve,

and each of these has for its evolute the evolute of the original curve.
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494.

EXAMPLE OF A SPECIAL DISCRIMINANT.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XI. (1871),

pp. 211—213.]

If we have a function (a, ...]£#, y, z)n, where the coefficients (a,...) are such that

the curve (a, ...]£#, y, z)n = 0 has a node, and & fortiori if this curve has any number

of nodes or cusps, the discriminant of the function (that is, the discriminant of the

general function (*3£#, y, z)n, substituting in such discriminant for the coefficients their

values for the particular function in question) vanishes identically. But the particular

function has nevertheless a special discriminant, viz. this is a function of the coefficients

which, equated to zero, gives the condition that the curve may have (besides the

nodes or cusps which it originally possesses) one more node ; and the determination of

this special discriminant (which, observe, is not deducible from the expression of the

discriminant of the general function (*•$#, y, z)n) is an interesting problem. I have,

elsewhere, shown that if the curve in question (a, ...]£#, y, z)n = 0 has S nodes and

k, cusps, then the degree of the special discriminant in regard to the coefficients

a, &c, of the function is =3 (n— l)2— 78 — U/c : and I propose to verify this in the

case of a quartic curve with two cusps.

Consider the curve

6nx2y2 + 12rz2xy -f (4&gx + 4&iy + cz) z* = 0,

where x = 0 is the tangent at a cusp ; y = 0 the tangent at a cusp ; and z = 0 the

line joining the two cusps.

For the special discriminant we have

Snxy2 + Sryz2 + gzs — 0,

3nx2y + Srxz2 + izd = 0,

z [Qrxy + (Sgx + Siy + 4<cz) z) = 0 ;

the last of which may be replaced by the equation of the curve.
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Assume % = Xz, y — pz, the first two equations give

3 (nXfju + r) fju + g = 0,

3 (riX/jb + r) X + i = 0,

whence also

6n\2fjL2 + 6r\^ + #X 4- i/^ = 0,

and the equation of the curve gives

6n\2/ji2 + \2rXfjL + 4#\ + 4i> + c = 0,

whence eliminating gX + ifju we find

187a2//,2 + 12rX,/u - c = 0.

Moreover the first two equations give

9 (nX/ju — r)2 X{jb — ig = 0,

or putting Xfjb = 0 we have

18n62 + 12r<9 - c = 0,

9(7i(9 + r)20-ig = O,

from which 0 is to be eliminated.

The equations are

18n62 + 12r0 - c = 0,

9^26>3 + 18^r<92 + 9r26> -ig = 0,

and thence

18ti203 + 367ir<92 + 18r20 - 2ig = 0,

I8n203 + I2nr02 - cn0 = 0,

247ir02 + (18r2 + C7i)<9--2^ = 0,

187ir/92 + I2r26-cr = 0,

(6r2 + 3cra) (9 - 6i# + 4cr = 0,

^ _ 6ig — 4cr __ 2 3ig — 2cr

~ 6r2 + Sm ~ * 2r2 + en J

or substituting in 18n82 + 12r0 — c = 0, this is

8n (Sig - 2crf + 8r (Big - 2cr) (2r2 + en) - c (2r2 + en)2 = 0.

Hence, developing, the special discriminant is

n = - i c¥

+ 12c2nr2

— 7 2 cgwzr*

- 36 cr4

+ I2g2i2n

+ 48 gir*,

which is as it should be of the degree 5, =3.32— 11. 2.
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495.

ON THE ENVELOPE OF A CEKTAIN QUADRIC SURFACE.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XI. (1871),

pp. 244—246.]

To find the envelope of the quadric surface

ax2 + by2 + gz2 + dw2 = 0,

where the coefficients vary subject to the conditions

p2 q2 r2 s2

a o c a

(a, /3, y, S) and (p, q, r, s) being respectively constant.

We have in the usual manner

x2 +\<x2 +u£ = 0,

a2

w2 + \82 + ^1 = 0
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and thence a2 = ——~—2 , &c, and substituting these values jjl disappears and we have
00 "T" A.Cc

p VO2 + ^a2) + q V(3/2 + ty32) + r VO2 + *72) + s V<V + \S2) = 0,

V^ + Xa2) V(2/2 + ^/32) V(^2 + V) v(^2 + ^S2) '

from which X is to be eliminated; the second equation is here the derived function

of the first in regard to X, so that rationalising the first equation, the result is, as

will be shown, of the form (*]£\, 1)4 = 0, and the result is obtained by equating to

zero the discriminant of the quartic function.

Denoting for shortness the first equation by

A+B + C + D = 0,

the rationalised form is

(A* + 54 + C4 + D4 - 2A2B2 - 2A2C2 - 2A2D2 - 2£2C2 - 2B2D2 - 2C2D2)2 - 64<A2B2C2I)2 = 0,

which is of the form

- (21 + 233X + g\2)2 + (a, b, c, d, e$l, X)4 = 0,

where

21 =pV ... — 2p2q2oo2y2... ,

33 = p*a?x2 ... - p2ga (ay + $*(&). . . ,

6 = ^4a4...-2^2a2/32...,

a = 8 . x2y2zhu2 ,

4b = 8.a2y2z2w2 +... ,

6c = 8.a2/32A/2+...,

4d == 8 . a2/3272w2 + ...,

e = 8 . a2/3272S2.

Writing /', J7 for the two invariants we find without difficulty

where

/ = ae-4bd + 3c2,

J" = ace — ad2 — b2e — c3 + 2bcd,

A = 2l©-932,

P = a62 - 4b$8S + 2c (216 + 2332) - 4d2l23 + e2l2,

Q = (ce - d2) 2l2 + (ae + 2bd - 3c2) . i (SIS + 2S2) + (ac - b2) g2

-2(ad-bc)33S - 2 (be - cd) SIS.

c. viii. 7
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The result thus is

(J - P + iA2)3 - 27 (/- Q + iAP - 28TA3)2 = 0,

or, what is the same thing, it is

(/_ py - 27 (/- Q)2 - 9AP (/- 20

+ A2 (4/2 - 82P + P2)

+ 8A»(^-2Q)

+ A4 . -^-P = 0,

where the left-hand side is of the order 24 in (#, y, #, w). I apprehend that the

order should be =12 only; for writing (%, y, z, to) in place of (#2, y2, z2} w2), the

equations which connect (a, b, c, d) express that these quantities are the coordinates

of a point on a plane cubic ; and the problem is in fact that of rinding the reciprocal

of the plane cubic: this is a sextic cone, or restoring (x2y y2, z2, w2) instead of

(x, y, z, w), we should have a surface of the order 12. I cannot explain how the

reduction is effected.



496] 51

496.

TABLES OF THE BINARY CUBIC FORMS FOR THE NEGATIVE

DETERMINANTS, ^0 (MOD. 4), FROM -4 to -400; AND =1

(MOD. 4), FROM -3 TO -99; AND FOR FIVE IRREGULAR

NEGATIVE DETERMINANTS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XL (1871),

pp. 246—261.]

The theory of binary cubic forms for determinants, as well positive as negative,

has been studied by M. Arndt in the memoir " Versuch einer Theorie der homogenen

Functionen des dritten Grades mit zwei Variabeln," Grunert's Archiv, t. XVII. (1851,

pp. 1—54) ; and in the later memoir, " Tabellarische Berechnung der reducirten binaren

cubischen Formen und Klassification derselben fur alle negativen Determinanten (— D)

von D = 3 bis Dee 2000," ditto, t. xxxi. (1858), pp. 335—445, he has given a very

valuable Table of the forms for a Negative Determinant. It has appeared to me

suitable to arrange this Table in the manner made use of for Quadratic Forms in

my memoir " Tables des formes quadratiques binaires pour les determinants negatifs

D = — 1 jusqu'a D = — 100, pour les determinants positifs non carres depuis D = 2

jusqu'a D = 99, et pour les treize determinants negatifs du premier millier," Grelle,

t. lx. (1862), pp. 357—372, [335] ; and confining myself to the limits of the last-

mentioned tables I deduce from that of M. Arndt the three Tables which follow.

To explain the arrangement, I give in the first instance the following extract from

M. Arndt's Table:

D. Eeducirte Formen mit Charakteristik. Klassen.

3 (0, 1, 1, 0) (1, 0, - 1, - 1) (1, 1, 0, - 1)

(2, 1, 2) (2, 1, 2) (2, 1, 2)

4 (0, 1, 0, - 1) (1, 0, - 1, 0)

(2, 0, 2) (2, 0, 2)

(0, 1, 1, 0), (1, 0, - 1, ± 1)

(0, - 1, 0, 1)

7—2
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D. Reducirte Formen mit Charakteristik. Klassen.

(2, 1, 4) j V

8 (°' *' °' " 2) I (0, - 1, 0, 2)
(2, 0, 4) P ' ' ' ;

(2, 1, 6) j V ' ;

(2, 0, 6) } (°' " lj °' 3)

15 VlV* 1(0,-1,-1,3)

" ^ii^SVr [(C-.O,!!),,,-^!,!)

112 (0, l,-0, -28)(0, 2, 2, -2)(1, 2, 0,-4) \

: (2, 0, 56) (8, 4, 16) (8, 4, 16) ( (0, - 1, 0, 28), (0, 2, 2, - 2),
(1, -1,-3,-1) [■ (1, + 1, - 3, + 1)

(8, 4, 16) j

(0'(2; 0°; 7_2) ^ (0(8''42,20)3) } <0' ~ *' °> 36>' <°> " 2> " 2> 3>

156 (0, 1, 0, -39)(1, -1,-3,1) )

(2,0,78) (8,2,20) [(0,-1,0,39), (1, + 1, - S, ± 1)

216 (0, 1, 0, - 54) (1, -2,-3, 0) (2, 0, - 3, 0)| (0, - 1, 0, 54), (0, + 3, 0, + 2),

(2, 0, 108) (14, 6, 18) (12, 0, 18) J (0, + 3, 2, + 1)

The first column contains the value of the determinant, the second column contains

the reduced forms, omitting the contrary and opposite forms ; viz. for the cubic form

{a, b, c, d), the contrary form (equal, that is, properly equivalent to the given form) is

(— a, —by — c, — d) ; and the opposite form (improperly equivalent to the given form)

is (a, — b, c, — d) or (— <z, b, — c, d) ; this second column contains also the characteristic

of each cubic form, viz. the cubic form (a, b, c, d) has for its characteristic the

quadratic form

{2 (¥ - ac), be - ad, 2 (c2 - bd%

(so that the cubic form and its characteristic have the same determinant

- D = (bc - ady - 4(62 - ac)(c2 -bd), = 1 or 0 (mod. 4)),

and a cubic form which corresponds to a reduced characteristic is itself a reduced

form. The third column contains for each determinant the entire series of unequal

cubic forms (that is of the forms whereof no two are properly equivalent to each

other), the representatives of the classes for this determinant. M. Arndt has included

in his table the non-primitive classes (for example Det. = — 112, the form (0, 2, 2, — 2)),

for which the terms (a, b, c, d) have a common divisor jjl, but as these are at once
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Reducible from the classes which belong to the determinant = , it seems better to

omit the non-primitive classes.

The two opposite forms included in a single expression by means of the sign ±

have opposite characteristics which are for the most part unequal to each other, for

instance

Det. - 44 ; (0, - 2, 1, 1) has the characteristic (6, - 2, 8),

(0, 2, 1, - 1) „ „ (6, 2, 8),

where (6, — 2, 8), (6, 2, 8) are unequal forms, but this is not always the case, for

instance

Det. — 112; (1, — 1, —3, —1) has the characteristic (8, —4, 16),

(1,1,-3,1) „ „ (8, 4,16),

where (8, —4, 16) = (8, 4, 16), since each is an ambiguous form. Instead of the two

unequal forms (1, —1, —3, —1), (1, 1, —3, 1) which correspond to the opposite (though

equal) characteristics (8, —4, 16), (8, 4, 16), M. Arndt might have given the two forms

(1, 2, 0, - 4) and (1, — 1, — 3, — 1) corresponding to the same characteristic (8, 4, 16) ;

but then it would not have appeared at a glance that the two classes were opposite

to each other; and I presume that it is for this reason that he has selected the two

representative forms (1, — 1, —3, —1) and (1, 1, —3, 1). It must not, however, be

imagined that the opposite cubic forms which correspond to opposite characteristics,

which are ambiguous (and therefore equal to each other), are always, as in the last pre

ceding example, unequal : for example Det. — 144, there is only the form (0, — 2, — 2, 3)

given as corresponding to the ambiguous characteristic (8, 4, 20) ; the opposite form

(0, 2, —2, —3) corresponding to the opposite but equal characteristic (8, —4, 20) is

equal to (0, — 2, — 2, 3), and so does not give rise to a distinct opposite class. In

the new tables, the sign + is only employed in regard to opposite ambiguous

characteristics ; for instance, Det. — 4 x 28 there are given (not included in a single

expression by means of the sign +) the two forms (1, — 1, —3, 1), (1, 1, —3, 1) corre

sponding to the characteristic 2 (2, ± 1, 4).

I remark that, in a few instances M. Arndt, in passing from the second to the

third column, has modified the expression for a cubic form in such manner that the

characteristic has ceased to be a reduced form ; for instance, Det. — 216, he has given

in the third column the two forms (0, + 3, 2, + 1) belonging to the characteristic

(18, +6, 14); it would have been better, it appears to me, to preserve the expres

sion of the second column (1, — 2, — 3, 0), and adopt the two representative forms

(1, + 2, -3, 0); I have accordingly made this change.

I divide M. Arndt's table into two tables; the first of them corresponding to the

determinants =0 (mod. 4), the second to the determinants =1 (mod. 4). In the first

table I take for the characteristic the form

{62-ac, b(bc-ad), bd-c%
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which belongs to the determinant — \B, and I arrange the cubic classes according to

their order \ viz. we have the properly primitive order (pp) when the terms (a, 3b, 3c, d)

have no common divisor; and the improperly primitive order (ip) when the terms

(a, 36, 3c, d) have no common divisor other than 3, or what is the same thing when

a and d being each of them divisible by 3, the terms (a, b, c, d) have no common

divisor. But, moreover, the characteristic {b2 — ac, -J (be — ad), bd — c2}, may be of the

properly primitive order pp ; or of the improperly primitive order ip ; or it may be

of a derived order //, (A', B', C"), =/J<.pp or /jl . ip, according as (A', B', C) considered

as a form belonging to the determinant B'2 — A'C', = — -—^i>, is of the properly

primitive or the improperly primitive order. And in these different cases, the cubic

class is said to be of the order pp on pp, pp on ip, pp on p.pp, pp on p.ip,

ip on pp, &c, as the case may be.

For the determinants = 1 (mod. 4), I retain the characteristic

{2(b2-ac), be -ad, 2(c2-bd)},

and this being so, the division into orders is the same as in the former case; only

as the characteristic, when primitive, is of necessity improperly primitive, the orders

pp on pp and ip on pp no longer exist.

To every characteristic I annex in the tables the symbol of its composition; viz.

1 denotes the principal form, c a form which by its duplication, d a form which by

its triplication, &c, produces the principal form, <r denotes the most simple form of

order ip, ac, ad, &c, the forms obtained by combining a with the forms c, d, &c, of

the order pp. Similarly to a characteristic fi(A\ Bf, C) I annex the symbol of com

position of the form (A', B', C), (considered as belonging to the determinant B'2 — A'C,

= — — j multiplying this symbol by the number fju) for instance, /ll.1 denotes that

(Af, Bf, C) is the principal form, and similarly in other cases.

I have given a third table for the determinants

- 4 x 243, - 4 x 307, - 4 x 339, - 4 x 459, - 4 x 675,

where —243, —307, —339, —459, —675 are those of the thirteen irregular negative

determinants in the first thousand for which the number of classes is divisible by 3.

The number -4x675, =-2700, is beyond the limits of M. Arndt's Table, but the

calculation (at least for the order pp on pp) presents no difficulty.

I remark that, according to M. Arndt (Grunert, t. xvii. p. 19), the number of

cubic forms corresponding to a given characteristic (A, B, G) is equal to the number

of proper transformations of (A, -B, C), Det. B, into (±A2, B2~\AG, \02), Det. DB2,

so that when there is no such transformation, there exists no cubic form corresponding

to the characteristic (A, B, C). This includes, I believe, the theorem in a letter of

mine to M. Hermite, Quarterly Mathematical Journal, t. I. (1857), p. 85, [162], viz. that
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for a pp form (A, B, C) of negative determinant, there is either no corresponding cubic

form, or else a single corresponding cubic form, according as (A, By G) does not, or

does, produce by its triplication the principal form ; but the particular theorem, in the

cases to which it applies, is the more convenient one: it shows at once that for a

regular negative determinant the number of cubic forms corresponding to a properly

primitive characteristic (or, what is the same thing, number of cubic classes of the

order {pp or ip) on pp) is 1 or 3, according as the number of quadratic classes is

not, or is, divisible by 3.

The inspection of the tables gives rise to other remarks, but at present I abstain

from pursuing the subject further; I will only notice that in some instances, for

example Det. — 224, the classes which correspond to characteristics of the principal

genus are partly of the order pp on pp and partly of the order ip on pp.

Table I. of the binary cubic forms, the determinants of which are the negative numbers

= 0 (mod. 4) from — 4 to — 400.

Det. Order

4x Classes on Charact. Compn.

1 o, -i, 0, 1 pp PP 1, 0, 1 1

2 o, -i, 0, 2 pp PP 1, 0, 2 1

3 o, -i, 0, 3 ip PP 1, 0, 3 1

4 o, -i, 0, 4 pp PP 1, 0, 4 1

1, -i, -1, 1 pp 2pp
2(1, 0, 1) 2. 1

5 o, -i, 0, 5 PP PP 1, 0, 5 1

6 o, -i, 0, 6 ip PP 1, 0, 6 1

7 o, -i, 0, 7 pp PP
1, 0, 7 1

1,

1,

o, -

o, -

-2, 2

2, -2

I pp 2ip 2 (2, + 1, 4) 2c

8 o, -i, 0, 8 PP PP
1, 0, 8 1

o, -2, 0, 1
pp 2pp

2(1, 0, 2) 2.1

9 o, -1, 0, 9 ip PP
1, 0, 9 1

10 o, - 1, 0, 10
pp pp

1, 0, 10 1

11 o, -1, 0, 11
1

1, 0, 11 1

o, - 2 -1, 1 \pp PP 3, 1, 4 d

o, -2, 1, 1 J 3, - 1, 4 d2

12 o, -1, 0, 12 ip pp 1, 0, 12 1

13 o, -1, 0, 13 pp PP 1, 0, 13 I

14 o, -1, 0, 14
pp PP

1, 0, 14 1



56 TABLES OF THE BINARY CUBIC FORMS [496

ip
PP

PP ip

PP PP

PP pp

ip pp

pp Zpp

Order

Charact. Compn.

1, 0, 15 1

4, + 1, 4 ore

1, 0, 16 1

1, 0, 17 1

1, 0, 18 1

3 (1, 0, 2) 3.1

1, 0, 19 1

> pp pp 4, 1, 5 d

4, - 1, 5 d2

1, 0, 20 1

2 (2, 1, 3) 2c

1, 0, 21 1

1, 0, 22 1

1, 0, 23 1

pp pp 3, — 1, 8 d2

3, 1, 8 d

1, 0, 24 1

2 (2, 0, 3) 2c

1, 0, 25 1

5(1, 0, 1) 5.1

1, 0, 26 1

'PP PP 3, - 1, 9 g2

3, 1, 9 ^

1, 0, 27 1

^ pp 4, - 1, 7 d2

4, 1, 7 d

3(1, 0, 3) 3.1

1, 0, 28 1

2 (2, + 1, 4) 2(7-

Det.

4x Classes

15 o, - 1, 0, 15

1, - 2, 0, 2

1, 2, 0, - 2

16 o, - 1, 0, 16

17 o, - 1, 0, 17

18 o, - 1, 0, 18

1, 1,-2,-2

1, - 1, - 2, 2

19 o, - 1, 0, 19

o, 2, 1, - 2

o, - 2, 1, 2

20 o, - 1, 0, 20

o, - 2, - 2, 1

21 o, - 1, 0, 21

22 o, - 1, 0, 22

23 o, - 1, 0, 23

1, - 1, - 2, 4

1, 1,-2,-4

24 o, - 1, 0, 24

o, - 2, 0, 3

25 o, - 1, 0, 25

1, - 2, - 1, 2

1, 2,-1,-2

26 o, - 1, 0, 26

1, 0, - 3, 2

1, 0,-3,-2

27 o, - 1, 0, 27

o, -2, 1, 3

o, 2, 1, - 3

o, - 3, 0, 1

28 o, - 1, 0, 28

1, 1, - 3, 1

1, -1,-3,-1

PP PP

2ppPP

ip pp

pp pp

%p PP

ip 2pp

pp PP

PP 5pp

PP Zpp

pp PP

PP 2ip
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Det.

4x Classes

29 o, - 1, 0, 29

2, 1,-2,-2

2 -1,-2, 2

30 o, - 1, 0, 30

31 o, - 1, 0, 31

2, 1,-2,-3

2, - 1, - 2, 3

32 o5 - 1, 0, 32

33 o, - 1, 0, 33

34 o, - 1, 0, 34

35 o, - 1, 0, 35

o, 2, 1, - 4

o, - 2, 1, 4

36 o, - 1, 0, 36

o, - 2, - 2, 3

37 o, - 1, 0, 37

38 o, - 1, 0, 38

2, - 2, - 1, 3

2, 2,-1,-3

39 o, - 1, 0, 39

1, 1,-3,-1

1, - 1, - 3, 1

40 o, - 1, 0, 40

o, - 2, 0, 5

41 o, - 1, 0, 41

42 o, - 1, 0, 42

43 o, - 1, 0, 43

o, - 2, 1, 5

o, 2, 1, - 5

44 o, - 1, 0, 44

1, 2,-1,-4

C. VIII.

1, - 2, - 1, 4

Order

VP

vp

■ pp

ip

ip

pp

lip

ip

pp

pp

%p

- pp

pp

pp

pp

pp

• pp pp

pp pp

ip
pp

pp pp

pp

pp

2pp

pp

pp

pp

ip

pp

pp 2pp

pp pp

pp

pp

pp

2ip

Charact.

1, 0, 29

5, 1, 6

5, - 1, 6

1, 0, 30

1, o, 31

5, 2, 7

3, - 2, 7

1, o, 32

1, o, 33

1, o, 34

1, o, 35

4, 1, 9

4, - 1, 9

1, o, 36

2 (2, 1, 5)

1, o, 37

1, o, 38

6, 2, 7

6, - 2, 7

1, o, 39

4, - 1, 10

4, 1, 10

1, o, 40

2 (2, 0, 5)

1, o, 41

1, 0, 42

1, 0, 43

4, - 1, 11

4, 1, 11

1, 0, 44

2 (2, + 1, 6)

Compn.

1

9"

1

1

d

d2

1

1

1

1

2c

1

1

f

g4

l

(re

<re3

1

2. 1

1

1

1

d2

d

1

2cr
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Order

Charact. Compn.

1, 0, 45 1

3 (2, + 1, 3) 3c

1, 0, 46 1

1

*f

1

4. 1

1

1

g4

g2

l

g4

g2

l

4x Classes

45 o, - 1, 0, 45

2, 0, - 3, 3

2, 0,-3,-3

46 o, - 1, 0, 46

47 o, - 1, 0, 47

1, - 2, - 2, 2

1, 2,-2,-2

48 o, - 1, 0, 48

1, - 1, - 3, 3

1, 1,-3,-3

49 o, - 1, 0, 49

50 o, - 1, 0, 50

2, 0, - 3, 2

2, 0,-3,-2

51 o, - 1, 0, 51

o, -2, 1, 6

o, 2, 1, - 6

52 o, - 1, 0, 52

o, - 2, - 2, 5

53 o, - 1, 0, 53

1, - 3, 0, 2

1, 3, 0, - 2

54 o, - 1, 0, 54

1, 2, - 3, 0

1, - 2, - 3, 0

o, - 3, 0, 2

o, 3, 0, - 2

55 o, - 1, 0, 55

1, - 1, - 3, 5

1, 1,-3,-5

56 o, - 1, 0, 56

o, - 2, 0, 7

57 o, - 1, 0, 57

58 o, - 1, 0, 58

ip

on

Spp

pp

pp

pp pp

pp pp

pp
ip

ip
pp

ipppp

pp pp

> pp pp

%p pp

m

pP\ pp

pp)

3pppp

pp pp

pp ip

pp pp

pp 2pp

ip pp

pp pp

i, o, 47

6, 1, 8

6, - 1, 8

1, 0, 48

4 (1, 0, 3)

1, o, 49

1, o, 50

6, - 2, 9

6, 2, 9

1, o, 51

4, - 1, 13

4, 1, 13

1, o, 52

2 (2, 1. 7)

1, o, 53

6, - 1, 9

6, 1, 9

1, o, 54

7, - 3, 9

7, 3, 9

PP pp

pp 2pp 2 (2, 1, 7) 2c

• pp pp 6, - 1, y gr

g4

g4

g2

3 (2, 0, 3) 3c

1, 0, 55 1

4, - 1, 14 o-e3

4, 1, 14 ae

1, 0, 56 1

2 (2, 0, 7) 2e2

1, 0, 57 1

1, 0, 58 1
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OrderDet.

4x Classes

59 o, - 1, 0, 59

o, - 2, 1, 7

2, 1, - 7

60

1,

1,

- 1, 0, 60

0, - 4, 4

0,-4,-4

61 o, - 1, 0, 61

1,

1,

- 2, - 1, 6

2,-1,-6

62 o, - 1, 0, 62

63 o, - 1, 0, 63

0, - 4, 2

0,-4,-2

1,

1,

64 o, - 1, 0, 64

0, - 4, 01,

65 o, - 1, 0, 65

66 o, - 1, 0, 66

67 o,

o,

- 1, 0, 67

- 2, 1, 8

2, 1,-8

68 o, - 1, 0, 68

o, - 2, - 2, 7

69 o, - 1, 0, 69

70 o, - 1, 0, 70

71 o,

1,

1,

- 1, 0, 71

- 3, 1, 3

3, 1, - 3

72 - 1, 0, 72

o,

1,

1,

- 2, 0, 9

- 2, - 2, 4

2,-2,-4

2,

2,

- 3, 0, 3

3, 0, - 3

73 o, - 1, 0, 73

on Charact. Compn.

1, 0} 59 1

> pp pp 4, - 1, 15 j6

4, 1, 15 f

ip pp 1, 0, 60 1

• pp 2ip 2 (2, + 1, 8) 2cr

1, 0, 61 1

► pp pp 5, — 2, 1 3 g2

5, 2, 13 g*

1, 0, 62 1

1, 0, 63 1

4, - 1, 16 ere

4, 1, 16 o-e3

1, 0, 64 1

4(1,0,4) 4.1

1, 0, 65 1

1, 0, 66 1

1, 0, 61 1

>pp pp 4, — 1, 17 d2

4, 1, 17 d

1, 0, 68 1

2 (2, 1, 9) 2e2

1, 0, 69 1

1, 0, 70 1

1, 0, 71 1

8, - 3, 10 a¥

8, 3, 10 ah4

1, 0, 72 1

2 (2, 0, 9) 2c

6 (1, 0, 2) 6.1

3 (3, + 1, 3) 3c

1, 0, 73 1

pp pp

ip pp

pp
ip

pp pp

4:pppp

pp pp

ip pp

pp pp

pp 2pp

ip pp

pp pp

pp pp

pp ip

ip
pp

ip
2pp

pp 6pp

pp 3pp

pp pp

i—2
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Order

on Charact. Compn.

pp pp 1, 0, 74 1

1

• vp pp 4, — i, iy g2

Det.

4x Classes

- 1, 0, 7474 o,

75 o,

o,

o,

- 1, 0, 75

- 2, 1, 9

2, 1, - 9

76 o,

o,

o,

- 1, 0, 76

- 4, 1, 1

4, 1, - 1

77 o, - 1, 0, 77

78 o, - 1, 0, 78

79 o, - 1, 0, 79

2, - 2, - 2, 3

2,-2,-32,

80 o, - 1, 0, 80

81 o,

o,

o,

- 1, 0, 81

- 3, 2, 2

3, 2, - 2

82 o, - 1, 0, 82

83 - 1, 0, 83

o,

o,

- 2, 1, 10

2, 1, - 10

84 o, - 1, 0, 84

o, - 2, - 2, 9

85 o, - 1, 0, 85

86 o, - 1, 0, 86

87 o,

1,

1,

- 1, 0, 87

- 2, - 3, 2

2,-3,-2

88 o, - 1, 0, 88

- 2, 0, 11

89 o, - 1, 0, 89

1,

1,

- 1, - 4, 2

1, - 4, - 2

90 o, - 1, 0, 90

pp pp

pp pp

ip pp

pp pp

pp
ip

pp pp

pp pp

ip pp

ip
2pp

pp pp

pp pp

ip\

pp\ pp

pp)

pp pp

pp 2pp

Charact.

1, 0, 74

1, 0, 75

- 1, 194,

4, 1, 19

1, 0, 76

- 2, 16

2, 16

5,

5,

1, 0, 77

1, 0, 78

1, 0, 79

8,

8,

- 1, 10

1, 10

1, 0, 80

1,

9,

9,

0, 81

- 3, 10

3, 10

94

1

1

1

of'

1

1

pp y, - 5, iu cf

1, 0, 82 1

1, 0, 83 1

> pp pp 4, - 1, 21 j6

4, i, 21 r

1, 0, 84 1

2 (2, 1, 11) 2cr

1, 0, 85 1

1, 0, 86 1

1, 0, 87 1

7, - 2, 13 g*

7, 2, 13 g2

1, 0, 88 1

2 (2, 0, 11) 2cr

1, 0, 89 1

. pp pp 5, - 1, 18 m8

5, 1, 18 m4

ip pp 1, 0, 90 1
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Det.

4x Classes

91 o, - 1, 0, 91

o, - 2, 1, 11

o, 2, 1, - 11

92 o, - 1, 0, 92

2, - 3, 0, 4

2, 3, 0, - 4

93 o, - 1, 0, 93

94 o, - 1, 0, 94

95 o, - 1, 0, 95

1, - 2, - 2, 6

1, 2,-2,-6

96 o, - 1, 0, 96

97 o, - 1, 0, 97

98 o, - 1, 0, 98

99 o, - 1, 0, 99

o, - 2, 1, 12

o, 2, 1, - 12

00 o, - 1, 0, 100

o, -2,-2, 11

1, - 1, - 4, 4

1, 1,-4,-4

1, -3,-1, 3

1, 3, -1,-3

Order

on

i

f pp PP

>PP PP

%p pp

ip pp

PP PP

PP
ip

ip
pp

PP PP

pp pp

%p pp

pp pp

pp 2pp

pp 5pp

lOpp
pp

Charact.

1, 0, 91

4, - 1, 23

4, 1, 23

Compn.

1

9'

g2

1, 0, 92

9, - 4, 12

9, 4, 12

l

9*

92

1, 0, 93 1

1, 0, 94 1

1, 0, 95

6, - 1, 16

6, 1, 16

1

ori7

<ri

1, 0, 96 1

1, 0, 97 1

1, 0, 98 1

1, 0, 99

4, - 1, 25

1

92

4, 1, 25
g4

1, 0, 100 l

2 (2, 1, 13) 2.1

5 (1, 0, 4) 5.1

10 (1, 0, 1) 10.1

Table II. of the binary cubic forms the determinants of which are the positive

numbers = 1 (mod. 4) from — 3 to — 99.

Det.

4x Classes

3 o, 1, 1, 0

1, 0, - 1, 1

1, 0,-1,-1

7 o, - 1, - 1, 1

11 o, - 1, - 1, 2

15 o, - 1, - 1, 3

19 o, -1, -1, 4

Order

pp
ip

pp
ip

ip ip

pp ip

Charact.

2, + 1, 2

2, 1, 4

2, 1, 6

2, 1, 8

2, 1, 10

Compn.

cr

cr

cr

cr
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Det.

4x Classes

23 o, - 1, - 1, 5

1, - 1, - 1, 2

1, 1,-1,-2

27 o, - 1, - 1, 6

1, 1,-2,-1

1, - 1, - 2, 1

2, -1, -1, 2

31 o, - 1, - 1, 7

1, 0, - 2, 1

1, 0,-2,-1

35 o, -1,-1, 8

39 o, - 1, - 1, 9

43 o, -1,-1, 10

47 o, -1,-1, 11

51 o, -1,-1, 12

55 o, - 1, - 1, 13

59 o, -1,-1, 14

1, - 1, - 2, 1

1, 1,-2,-1

63 o, -1,-1, 15

67 o, -1,-1, 16

71 o, -1,-1, 17

75 o, -1,-1, 18

79 o, -1,-1, 19

83 o, -1,-1, 20

1, - 1, - 2, 3

1, 1,-2,-3

87 o, -1,-1, 21

1, - 2, 0, 3

1, 2, 0, - 3

91 o, -1,-1, 22

95 o, -1,-1, 23

99 o, -1,-1, 24

1, 0, - 3, 3

1, 0,-3,-3

Order

Charact.

2, 1, 12

4, -* pp ip

%p ip

' pp Sip

> pp

* pp

>pp

%p

pp %p

ip ip

pp ip

pp ip

ip ip

pp ip

%p

%p %p

pp ip

pp ip

ip ip

pp
ip

ip

%p

' pp

%p

dip

4, 1

2, 1

3 (2:

3 (2:

1, 6

6

14

±1, 2)

2, 1, 16

4, - 1, 8

4, 1, 8

2, 1, 18

2, 1, 20

2, 1, 22

2, 1, 24

9 1, 26

2, 1, 28

2, 1, 30

6, 1, 10

6, - 1, 10

2, 1, 32

2, 1, 34

2, 1, 36

2, 1, 38

2, 1? 40

2, 1, 42

6, - 1, 14

6, 1, 14

2, 1, 44

8, - 3, 12

8, 3, 12

2, 1, 46

2, 1, 48

2, 1, 50

Compn.

a

crd

crd2

±1, 6)

cr

ad

ad2

cr

cr

cr

<T

cr

cr

cr

<rj

crj2

cr

cr

cr

cr

cr

cr

crj2

<rj

cr

<TCf>

cr

cr

cr

3cr
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Table III. of the binary cubic

972, -1228, 1336, -1836 et -

Det.

4x

243

307

339

459

Classes

- 1, 0, 24:3

- 1, - 6, 0

1, - 6, 0

2, 1, —30

3,-2,-5

3, 2, - 8

- 2, 1, 30

- 3, 2, 8

- 3, - 2, 5

- 1, 0, 307

1,-6,-8

- 1, - 6, 8

2, 1, - 38

- 3, - 2, 8

1,-4,-3

- 2, 1, 38

- 1, - 4, 3

3, - 2, 8

- 1, 0, 339

0,-7,-4

0, - 7, 4

2, 1, - 42

0,-5,-4

- 3, - 2, 8

- 2, 1, 42

3,-2,-8

0, - 5, 4

- 1, 0, 459

3, 2, - 16

- 3, 2, 16

2, 1, - 57

4, -3,-4

- 1, 6, 0

- 2, 1, 57

1, - 6, 0

- 4, - 3, 4

- 3, 0, 17

%p

PP

pp

ip

PP

pp

ip

pp

pp )

PP

> PP pp

forms the determinants of which are the negative numbers

• 2700. (- 4 x 675 = - 2700 is beyond Arndt's Tables.)

Order

on Charact.

1, 0, 243

7, 3, 36

7, - 3, 36

4, 1, 61

13, - 2, 19

9, 3, 28

4, - 1, 61

9, - 3, 28

13, 2, 19

I, 0, 307

7, 1, 44

7, - 1, 44

4, 1, 77

II, - 1, 28

17, 4, 19

4, - 1, 77

17, - 4, 19

; 11, 1, 28

1, 0, 339

7, 2, 49

7, - 2, 49

4, 1, 85

pp 15, 6, 25

13, - 5, 28

4, -1, 85

13, 5, 28

15, - 6, 25

1, 0, 459

9, 3, 52

9, - 3, 52

4, 1, 115

pp 19, - 4, 25

13, 3, 36

4, - 1, 115

13, - 3, 36

19, 4, 25

3pp 3 (3, 0, 17)

pp

ip

PP

PP

ip

PP

PPJ

ip

PP

pp

ip

pp

PP

ip

PP

pp )

PP

Compn.

1

d

d2

dx

ddl

d%

d2

ddi2

d2d2

1

d

d2

d1

ddx

d2dx

d2

dd2

d2d2

1

d

d2

dx

dd1

d2d1

a?

dd2

d2d2

1

d

d2

dx

ddx

d2dY

d2

dd*

d2d2

3^



64 [496TABLES OF THE BINARY CUBIC FORMS &C.

4x Classes

675 o, - 1, 0, 675

o, 3, 2, - 24

o, - 3, 2, 24

o, 2, 1, - 168

o, 5,-4,-3

3, - 1, - 6, 0

o, - 1, 1, 168

3, 1, - 6, 0

o, - 5, - 4, 3

Order

%p pp

Charact.

1, 0, 675

Compn.

1

9, 3, 76 d

9, - 3, 76 d2

4, 1, 169 d1

25, - 10, 31 ddx

19, 3, 36 d2d±

4, - 1, 169 d2

19, - 3, 36 dd2

25, 10, 31 d2d2

N.B. For this last determinant — 4 x 675, there may possibly be other cubic classes

based on a non-primitive characteristic ; I have not ascertained whether such forms do

or do not exist.
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497.

NOTE ON THE CALCULUS OF LOGIC.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871),

pp. 282, 283.]

It appears to me that the theory of the Syllogism, as given in Boole's paper,

"The Calculus of Logic/' Gamb. and Dull. Math Jour., t. in. (1848), pp. 183—198,

may be presented in a more concise and compendious form as follows :

We are concerned with complementary classes, X, X' ; viz. these together make

up the universe (of things under consideration), X + X/ = 1 ; viz. X' is the class

not-X, and X the class not-X'.

Any kind whatever of simple relation between two classes (if we attend also to

the complementary classes) can be expressed as a relation of total exclusion, XF=0,

or as a relation of partial (it may be total) inclusion, YX not = 0 ; viz. the relation

XY—0 may be read in any of the forms

No X's are X's,

No 7's are X's,

All X's are not-Fs,

All Fs are not-X's,

and the relation XF not =0 in either of the forms

Some X's are Fs,

Some F's are X's.

I say the above are the only kinds of simple relations ; it being understood that

X' may be substituted for X, or F for F; so that the example X/F=0 (all F's

are X's) is the same kind of relation as XF=0; and X'Y not =0 (some F's are

not-X's) the same kind of relation as XF not = 0.

c. yiii. 9
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Now taking X or X' and Z or Z' for the extreme terms, and 7 or 7' for the

middle term, of a syllogism ; the only combinations of premises are

(1) 17=0, ZY=0.

(2) 17=0, ZY not =0, therefore X'Z not =0.

(3) XY not =0, ZY not =0.

(4) XY = 0, ZF7 = 0, therefore X£ = 0.

(5) 17=0, ZY' not =0.

(6) X7 not =0, £7' not =0.

And of these, there are (as shown by the third column) only two wThich give rise to

a conclusion (or relation between the extreme terms). As regards the negative cases,

this is at once seen to be so; thus 17=0, ^7=0 (no X's are 7's, no Z's are 7's)

leads to no conclusion in regard to X, Z. As regards the positive cases, it is also at

once seen that the conclusions do follow; but we may obtain the conclusions by

symbolical reasoning, thus

(2) Y=YX+ YX', =FX';

therefore ZY=ZYX', not =0; therefore ZX' not =0.

(4) XZ = XZY -{- XZY', where on the right-hand side each term (the first as

containing X 7, the second as containing ZX') is = 0 ; that is, XZ= 0 ; where the

logical signification of each step is obvious.
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498.

ON THE INVERSION OF A QUADRIC SURFACE.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871),

pp. 283—288.]

The inversion intended to be considered is that by reciprocal radius vectors, viz,

if x> y, z are rectangular coordinates, and r2 = x2 + y2 + z2, then x, y, z are to be

changed into — , —2, -. But it is convenient to introduce for homogeneity a fourth

coordinate w, = 1 ; and the change then is x, y, z into -y- , ^-y , —y •

Starting from the quadric surface

(a, b, c, d, f, g, h, I, m, nfyx, y, z, w)2 — 0,

or, what is the same thing,

(a, b, c, f, g, K$x, y, zf

+ 2w(lx + my + nz)

+ dw2 = 0,

the equation of the inverse surface is

w2 {a, b, c, /, g, hjx, y, z)2

+ 2w (Ix + my + nz) r2

+ dr* = 0,

where r2 = x2 + y2 + z2. The inverse surface is thus a quartic having the nodal conic

w = 0, x2 + y2 + z2 = 0 (circle at infinity) ; and having the node x = 0, y = 0, £ = 0 (the

centre of inversion) ; or say it is a nodal bicircular quartic surface, or nodal anallagmatic.

9—2
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For x, y, z write oo—^-^w, y — \-^w, z — \-^w, and put for shortness

Ix 4- my + nz = u, I2 + m2 4- n2 — a,

al 4- hm + gn = &, (a, b, c, f, g, K§1, m, nf = A,

hi 4- bm +fn = b,

^ +/m + era = c,

then

becomes r2 r + J -=- w2,

a a2

ix 4 my + w# „ u — f j w,

(a, ...$>, y, *)2 „ (a, . . .]$>, y, z)2 - (aa? + by + cs) | + \A ~ .

Hence the equation is

rt / 0 uw2 - a Q\ / 1 a

viz. arranging and reducing, this is

cZr4

+ w2j-^r2-^ + (a, ...$^ y, zj

0 f aw 1 , , '

+ J d* -^(a^ + b3/ + C0)

d3 ' 4~ d

and we may without loss of generality assume

+ «" -&;s + i^:s =°;

T^-"' u"aui 1C5 UjJ lll/IU \J

-J +9=0, „
dg — nl = 0.

dh — hn = 0.
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The equation then is

+„j.i|(.+,,+,)+(«_l,).+g_5:)J.+g-l),(

rd4^4 *

Write

We have

that is

and similarly

Hence also

and the equation is

ad — I2 = a'd,

hd - m2 = b'd,

cd —ri2 = old.

Iw? In2 I
•. al+ hm + gn = gn = al+ -y- + -r = -j(ad-l2 + a),

7 , la
a = la + -7 ,

a

Jf ma
b — mo + -T- ,

c —no + -^r .

J. = Z2a' + m26' + r&V + -, ,
a

-•i(-*l^)-+(-*l4')^(-*l+2)"

f la' mV ncf

This is Kummer's form, say
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where

i « a

-«*— *jp+3'

Id
-80, = - #)

87, - m6'

mc'

-8c1=- #.

Hence Rummer's equation

Oj + X2 = + ^ +

X + ax X + /32 X + 7i :

or say

4X + 4a2 4X + 4ft 4X + 4y: '

becomes

~^9 4 /7o , o7/ 0 /N a2 4Z2a2 4m2&/2 4rc2c'2
64X2 - ^ (Pa' + m*V + wV) - ^ = / „ . +—— v +

* *(*!-|'H *(*j-3^) *(**-?+*

which is satisfied by 4\ = — \ -^ . Writing therefore

that is

8X--H~d*'

46>2 40a a3

the equation is

4<92 4<9a 4/79/ ,7/ oA 4^a'2 4m5*'2 4nV2
d*+lp-ds(l2a+^b+n^== 1Af e a>\+ 1A, o b^^re-7-

viz. this is

di{-d-n) di{-d-d) *[-d-d

7o / , 97/ , o / Z) /*>7 ^2 ^2 '^C2
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which is of course satisfied by 0 = 0. Moreover the derived equation

aA1 Pa2 m2b'2 n2d2

(0 + aJ (0 + bJ (0 + cJ

is also satisfied by 0 = 0, so that this is a double root. The equation in fact is

{ffld +0a- (Pa! + m2V + n2cf)} (0 + a) (0 + V) (0 + c)

+ {Pa!2 (0 + 60 (0 + c) + m2b'2 (0 + c) (0 + a!) + tiV2 (0 + a') (0 + 60} = 0,

or, expanding and dividing by 02, this is

d(0 + a')(0 + b')(0 + c')

+ a {02 + 0 (a + 6' + c') 4- 6V + cV + a'6'}

- (Pa! + m26' + wV) (0 + a' + b' + c')

+ Z2a'2 + m26/2 + n2c2 = 0,

which gives the remaining three roots.

If a! = 6' = c' the equation is

(0 + a' + a)(0 + aJ=O.

I recall that we have

, 7 n run nl 7 Im 1
a, 6, c, d, / = -j-i # = ~J> d' ' m' ^

a =a — -19 b =b—r , c=c—f , a = £2 + m2 + ?i2,
■a a d

so that the quadric surface is

d (a!x2 + b'y2 4- cV) + (to + my + nz+ dwf = 0,

and that, alt filf yl9 Sl9 a1} bl9 cl denoting as before, the equation of the inverse surface

(referred to a different origin) is

r4 = 4w2 fax2 + P-y2 + y^2 -H Sxw2 + 2w (a^ + 6^ + c^)}.
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499.

ON THE THEORY OF THE CURVE AND TORSE.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XI. (1871), .

pp. 294—317.]

The fundamental relations in the theory of the Curve and Torse were first

established in my " Memoire sur les Courbes a double courbure et sur les Surfaces

developpables," Liouv. t. x. (1845), [30] see also Camb. and Dubl. Math. Jour., t. iv. (1850),

[83], viz. I showed that the systems (m, r, ft, h, n, y) and (r, n, m, x, a, g), (the notation

is subsequently explained), each of them satisfied the Pltickerian relations. An additional

set of equations giving the values of (y, t, k, q, y\ i', k', q') was furnished by

Dy Salmon's "Theory of Reciprocal Surfaces," Trails. R. I. Acad., t. xxm. (1857), see

also the Solid Geometry. The theory as thus established is complete in itself, but it

does not take account of certain singularities v, co, H, G ; the singularity v was first

considered in my paper " On a special sextic Developable," Quart. Math. Jour. t. vn.

(1865), [373], (there called 6), and I afterwards endeavoured to take account of the remain

ing singularities co, H, G. I was in correspondence on the subject with Prof. Cremona,

and the discovery of the complete forms of several of the formula is due to him.

There has recently appeared a very valuable memoir by M. Zeuthen, "Sur les

singularities ordinaires d'une courbe gauche et d'une surface developpable," Annali d%

Matem. t. in. (1869); he excludes, however, from consideration the singularity co, and

does not throughout attend to H, G.

I propose in the present memoir to reproduce and develope the whole theory.

Explanations and Notation.

1. We have a singly infinite series of points, lines, and planes ; viz. each line

passes through two consecutive points and lies in two consecutive planes; each plane

passes through three consecutive points and contains two consecutive lines; each point
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is the intersection of three consecutive planes and of two consecutive lines. The

points describe and the lines envelope a curve ; the lines describe and the planes

envelope a torse; the entire system of points, lines, and planes is thus the system of

the curve and torse. The curve is the edge of regression or cuspidal curve of the

torse; in regard to the curve the points are points (or ineunts), the lines tangents,

and the planes osculating planes: in regard to the torse the points are points on the

edge of regression, the lines generating lines, and the planes tangent planes.

2. Each line of the system is met by a certain number of non-consecutive lines,

and the locus of the points of intersection (or say the locus of the intersection of

two intersecting non-consecutive lines) is a nodal curve on the torse, or say simply it

is the nodal curve. The plane containing the two intersecting non-consecutive lines

envelopes a torse which is called the nexal torse.

3. There is occasion to consider

m, order of the system ; this is the number o points of the system which lie in

a given plane ; or it is the order of the curve.

r, rank of the system ; this is the number of lines of the system which meet a

given line. It is thus the class of the curve ; and the order of the torse.

n, class of the system ; this is the number of planes of the system which pass

through a given point. It is thus the class of the torse.

a, number of stationary planes ; that is, planes each passing through four consecutive

points of the system.

/3, number of stationary points, that is, points each of them the intersection of

four consecutive planes of the system.

g, number of lines in two planes (that is, lines each of them the intersection of

two non-consecutive planes of the system) contained in a given plane ; or say, number

of apparent double planes of the torse.

G, number of double planes, or tropes, of the torse ; viz. considering the torse as

the envelope of a variable plane, if the plane in the course of its motion comes twice

into the same position, we have then a double plane or trope.

h, number of lines through two points (that is, lines each through two non-con

secutive points of the system) passing through a given point ; or say, number of

apparent double points of the curve.

H, number of double points, or nodes of the curve ; viz. considering the curve as

described by a variable point, if the point in the course of its motion comes twice

into the same position we have then a double point or node of the curve.

od, number of points in two lines (that is, points each of them the intersection of

two non-consecutive lines of the system) contained in a given plane ; or what is the

same thing, order of nodal curve.

y, number of planes through two lines (that is, planes each containing two non-

consecutive lines of the system) passing through a given point; or what is the same

thing, class of the nexal torse.

c. viii. 10
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v, number of stationary lines of the system, that is, lines each containing three

consecutive points of the system.

co, number of double lines of the system, that is, lines each containing two pairs

of consecutive points of the system.

t, number of points on three lines (that is, points each of them the common

intersection of three non-consecutive lines of the system) : these are also triple points

on the curve.

y, number of points of the system, through each of which passes a non-consecutive

line of the system : these are intersections of the curve with the nodal curve, stationary

points on the latter curve.

k, number of apparent double points of nodal curve.

q, class of nodal curve.

tf, number of planes through three lines (that is, planes each of them through

three non-consecutive lines of the system): these are also triple tangent planes of

the torse.

y , number of planes of the system each of them passing through a non-consecutive

line of the system : these are common tangent planes of the torse and nexal torse,

stationary planes of the latter torse.

k', number of apparent double planes of nexal torse.

q'y order of nexal torse.

4. The formulae thus contains in all the 21 quantities

m, r, n, a, /3, g, G, h, H, x, y, v, co || t, y, k, q \ if, y, k'', of.

My own Pliickerian equations, or, say, the Pliicker-Cayley equations, establish in all 6

relations between the first 13 quantities, and thus enable the expression of them in

terms of any seven, say of

m, r, n, G, H, v, co,

and the Salmon-Cremona equations then lead to the expressions in terms of these,

of the remaining eight quantities t, y, k, q, t', y, k', q'.

I also consider

Dm, the deficiency of the curve,

Dx , the deficiency of the nodal curve.

I will first consider the equations themselves, and the mere algebraical transformations

thereof; and afterwards the geometrical theory.
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The Plucker-Gayley Equations.

5. These are found (as will be further explained) by considering first the cone,

vertex an arbitrary point, which passes through the curve; and secondly, the section

of the torse by an arbitrary plane. We have in the two figures

Gone.

m, order,

r, class,

h + H, double lines,

/3, stationary lines,

y + co, double planes,

n + v, stationary planes.

Section.

n, class,

r, order,

g + G, double tangents,

a, stationary tangents,

x + co, double points,

m + v, stationary points.

And hence the two sets of quantities respectively are connected by the Pliickerian

relations, viz. these are

r= m(m-l)-2(h + H)-3/3,

n + v = 3m (m - 2) - 6 (h + H) - 8/3,

y -f co = \m (m — 2) (m2 — 9)

- (wia - m - 6) {2 (A + jS ) + 3/3}

+ 2(h + H)(h + H-l)

+ 6(h + H)/3

+ 1/3 08-1),

m = r (r _ 1) - 2 (2/ + w) - 3 (w + v),

/3 = 3r (r - 2) - 6 (y + ©) - 8 (n + 1/),

/z + ZT=ir(r-2)(r2-9)

-(r»_r_6){2(y + ©) + 3(w + i;)}

+ 2(y + G))(y + w-l)

+ 6 (2/ + co) (n + f)

+ f(rc + v)(n + i/-l),

n + v — /3 = 3 (r — m),

y + co — A — H = J (V — m) (r + m — 9),

4 (r - 1) (r - 2) - (y + co) - (% + v)

= J (m— l)(m— 2)

-(A + JH)-&

n = r (r — 1) — 2 (# + w) — 3 (m + v),

a = 3r (r - 2) - 6 (a? + co) - 8 (m + 1/),

# + 6r = £r (r - 2) (r2 - 9)

-(r2-r-6){2(x + co) + S(m + v)}

+ 2 (a? + co) (x + &) - 1)

+ 6 (# + &)) (ra + u)

+ f (m + u)(m + v — 1),

r= rc(w_l)-2($r + ff)-3a,

m + v = &i 0 - 2) - 6 (# + (7) - 8a,

^ + ft, = i?z(^-2)(?22-9)

_(ro»_w_6){2(flr+G)+3a}

+ 2(<7 + G)(# + £-l)

+ 6(#+£)a

+ |a(a-l),

a — (m + f) = 3 (n — r),

g+ G-(x + co) = ±(n-r)(n + r- 9),

J (r - 1) (r - 2) - (x + ft)) - O + 1/)

= i(n-l)(^-2)

-(#+£)-«,

10—2
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and combining the two systems

/3 = a + 2 (m — n),

y = x + (m — ft),

h + H =g+G+±(m-ri)(m + n-7),

i(m-l)(m-2)-(A + jy)-/9 = i(n-l)(n-2)-(g + G) -a,

l(r -l)(r -2)-(^ + ft))-(m + u) = i(r-l)(r-2)-(2/+o))-(w + i;).

6. Taking as data r, m, ft, 6r, if, u, ft), we find very easily

h = $(m*-10m-3n + 8 r - 3u - 2H),

g = l(ft2 -i0w-3m + 8r-3i;-2(?),

# — 1 (r2 _ r — ft — 3m — 3t> — 2co ),

y = ^(y2 — r— m — 3 n — Sv — 2co ),

a = m — 3r + 3 ft + v ,

/3 = . 72 — 3r + 3m + v

The Salmon-Cremona Equations.

7. These are

m (r - 2) = 2ft + 4/3 + y + 4u + 4© + 4#,

a? (r~2) = n(r-4) + 2^ + 37 + 3^ + u(3r-14) + o)(2r-10) + 12ir,

a? (r - 2) (r - 3) = ft (x - 2r + 8) + Smx + 4& - 3a - 9/3 - 67

+ v (3a? - 6r + 18) + © (2a? - 4r + 8) - 12#,

? = ^_0-2&-3y-6*-3i/(r-6)-2©(r-8)-2G-18£r,

{=r(^_3)-3a-2G},

and

a, (r - 2) = 2m + 4a + 7 + 4u + 4© + 4(2,

2/ (r-2) = m(r-4) + 2a+37, + 3^ + i;(3r-14) + ft)(2r~10) + 12©,

3/ (r - 2) (r - 3) = m(y-2r + 8) + Sny + 4&' - 3/3 - 9a - 67

+ 1/ (3y - 6r + 18) + © (2y - 4r + 8) - 12£,

q' = ys-y- 2k' - 3y' - 6*' - 3u (r - 6) - 2co (r - 8) - 2H- 180,

{=r(m-3)-3/3-2#},

where the second values of q, q' respectively are reduced forms obtained by the aid

of the foregoing Pltickerian relations.

8. Expressing these in terms of r, m, ft, G, H, v, co, we obtain

y = rm + 12r — 14m — 6ft — Sv — 4© — 4if,

t = 1 [r3 - 3r2 - 58r - Sr (n + 3m + Sv + 2©) + 42ft + 78m + 78v + 48©],

k = 1 [r4 - 6r3 + llr2 + 66r - (2r2 - lOr) (n + 3m + 3u + 2©)

+ (ft + 3m + Sv + 2©)2 - 58^ - 126??* - 126u - 76© - 24#],

q = rft 4- 6r — 3m — 9ft — 3u — 2©,
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and

y = rn 4- 12r — 14% — 6m — Sv — 4© — 4$,

£' = i [r3 - 3r2 - 58r - Sr (m -f 3w 4- Sv + 2©) + 42m 4- 7Sn + 78v + 48©],

&' = i [r4 - 6r3 + llr2 + 66r - (2r2 - lOr) (m + 3% 4- Sv + 2©)

4- (m 4- 3% + 3u + 2©)2 - 58m - 126% - 126u - 76© - 24tf],

^ — rm + 6r — 3% — 9m — 3i> - 2if.

9. We have thence

y _ 7 = - (r - 8) (m - w) - 4 (£ - if),

t' — t = (r — 6)(m — n),

q'-q = (r - 6) (m - %) + 2 (6? - #),

M - & = J (m - n) (r2 - 5r - 2m - 2% - Sv - 2© 4- 17) - 3 (G - jB)

= i (m - n) (x 4- y - 4r + 17) - 3 (G - 5).

10. Instead of obtaining the above values of 7, t, k, q directly it is convenient

to verify them by substitution in the equations from which they were obtained; viz.

writing for shortness n 4- 3m 4- Sv 4- 2© = P, these may be written

- m (r - 2) 4- 2n + 4/3 4- 4u 4- 4© 4- 4<H 4- 7 =0,

-2^(r-2) + 2r(P-3m)-8%+4^-28u-20ft)+67+24JHr + 6^ =0,

- 2% (r2 - 5r 4- 6 - P) - 4 (r - 4) % - 18/3 - 127 - 6a 4- 36u 4- 16© - 24ff

- 4r (- n - Sm 4- P) 4- 8& = 0,

- 4g+ 2«(2« - 2) - 8fe - 8(?- 4r (- w- 3m + P) + 72i; + 64© -127- 24^-72^=0,

which are to be satisfied by

7 = rm + 12r — 14m — 6n — 8u — 4© — 4U,

£ = 1 [r3 - 3r2 - 58r - SrP + 42?i + 78m 4- 78u + 48©],

k = 1 [r4- 6r3 + llr2+ 66r- (2r2 - 10r)P + P2 - 58n - 126m - 126u - 76© - 245],

^ = m 4- 6r — 3m — 9% — Sv — 2Cr,

a? = \ (r2 — r — P),

a = m — Sr 4- 3?z 4- v,

ft = n — Sr + 3m 4- f,

P = 71 4- 3m 4- 3v 4- 2©.

11. We have, in fact, first

— mr 4- 2m
^

+ 2n

4- 12m 4- 4% — 12r 4- 4t>

4-4u

4- 4©

+ 4ff

4- mr - 14m — 6n 4- 12r — 8i> — 4© — 4iZ

= 0,



78 ON THE THEORY OF THE CURVE AND TORSE. [499

secondly

-r3 + 7-2 + rP

+ 2r2- 2r - 2P

+ 2rP — Qmr

- 8/1

- 12r + 4?i + 12m 4- 4u

-28u

+ 72r + 6mr - 36?i - 84m - 48u - 24© - 24IT

+ 24#

+ r3 - 3r2 - 58?^ - 3rP + 42w + 78m + 78u + 48©

that is - 2P + 2rc + 6m + 6u = 0,

thirdly

— r4 + 5r3 — 6r2

+ rs_ 5r2+ 6r + P(2r2-6r+6)-P2

— 4r?2 + 16w

+ 54r - 187i - 54m - 18v

- 144r - 12rm + 72n + 168m + 96t> + 48© 4- 48#

+ 18r — 18n — 6m — 6v

+ 36u

+ 16©

-24F

+ P (— 4r) + 12rm + 4ni

+ r4 __ 6rs + llr2 + 66r + p (- 4r2 + lOr) + P2 - 58?i - 126m - 126u - 76© - 24J?

that is QP - 6?i- 18m- 18v - 12© - 24# = 0,

and lastly

- 24r -4<rn + 12???,+ 36^+ 12t/ +8G

+ r4_2r3- r2+ 2r+P(-2r2+ 2r+2)+P2 +126m+ 58ti+126u+ 76©+24£T

_r4+6r3_llr2_ 66r+p( 2r2-10r )-P2 -8G

+P( - 4?^ ) +4m+12rm + 72u+ 64©

-144?* -12rm+168m+ 72n+ 96v+ 48©+48i?

~4r3+12r2+232r+P( 12r ) -312m-168?i-312u-192a>-72i7

that is 2P - 6m- 2n- 6v- 4© =0,

which completes the verification.
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12. The deficiency of the curve m is given by the equation

2Dm = r-2m+2 + &

or substituting for /3 its value = n — Sr + 3m + u, this is

Wm = m + n - 2r + v + 2.

The deficiency of the nodal curve x is given by

2D,. = q - 2^? + 2 + 7 + i; (r - 6) + 2#,

which, substituting for q, x, and y, the values

r%4- 6r— 3m — 9% — 3v — 2G,

i (r2 __ r_ n _ 3m __ 3j, _ 2(w),

rm + 12r — 14m — 6n — Sv — 4« — 4ff,

respectively, becomes

2D^ = (r - 14) (m + n + v) - r2 + 19r + 2 - 2o> - 2(7 - 2# ;

whence, also, writing herein m + n + v = 2Dm + 2r — 2, we have

2Ds - 0 - 14) . 2Dm = (r - 5) (r - 6) - 2co - 2G - 2H,

a relation between the two deficiencies.

Geometrical Theory of the foregoing Relations.

13. In considering the geometrical theory, we have to speak of the original curve,

or curve of the system, and also of the nodal curve ; it will be convenient to call them

the curve m and the curve x respectively. I speak of the torse absolutely, to signify

the torse of the system, as in what follows there is not the like occasion to speak

of the nexal torse. I speak also of a plane a, meaning thereby any one of the

stationary planes, the number of which is = a ; and so of a line a, meaning the line

in the stationary plane a; and a point a, meaning the point of contact of such line

with the curve m ; or in the plural, the planes a, lines a, &c. And so in other cases ;

thus we have the stationary tangents v, and the points vy which are the points of

contact hereof with the curve m. As regards a double tangent co, we have here two

points of contact; one of these separately would be a point co; and we may speak

of the points (or pair) 2co, meaning thereby the two points of contact of the same

tangent co; or of the points 2&>, meaning the system of the 2co points of contact of

the tangents co.

14. Observe that the expressions, the planes a, lines a, &c, have an absolute

signification; there are other such expressions which have only a relative signification,

in regard to the system considered in connexion with a given point, line, or plane,

as the case may require. Thus the expression, the lines g} must be understood of

the system in connexion with a given plane, to signify the lines in two planes con

tained in the given plane; the planes g, points g, wrould of course mean the planes

or points of the system belonging to the lines g.

In particular the points m are the points of the system which lie in a given

plane, the lines r are the lines which meet a given line ; the planes n are the planes
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which pass through a given point. There will be occasion to speak, not only of the

planes n, but also of the lines n and points n ; these are of course the lines and

points in the planes n.

15. It is to be remarked that, considering the torse as a surface, the nodal curve

thereof is made up of the curve x and of the double lines co (or its order is

= x + co) ; the cuspidal curve is made up of the curve m, and of the stationary lines v

(or its order is = m + v).

The Plucker-Cayley Equations.

16. The mode of obtaining these equations has already been indicated. We in

fact consider the system in connexion with an arbitrary point, and with an arbitrary

plane. The point is the vertex of a cone passing through the curve m, and this cone

is of the order m, the class r, with h + H double lines, ft stationary lines, y + co double

tangent planes, and n + v stationary tangent planes ; viz. the order of the cone is

equal to the number of lines in which this is intersected by a plane through the

vertex ; but each of these is determined as the line joining the vertex with an inter

section of the plane by the curve m, and the number of them is thus —m. The

class of the cone is equal to the number of the tangent planes which can be drawn

through an arbitrary line through the vertex ; but this is in fact the number of lines

of the system which meet the arbitrary line, viz. it is —r. Again, any line drawn

from the vertex to meet the curve twice, and also any line drawn to one of the

points H, is a double line of the cone, that is, the whole number of double lines is

= h + H. A line from the vertex to one of the points /3 is a stationary line of the

cone ; the number of these is = ft. A plane through the vertex, and containing two

tangents of the curve m, or containing a double tangent co, is a double tangent plane

of the cone, the number of these is thus = y + co. A plane through the vertex, which

is also a plane of the system, is a stationary tangent plane ; in fact, we have here

on the curve m three consecutive points lying in a plane with the vertex, the

tangent plane of the cone is the plane through the vertex, and the first and second

of the points on the curve ; but this is also the plane through the vertex, and the

second and third points, or the plane is a stationary tangent plane. But the plane

through the vertex and the tangent v is also a stationary tangent plane of the cone ;

and the number of stationary tangent planes is thus = n + v.

17. Similarly for the section by the arbitrary plane; this is a curve of the order

r and class n with x + co double points, m+v stationary points, g + G double tangents,

and a stationary tangents. In fact, the order of the curve is equal to that of the

torse ; that is, to the number of lines which meet an arbitrary line, or = r. The

class of the curve is equal to the number of tangents which pass through an arbitrary

point of the plane ; or, what is the same thing, the number of planes of the system

which pass through this same arbitrary point, viz. it is = n. Each point of the plane

which is the intersection of two lines of the system, and also each intersection of the

plane by a line co, is a double point of the curve ; viz. the number of these is

= x + co. Each intersection with the curve m, and also each intersection with the

tangent v, is a stationary point of the curve ; viz. the number is = m + v. Each line
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in the plane, which is the intersection of two planes of the system, and also each

intersection of the plane with a double tangent plane G, is a double tangent of the

curve; viz. the number is = g+G. And, finally, each intersection of the plane with

a stationary plane a is a stationary tangent of the curve ; viz. the number of these

is =a.

We have thus the Pltickerian relations as above between

m, r, h 4- H, /3, y + co, n+v,

n, r, g + G , a , x 4- co, n -f v.

and between

Zeuthens Tables.

18. The vertex of the cone and the plane of the section may occupy special

positions. We have a table given by Zeuthen, but which I have completed so far as

regards the double lines co as follows:

Cone through the Curve.

Stationary

lines

Double tan

gent planes

Stationary

tangent planes
Vertex Order Class Double lines

1 Arbitrary m r

h

+ H
P

y n

2 On a tangent m r-1

h-l P 2/ — r + 4 w-2

+ i + 0)

3 On the curve m - 1 r-2

h-m + 2

+ H
p

y-2r + 8

+ w

w — 3

+ v

4 At a point H m- 2 r — 4

h-2m+6

+ H-1
P

y- 4r + 20 n— 6

+ v

5 At a point ft m — 2 r-3

h-2m + 6

0-1
y-3r + 13 w - 4

+ C0 + V

6 On stationary tangents m r-2

A-2 P y — 2r + 9 w- — 3

+ 2 + C0 + V-1

7

At point of contact of

ditto
m— 1 r-3

A-m+ 1 P y- 3r + 14 n — 4:

+ 1 + v - 1

8 On double tangent w m r-2

/*-2
P 2/- 2r + 10

+ w— 1

71-4

+ 2 + v

9

At point of contact of

ditto

m— 1 r-3

A — m + 1 2/-3r+ 15 71-5

+ 1 + w- 1

C. VIII.
11



82 [499ON THE THEORY OF THE CURVE AND TORSE.

Plane Section of the Torse.

Double Stationary

tangents

Double

points

Stationary

points
Plane Class Order

tangents

1 Arbitrary
9

+ G

m

n r a

+ C0 + v

9-1 a

+ 1

a; — r + 4

+ a)

m— 2

2 Through a tangent n T— 1

+ G

g — n + 2 as - 2r + .8 771 —'3

3 A tangent plane n-\ r-2 a

+ 0) + V

A double tangent plane

G

# — 2r&+ 6

+ G-1

x - 4r + 20 m- 6

4 n-2 r-4 a

+ 0) + x;

A stationary tangent

plane a

# - 2^+6 a-3r + 13 m — 4

5 n-2 r-3 a-1

+ 0)

Through stationary

tangent v

0-2 a # - 2r + 9 m — 3

6 n r — 2

+ 2 + 0) + V-1

Tangent plane at con

tact of ditto

# - n + 1

+ G

a

+ 1

x — 3r + 14 m — 4

7 n- 1 r — 3

+ 0) + V-1

Through double tan

gent CO

g-2 a cc-2r + 10
■ m — 4

8
n r — 2

+ G + 2 + CO— 1 + V

A tangent plane at one

of contacts of ditto

g -n+\ a

+ 1

x- 3r + 15

+ co- 1

m — 5

9
n — \ r— 3

+ G + V

19. To avoid confusion with the geometrical term line, I will speak (not of the

lines, but) of the cases of these tables; the numbers in each case satisfy the foregoing

Pliickerian relations. To fix the ideas, I attend to the second table. We require to

know in each case, say the numbers in the (n, r, a) columns; these being known, the

other three numbers will be determined.

20. First for the n column ; for the Cases 2, 6, 8, the plane is not a tangent

plane; the number of tangent planes which pass through a fixed point in the plane

is still —n. For Cases 3, 7, 9, the plane is a tangent plane, it therefore counts 1

among the tangent planes which pass through a fixed point thereof; and the number

of the remaining tangent planes is = n — 1. And so for Cases 4 and 5, the plane

counts for 2 among the tangent planes which pass through a fixed point thereof, and

the number of the remaining tangent planes is = n — 2.
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21. Next as to the r and a columns.

Case (2). The plane passes through a generating line, and therefore besides cuts

the torse in a curve of the order r - 1 ; this generating line is a stationary tangent

cutting the curve r — 1 in the point of contact with the curve m, counting 3 times

(in all a + 1 stationary tangents), and in r — 4 other points.

Case (3). The plane cuts the torse in the generating line counting twice, and

in a curve of the order r — 2 ; the generating line is in regard to this curve an

ordinary tangent at the point of contact with the curve m (so that the number of

stationary tangents remains = a), and besides cuts the curve in r — 4 points as in

Case 2.

Case (4). The plane cuts the torse in two generating lines, each counting twice,

and in a curve of the order r — 4 ; each of the generating lines is in regard to this

curve an ordinary tangent at the point of contact with the curve m (number of

stationary tangents remains = a), and besides cuts the curve in r — 6 other points.

Case (5). The plane cuts the torse in a generating line counting 3 times, and

in a curve of the order r — 3; the generating line is in regard to this curve an

ordinary tangent at the point of contact with the curve m, and besides cuts it in

r — 5 points. The plane being in the present case a plane a, its intersections with the

remaining planes a, give the a — 1 stationary tangents.

Case (6). The plane meets the torse in a generating line counting twice, and in

a curve of the order r — 2 ; the generating line is in regard to the curve a singular

tangent meeting it in the point of contact with the curve m, counting 4 times, and

besides meeting it in r — 6 points. The generating line in respect of this four-pointic

intersection counts as a stationary tangent twice ; and the number of stationary tangents

is = a + 2.

Case (7). The plane meets the torse in the generating line counting 3 times,

and in a curve of the order r — 3 ; the generating line is in regard to this curve a

stationary tangent at the point of contact with the curve m, counting 3 times, and

besides meeting it in r — 6 points as in Case 6. The whole number of stationary

tangents is thus = a + l.

Case (8). The plane meets the torse in a generating line counting twice and in

a curve of the order r— 2. The generating line is in respect of the curve a stationary

tangent at each of the points of contact with the curve m, viz. each of these points

counts 3 times, and there are besides r — 8 intersections. Moreover, the generating line

counting as 2 stationary tangents, the whole number of stationary tangents is = a + 2.

Case (9). The plane meets the torse in a generating line counting 3 times, and

in a curve of the order r — 3. The generating line is .in respect of the curve an

ordinary tangent at one of the points of contact with the curve m (viz. the point

at which the plane is a tangent plane of the torse), so that we have here two inter

sections; and it is a stationary tangent at the other of the points of contact with

the curve m (viz. the point at which the plane is not a tangent plane of the torse),

11—2
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so that there are here 3 intersections ; there are therefore r — 8 other intersections.

The generating line reckons once as a stationary tangent, and the whole number of

stationary tangents is = a + l.

22. The r — 6 points in Cases 6 and 7 are the points of intersection of the

stationary tangent v by other tangents of the curve m ; and so the r — 8 points in

Cases 8 and 9 are the points of intersection of the double tangent co by other

tangents of the curve m ; these numbers r — 6 and r — 8 will present themselves in

the sequel.

We may as to the a-column sum up by saying, that in Cases 2, 7, 9 there is a

generating line which reckons as a stationary tangent ; in Case 6 a generating line,

which, in respect of 4 consecutive intersections, reckons as two stationary tangents ; and

in Case 8 a generating line, which, in respect of two pairs of 3 consecutive inter

sections, reckons as two stationary tangents.

In the (x + co) and (m -f- f)-columns, observe that in Cases 6, 7, 8, 9, we have

in the first two co, v — 1, and in the last two © — 1, v ; viz. these numbers refer to

the intersections of the plane with the tangent co, v respectively; the actual numbers

] and ( -, ) , &c are eq ual for the Cases 6 and 8, and also for the

+ co J V +©-1 / ^

Cases 7 and 9. So in the g + 0 column in Case 4, we have 0—1 for G.

The Nodal Curve x ; Intersections with the Curve m; and Singularities.

23. The intersections of the curve m with the nodal curve x, are points

a, /3, 7, H, v or co.

24. At a point a, four consecutive points of the curve m lie in a plane ; the

point may be considered as the intersection of two consecutive tangents, viz. of the

line through two consecutive points with that through the next two consecutive points;

and it is thus a point on the curve x. We may imagine the points A, A' starting

from a in opposite directions along the curve m, and moving in such manner that

the tangents at these two points respectively continually intersect; we have thus a

portion of the curve x, proceeding apparently in one direction only from the point a;

and being, as regards the portion in question, an intersection of two real sheets of

the torse; that is, a crunodal curve. The curve x, however, really extends in the

opposite direction from a, but it is as to this portion thereof an intersection of two

imaginary sheets of the torse ; that is, an acnodal curve. The nodal curve x thus

meets the curve m in the several points a, the curve x, each time that it passes

through such a point of intersection, changing its character from crunodal to acnodal.

The two half-sheets (1) of the torse cross each other in the crunodal portion, extending

1 In a curve (plane or twisted), the portions extending each way from a cusp (and considered without

reference to a termination) are called half-branches ; and so in a surface which has a cuspidal curve, or in

particular, in a torse, the portions extending each way from the cuspidal curve (and considered without

reference to a termination) are called half-sheets. In the case of higher singularities of a like nature, we

may speak of a partial branch or partial sheet (as the case may be).
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in one direction from the point a of the nodal curve ; and the acnodal portion

extends in the opposite direction from the same point.

25. A point ft, or stationary point (cusp) on the curve m, is the intersection

of four consecutive osculating planes ; and it is thus a point of intersection of two

consecutive tangents (viz. of the line of intersection of two consecutive osculating

planes, and of that of the next two consecutive osculating planes), consequently a point

on the curve x. We may imagine the points B, B' starting from ft, and moving

along the two half-branches of the curve m, in such manner that the tangents at the

two points respectively continually intersect. We have thus a portion of the curve xy

proceeding apparently in one direction only from the point ft (and having at this

point a common tangent with the curve m), and being as regards this portion thereof

an intersection of two real sheets of the torse ; that is, a crunodal curve. The curve x,

however, really extends in the opposite direction from the point ft, but it is as to

this portion thereof an intersection of two imaginary sheets of the torse ; that is, an

acnodal curve. The nodal curve thus meets the curve m in each of the points ft,

the curve x, each time that it passes through such a point, changing its character

from crunodal to acnodal. There are at ft three partial sheets of the torse ; viz. if

we imagine at this point the half-tangent b in the sense of the two half-branches of

the curve m, and the half-tangent V in the opposite sense, then we have through V

and one of the half-branches a partial sheet, and through V and the other half-branch

a partial sheet; these two partial sheets touching along V, and intersecting in the

crunodal portion of the curve x; and a third partial sheet through b and the two

half-branches of the curve m.

26. At a point 7 on the cuspidal curve m, we have, traversing the curve and

the two half-sheets which meet along it, another sheet of the torse, meeting the two

half-sheets respectively in two half-branches, which are a portion of the nodal curve x,

and which unite together (as at a cusp), in the point 7, which is thus a cusp or

stationary point on the curve x.

27. A point H is the intersection of two branches of the cuspidal curve rn.

There are for each branch two half-sheets ; and we have thus at the point H four

(say) quarter-branches of the curve x, touching each other at the point (viz. the

common tangent is the intersection of the osculating planes belonging to the two

branches of the curve m respectively). I find in a special manner that in regard to

the curve x a point H is equivalent to six double points, plus two stationary points;

it thus causes a reduction 2*6 + 3*2 = 18 in the class of the curve.

28. The nodal curve x has in each of the double tangent planes Q an actual

double point. In fact the plane is an osculating plane of the curve m at two points

thereof; that is, it contains two consecutive tangents R, R\ and two other consecutive

tangents S, S' ; hence RS is a point on the nodal curve x; and not only so, but

this is an actual double point, the two tangents being R and S; for since R is met

by 8 and S', there is a consecutive point on the line R ; that is, R is a tangent ;

and similarly since 8 is met by R and R! there is a consecutive point on the line 8 \

that is, 8 is also a tangent.



86 ON THE THEORY OF THE CURVE AND TORSE. [499

29. At a point v the tangent has with the curve x a 3-pointic intersection

(whence also the tangent is a stationary tangent v in regard to the curve x), the

curves m and x have also a 3-pointic intersection at v.

30. At each of the two points co the tangent has with the curve x a 3-pointic

intersection (viz. the tangent is in regard to the curve x more than a double

tangent co, instead of two 2-pointic intersections, or ordinary contacts, there are two

3-pointic intersections ; I am unable to perceive this directly, but accept it on other

grounds). But as at each of the points co the intersection of the tangent with the

curve m is 2-pointic, the intersection of the curves x and ra is only 2-pointic.

31. The curves m and x meet in the points a each once, /3 each 3 times,

7 each twice, v each 3 times, 2co each twice, and H each 8 times : we have thus

a + 3/3 + 2y + Sv + 4« + SH

for the number of actual intersections of the two curves ; and the number of apparent

intersections is therefore

= mx — a — 3/9 — 27 — Sv - 4« - SH,

a result which is required in the sequel.

32. Consider the cone (vertex an arbitrary point) through the curve x, or say

simply the cone x.

Each line n {qua ordinary line of the system) is met by r — 4 other lines, the

r — 4 points being situate on the curve x ; the line n at each of these points touches

the cone x, and it therefore besides intersects it in x — 2r + 8 points.

33. A line v meets the curve x in the point v counting 3 times, and in r — 6

points each a stationary point of the curve ; it consequently meets the cone x, in the

point v counting 3 times, in each of the r — 6 points counting twice, and besides in

x — 2r + 9 points.

34. A line co meets the curve x in the two points co each counting 3 times,

and in r — 8 points each an actual double point of the curve ; it consequently meets

the cone x in the two points co each counting 3 times, in the r — 8 points each

counting twice, and besides in x — 2r + 10 points.

35. Each of the r — 8 points in which the double tangent co meets another

tangent of m is an actual double point of the curve x ; and each of the r — 6 points

in which a stationary tangent v meets another tangent of rn is a stationary point or

cusp on the curve x. We have thus as singularities of the curve x, the k apparent

double points, G actual double points, co (r — 8) ditto, t triple points, H 4-branch

cuspidal points, 7 stationary or cuspidal points, v (r — 6) ditto. In regard to the effect

upon the class of the curve x, each of the points t is equivalent to 3 double points

and produces a reduction = 6 ; each of the points H is equivalent to 6 double points

+ 2 cusps, and produces a reduction 2*6 + 3'2 =18, as already mentioned. We have

thus the relation

q = x (x - 1) - 2k - 2G - Sv (r - 6) - 2co (r - 8) - 37 - 6t - 1SH,

which is one of the Salmon-Cremona equations.
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36. The stationary points of the curve x are the points 7, the v (r — 6) points,

and the points H, each counting as 2 stationary points ; that is, we have

2Dx = q-2x + 2 + y + v(r-6) + 2H9

used above for finding the value of the deficiency Dx.

The remaining Salmon-Cremona Equations.

37. The formulae for m (r — 2), x (r — 2) and x (r — 2) (r — 3) correspond to those for

0 (ft — 2), 6 (n — 2) and b (ft — 2)(n — 3) in the case of a general surface (Solid Geometry,

2nd Ed., Nos. 522 and 525 [4th Ed., Nos. 610, 613]), being obtained as follows; con

sidering as before the cone, vertex an arbitrary point, which passes through the curve m,

the total number of lines hereof which have with the torse a 3-pointic intersection at

the curve m is = m (r — 2) ; and, similarly, considering the cone, vertex the same arbitrary

point, which passes through the curve x, the total number of lines hereof which have

with the torse a 3-pointic intersection at the curve x is = x (r — 2) ; viz. these numbers

m (r — 2) and x (r — 2) are the numbers of the intersections of the two curves respec

tively with the surface of the order (r — 2), which is the second polar of the arbitrary

point in regard to the torse. And so also in the cone, vertex the arbitrary point, which

passes through the curve x, the total number of lines which touch the torse at a point

not on the curve x is = x (r — 2) (r — 3) ; viz. this is obtained by Salmon, the number

of intersections of the curve x with a certain surface of the order (r — 2)(r — 3) (Salmon,

Nos. 269 and 273, writing r for n), but in a preferable manner by Cremona thus ;

the cone through the curve x meets the torse in the curve x counting twice and in

a residual curve of the order x (r — 2) ; the lines in question are the tangents from

the vertex to this curve, which is a curve meeting each line of the cone r — 2

times; we may on the surface of the cone metrically, as in the plane, construct the

polar of the vertex in regard to the curve of the order x (r — 2) ; viz. we have thus

on the cone a curve meeting each generating line (r — 3) times ; and this polar curve

meets the curve of the order x(r— 2) in x(r— 2) (r — 3) points (this would be clearly

the case if only the curve of the order x (r — 2) were the complete intersection of the

cone by a surface of the order r — 2, for then the polar curve would be the intersection

of the cone by the polar surface of the order r — 3 ; but in the case in hand, where

this is not so, some additional considerations would be required in order to sustain the

result), and we have thus the number x(r — 2) (r — 3) of the lines in question.

38. I consider the second polar surface, order r — 2, which belongs to a given

arbitrary point. Any point on the torse, such that the line joining it with the

arbitrary point cuts the torse 3-pointically at the point on the torse, is a point on

the second polar r — 2. Such points are, as will be shewn, the points n, n(r — 4),

/3, 7, v, 2co, i/(r-6), ®(r-8), t, H.

39. We may consider through any such point and the arbitrary point either a

particular section of the torse or any section whatever. If the line joining the two

points has at the point in question a 3-pointic intersection with the section, then it

has a 3-pointic intersection with the torse, viz. the point possesses the required
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property. For the points n and n (r — 8), the plane may be taken to be the osculating

plane of the curve m. This meets the torse in the line n twice, and in a curve of

the order r — 2 touching this line at the point n and meeting it in the r — 4 points.

Hence, considering the complete section made up of the line twice and the curve of

the order r — 2, the line from the arbitrary point to the point n or to any one of

the r — 4 points meets the section 3-pointically ; viz. the lines to the points n and

to the points n (r — 4) meet the torse 3-pointically.

40. For the points /3; we may consider any section through the arbitrary point

and /3; in effect any section through the point fi. A plane section through a point ft

has at this point an invisible triple point, that is a point not in appearance differing

from an ordinary point of the curve, but which by considering a consecutive position

of the plane of section is seen to be equivalent to a double point and two cusps ;

viz. the node is a point of intersection of the plane with the curve x, the cusps are

the two intersections with the curve m, in the neighbourhood of the point /3. The

line from /3 to the arbitrary point has thus with the torse a 3-pointic intersection at /3.

41. Similarly for the points 7; we take any section through the arbitrary point

and 7; in effect any section through the point 7. The section through a point 7

has at this point a triple point, at which an ordinary branch passes through a cusp,

and thus equivalent to a cusp + 2 nodes ; in fact, for a consecutive position of the

cutting plane, the section has actually a cusp and two nodes ; the cusp at the inter

section of the plane with the curve m, the nodes at the two intersections of the

plane with the curve x in the neighbourhood of the cusp 7. The line through the

point 7 has thus a 3-pointic intersection with the torse.

42. For a point v I consider the section through the tangent v\ this is made

up of the tangent twice, and of a curve of the order r — 2 having with the tangent

a 4-pointic intersection at the point v, and besides meeting it in r — 6 points. Hence

in the plane, a line through v, or through one of the r — 6 points has at such point

a 3-pointic intersection with the curve. And thus the lines through the points v

and v(r— 6) respectively have a 3-pointic intersection with the torse.

43. Similarly for a point co, I consider the section through a tangent co ; this is

made up of the tangent twice, and of a curve of the order r — 2 having with the

tangent a 3-pointic intersection at each of the points co, and besides meeting it in

r — 8 points. Hence in the plane a line through either of the points co or through one

of the r — 8 points has with the curve a 3-pointic intersection, and thus the lines

through the points 2co and a> (r — 8) respectively have a 3-pointic intersection with

the torse.

44. For a point H I consider any section through the arbitrary point and H;

in effect any section through H. There is at If a singularity = 6 nodes + 2 cusps.

But a line through H in the plane of the section cuts the section in 4 points only;

that is, the line from the arbitrary point to H has with the curve a 4-pointic inter

section at H) and a fortiori it may be regarded as a line of 3-pointic intersection.

The lines to the points H have thus a (4-pointic, that is, more than) 3-pointic inter

section with the torse.
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45. For a point t I consider any section through the arbitrary point and t; in

effect any section through t; there is at t a triple point, and the line through t has

thus a 3-pointic intersection at t. Hence a line through t has 3-pointic intersections

with the torse.

46. The several points above referred to lie on the curve m or on the curve x,

or on both of these curves ; and each curve has at these points respectively a simple

or multiple intersection with the polar surface r — 2, as shown in the table.

Points n

» P

» y

J) v

„ 2w

„ v(r- 6)

„ o,(r-8)

Intersection of second polar r - 2

with curve m curve x

2 0

0 1

4 2

1 3

4 4

2 3

0 3

0 2

4 12

0 3

where the figures 1, 2, &c. denote a simple intersection, 2-pointic intersection, &c. of

the curve and surface ; 0 denotes of course that there is not any intersection, viz.

that the curve does not pass through the point referred to.

47. Several of the foregoing numbers are obtained without difficulty; thus we

see that the points n, n (r — 4) are ordinary points on the second polar r — 2, the

surface at each of the points n touching the curve m, but at each of the points

n (r — 4) simply cutting the curve oo. So also the points /3, % v, 2co, v (r — 6), co (r — 8)

are ordinary points on the second polar; at a point j3 the two half-branches of the

curve m touch the surface in a special manner so as to give a 4-pointic intersection;

whereas the curve x simply touches the surface. At y the curve m cuts the surface,

but the two half-branches of x touch the surface. At v, each of the curves m, x has

a 4-pointic intersection with the surface ; at each of the two points co, the curve m

touches the surface, but the curve x has with it a 3-pointic intersection, and at

co (r - 8) it simply touches the surface.

48. The point H is in the nature of a biplanar point on the polar surface ;

this appears, or is at least indicated, by the circumstance that the line to the arbitrary

point has with the torse (not a 3-pointic but) a 4-pointic intersection; the two branches

of the curve m each simply cut the two coincident sheets of the polar surface, giving

2x2, =4 intersections ; but for the curve x, the four partial branches each touch the

c. viii. 12
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two coincident sheets; for a single sheet the number of intersections would be 6, but

for the two coincident sheets it is twice this, or = 12. Finally, a point t is an

ordinary point on the second polar, each of the three branches of x simply cuts the

surface, or the number of intersections is = 3.

49. The last table gives at once

m (r - 2) = 2n + 4/3 + 7 + 4u + 2 . 2w + 4£T,

x (r - 2) = (r - 4) + 2/3 + 37 + 4u + 3 . 2© + 3u (r - 6) + 2© (r - 8) + 12H+ 3*,

which are the true theoretical forms of the equations for m (r — 2) and x (r — 2), in

which these were obtained by Cremona.

50. The x (r — 2) (r — 3) points are those points in which the Cremona x (r — 2)

curve is met 2-pointically by the line from the arbitrary point (i recall that taking

the arbitrary point as the vertex of a cone through the curve oc, this cone, say the

cone x, meets the torse in the curve x twice, and in the x (r — 2) curve in question) ;

viz. these points are either points of contact of tangents from the vertex to the

x (r — 2) curve ; or they are double points, or else cusps of the x (r — 2) curve ; in which

several cases respectively they count 1, 2 or 3 times, among the x (r — 2) (r — 3) points.

51. The points of contact are the n(x — 2r -f 8) points of intersection of the lines

n with the cone x. We have in fact a plane n through the vertex of the cone, and

in this plane two consecutive lines of the system ; hence at each of the x — 2r + 8

points the generating line of the cone meets the two consecutive lines of the system ;

that is, there is with the curve x(r—2) a 2-pointic intersection, not arising out of

any singularity of the curve, and consequently a contact of this curve with the

generating line of the cone.

52. The actual double points of the curve x (r — 2) are first the 2k apparently

coincident points of the curve x, and secondly the co(x — 2r + 10) points on the lines co.

For first if we consider through the vertex a line meeting the curve x in two points,

say A, B, this meets the torse in these points each twice and in r — 4 other points.

Now imagine a line from the vertex to the point P in the vicinity of A, this meets

the torse in the point P twice and in r — 2 points, which are points on the x (r — 2)

curve ; hence as P travels through i, 2 of the r — 2 points come together at B, and

again separate, that is B is an actual double point on the x (r — 2) curve ; and

similarly A is an actual double point on the curve ; and we have thus the 2k double

points. Secondly, since the line co is a nodal line on the torse, a generating line of

the cone, in the neighbourhood of and considered as travelling through one of the

x — 2r + 10 points, meets the torse in two points which come to coincide and then

again separate; that is each of the x — 2r + 10 points is an actual double point on

the curve x(r— 2); and the whole number of these is = co (x — 2r + 10).

53. The stationary points of the curve x (r — 2) are first the points on the curve

m which apparently coincide with the curve x ; viz. the number of these, as was seen,

is = mx — a — 3/3 — 27 — 3f — 4o) — SH ; secondly, the v (x — 2r + 9) points on the lines v ;
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thirdly, the points H each counting as 4 cusps. For first consider a generating line

meeting the curve x in B and the curve x in i; if we imagine on the curve x a

point Q which approaches and ultimately coincides with J3, the generating line through

Q meets the torse in the neighbourhood of its cuspidal edge in two points which

come ultimately to coincide with the point A, and we thus see that A is a stationary

point on the x (r — 2) curve.

54. Secondly, observing that the line u is a cuspidal line on the torse, and con

sidering in like manner a generating line of the x cone, which approaches and comes

ultimately to coincide with one of the x — 2r + 9 points, we see that this is a

statioDary point on the x (r — 2) curve. And thirdly, any line through a point H meets

the torse in this point counting 4 times, and in r — 4 other points. Hence considering

the generating line of the x cone, which travelling along any one of the four partial

branches of the x curve comes ultimately to coincide with H, 2 of the r — 2 points

on such generating line come to coincide at the point H ; and we have thus the

point if as a singular point on the x (r — 2) curve ; viz. it reckons as a stationary

point once in respect of each of the four partial branches of the curve x (it must

be assumed that this is so, but a further proof is required), that is as 4 cusps on

the x (r — 2) curve.

55. By what precedes we have

x (r - 2) (r - 3) = n(x- 2r + 8)

+ 2 {2k + co (x - 2r + 10)}

+ 3 {(mx -a-3/3-2y-3v-4co-8H) + v(x-2r + 9) + 4/7},

which is the true theoretical form in which the equation for x (r — 2) (r — 3) was

obtained by Cremona.

12—2
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500.

ON A THEOREM RELATING TO EIGHT POINTS ON A CONIC.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871),

pp. 344—346.]

The following is a known theorem :

" In any octagon inscribed in a conic, the two sets of alternate sides intersect in

the 8 points of the octagon and in 8 other points lying in a conic."

In fact the two sets of sides are each of them a quartic curve, hence any quartic

curve through 13 of the 8 + 8 points passes through the remaining 3 points : but the

original conic together with a conic through 5 of the 8 new points form together

such a quartic curve ; and hence the remaining 3 of the new points (inasmuch as

obviously they are not situate on the original conic) must be situate on the conic

through the 5 new points, that is the 8 new points must lie on a conic.

We may without loss of generality take (a,2, al5 1), (a22, a2, 1), ...(a82, a8, 1), as the

coordinates (x, y, z) of the 8 points of the octagon ; and obtain hereby an a posteriori

verification of the theorem, by finding the equation of the conic through the 8 new

points: the result contains cyclical expressions of an interesting form.

Calling the points of the octagon 1, 2, 3, 4, 5, 6, 7, 8, the 8 new points are

12.45, 23.56, 34.67, 45.78, 56.81, 67.12, 78.23, 81.34,

viz. 12 . 45 is the intersection of the lines 12 and 45 ; and so on. The 8 points lie

on a conic, the equation of which is to be found.

The equation of the line 12 is

x — (a1 + a2) y + a^2z = 0,

or as it is convenient to write it

x-(l +2)2/ +12.s=0,

viz. 1, 2, &c, are for shortness written in place of al9 a2, &c. respectively.
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The coordinates of the 12.45 are consequently proportional to the terms of

1, -(1 + 2), 12,

1, - (4 + 5), 45,

or say they are as

12 (4 + 5) - 45 (1 + 2) : 12-45 : 1 + 2 - (4 + 5).

The equation of the line (12 . 45) (23 . 56) which joins the points 12 . 45 and

23 . 56 thus is

x y , z =0,

12 (4 + 5) - 45 (1 + 2), 12 + 45, (1 + 2) - (4 + 5)

23 (5 + 6) - 56 (2 + 3), 23 - 56, (2 + 3) - (5 + 6)

where the determinant vanishes identically if 2 — 5 = 0 (a2 — a5 = 0) ; it in fact thereby

becomes

1 x , y , z

22 (1 - 4), 2 (1 - 4), (1 - 4)

22 (3 - 6), 3 (3 - 6), (3 - 6)

which is =0; the determinant divides therefore by 2 — 5; the coefficient of x is easily

found to be

= (2 - 5) (12 - 23 + 34 - 45 + 56 - 61),

and so for the other terms ; and omitting the factor 2 — 5 the equation is

a? {12-23 + 34-45 + 56-61}

-y {12 (4 + 5) -23 (5 + 6) + 34(6 + 1) -45 (1 + 2) + 56 (2 + 3) -61 (3 + 4)}

+ z {1234 - 2345 + 3456 - 4561 + 5612 - 6123} = 0.

There is now not much difficulty in forming the equation of the required conic ;

viz. this is

(2-8){x-(6 + 7)y+Mz} x

; x [12 - 23 + 34 - 45 + 56 - 61]

- - y [12 (4 + 5) - 23 (5 + 6) + 34(6 + 1) - 45 (1 + 2) + 56 (2 + 3) - 61 (3 + 4)]

k+ z [1234 - 2345 + 3456 - 4561 + 5612 - 6123]

+ (6-8){x-(l + 2)y + l2z} x

x [23 - 34 + 45 - 56 + 67 - 72] A

- y [23 (5 + 6) - 34 (6 + 7) + 45 (7 + 2) - 56(2 + 3) + 67 (3 + 4) - 72 (4 + 5)]

+ z [2345 - 3456 + 4567 - 5672 + 6723 - 7234]

= 0.
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In fact this equation written with an indeterminate coefficient \ say, for shortness,

thus

67 [(12 . 45) (23 . 56)] = X12 . [(23 . 56) (34 . 67)] = 0,

is the general equation of the conic through the 4 points 12.67, 34.67, 12.45, and

23 . 56 ; and by making the conic pass through 1 of the remaining 4 of the 8 points,

I succeeded in finding the value X== -—^, so that the conic in question passes

through 5 of the 8 points, and is therefore by the theorem the conic through the

8 points. But as thus written down the equation contains the extraneous factor 2 — 6,

as appears at once by the observation that the left-hand side on writing therein

6 = 2 (olq = a2) becomes identically = 0 ; the value in fact is

- (2 - 8) [x - (2 + 7) y + 27*] (23 - 34 + 45 - 52) [x - (1 + 2) y + 12*]

+ (2 - 8) [x - (1 + 2) y + 12*] (23 - 34 + 45 - 52) [x - (2 + 7) y + 27*]

which is = 0 ; there is consequently the factor 2 — 6 to be rejected, and throwing this out

the equation assumes a symmetrical form in regard to the 8 symbols 1, 2, 3, 4, 5, 6, 7, 8.

The coefficient of x2 is very easily found to be

= (2 - 6) (12 - 23 + 34 - 45 + 56 - 67 + 78 - 81),

and similarly that of z2 to be

= (2 - 6) {123456 - 234567 + 345678 - 456781 + 567812 - 678123 + 781234 - 812345} :

those of the other terms are somewhat more difficult to calculate ; but the final result,

throwing out the factor (2 — 6), and introducing an abbreviated notation

212 = (12 -23 + 34-45 + 56 - 67 + 78 - 81),

and the like in other cases, is found to be

x2 . 212

+ y2 . [212 (4 + 5) (6 + 7) - i 21256]

+ z2 . 2123456

- yz . 216 (234 + 235 + 245 + 345)

+ zx . [21234 + \ 21256]

-xy. 212(4 + 5 + 6 + 7) =0,

where it is to be observed that 21256 consists of 4 distinct terms each twice repeated :

J 21256 consists therefore of these 4 terms; and in the coefficient of y2 they destroy

4 of the 32 terms of 212 (4 + 5) (6 -j- 7) so that the coefficient of y2 contains

32 — 4, = 28 terms. In the coefficient of zx there is no destruction, and this contains

therefore 12 + 4, =16 terms.
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501.

REVIEW. Tables de Logarithms vulgaires a dix decimates construites d'apres un nouveau

mode par S. Pineto, approuvees par l'Academie des Sciences de S. Petersbourg.

S. Petersbourg, 1871.

[From the Quarterly Journal of Pare and Applied Mathematics, vol. xi. (1871),

pp. 375—376.]

The tables occupy 56 pages—the principal one being a table in 44 pages, the

22 left-hand pages containing the 10 figure logarithms of the numbers from 1,000,000

to 1,010,999, and the 22 right-hand pages the proportional parts '01/02, ... *99 of the

differences. A like table 100,000 to 999,999 would occupy 3600 pages. By means of

an auxiliary table of 3 pages, and of a slight increase of the numerical calculation,

the table of 44 pages does the work of the table of 3600 pages. To explain how this

is: the auxiliary table gives for any number A the initial four digits of which are

equal to or exceed 1011, a multiplier M, such that in the product MA the initial

four digits are between 1000 and 1011 ; this multiplier M contains only 1, 2 or 3

figures, and when there are 3 figures, then in general either the middle figure is 0,

or two of the figures are equal; the table gives also log-r^ to 12 decimals; and

there is a third column, as will be explained. Hence A being as above, the auxiliary

table gives M, we form the product MA, obtain the logarithm thereof from the

principal table, and adding thereto \og-^, we have the required log A. Conversely,

when there is given a logarithm B the first five digits in the mantissa of which are

not included between 00000 and 00474 (being the limits of the first five digits of

the logarithms in the principal table), the auxiliary table by means of its third

column gives M; adding log -^ to B, we have a logarithm included in the limits of



96 [501EEVIEW OF PINETO's " TABLES DE LOGARITHMES &C."

the principal table, and seeking for the corresponding number, this is = -^ number

having B for its logarithm : that is, the required number is = if times the number

obtained as above. Of course as regards the principal Table, the proportional parts

are employed in the usual manner; the tabulation of them to hundredths (instead of

tenths) facilitates the interpolation ; for better securing the accuracy of the last figure,

directions are given in regard to the 11th and 12th figures. An example of the

determination of a logarithm is as follows:

tt= 3-14159 26536

if =32

Mir = 100-53096 49152

log
M~

■ 8-49485 00216.80 - 10

log = 2-00229 95705.75^

64 2764.80

91 39.31

52 22/

I D = 4320

log it = 0-49714 98726.88

(correct value of last two figures =94).

The labour saved by the small bulk of the Tables goes far to balance that

occasioned by the additional steps in the calculation.
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502.

ON THE SURFACES DIVISIBLE INTO SQUARES BY THEIR

CURVES OF CURVATURE.

[From the Proceedings of the London Mathematical Society, vol. IV. (1871—1873),

pp. 8, 9. Bead December 14, 1871.]

Geometrically, the question is as follows :—Consider any two curves of curvature

AB, CD of one set, and any two AG, BD of the other set, as shown by the continuous

lines of the figure: drawing the consecutive curves as shown by dotted lines, the curve

consecutive to AB at an arbitrary (infinitesimal) distance from AB, the other three

curves may be drawn at such distances that the elements at A, B, and G shall be

each of them a square; but this being so, the element at D will not be in general

a square, and it is only for certain surfaces that it is so. But if (whatever the curves

 

of curvature AB, GD, AD, BG may be) the element at D is a square, then it is clear

that the whole surface can be, by means of its curves of curvature, divided into

infinitesimal squares.

Analytically, if for a given surface the equations of its curves of curvature are

expressed in the form h=f(oo, y, z), h — ^>(x, y, z) ; then the coordinates x, y, z can

c. viii. 13
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be expressed each of them as a function of the parameters h, k, and we have for the

element of distance between two consecutive points on the surface

dx2 + dy2 + dz2 = Adh2 + Gdk2,

where A, G are in general each of them a function of h and k. The condition for

the divisibility into squares is that the quotient A + C shall be of the form function h

-r- function k.

It was shown by M. Bertrand that, in a triple system of orthotomic isothermal

surfaces, each surface possesses the property in question of divisibility into squares by

means of its curves of curvature. But in such a triple system, each surface of the

system is necessarily a quadric ; so that the theorem comes to this, that a quadric

surface is, by means of its curves of curvature, divisible into squares. The analytical

verification is at once effected : taking the equation of the surface to be

x2 y2 z2

a b c

then the expressions for the coordinates in terms of the parameters h, k of a curve

of curvature are

a (a + h) (a + k)
a?

f =

(a — b) (a — c) '

b(b + h) (b + k)

z

(b-c)(b-a) '

2_c (o + h)(c + k)

(c-a)(c-b) '

and we have

h dh2 k dk2
4 (dx2 + dy2 + dz2) = (h - k)

\(a + fi)(b + h)(c+h) (a + k)(b + k)(c + k)\ '

so that A -7- G is of the required form.

But there is nothing to show that the property is confined to quadric surfaces ;

and the question of the determination of the surfaces possessing the property appears

to be one of considerable difficulty, and which has not hitherto been examined.
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503.

ON THE SUEFACES EACH THE LOCUS OF THE VERTEX OF A

CONE WHICH PASSES THROUGH m GIVEN POINTS AND

TOUCHES 6-m GIVEN LINES.

[From the Proceedings of the London Mathematical Society, vol. IV. (1871—1873),

pp. 11—47. Read January 11, 1872.]

I consider the surfaces, each of them the locus of the vertex of a (quadri-)cone

which passes through m given points and touches 6 — m given lines ; viz. calling the

given points a, b, c, ... and the given lines a, /3, 7,..., the surfaces in question are:

Order

abcdef 4

abcdea 8

abcdafi 16

abcafiy 24

abaftyS 24

aaftySe 14

a/3ySe£ 8

I remark that the orders of these several surfaces are in effect determined by

the investigations of M. Chasles in regard to the conies in space which satisfy seven

conditions. The surface abcdef was long ago considered by M. Chasles, and it is treated

of in my " Memoir on Quartic Surfaces," [445], and in the same Memoir the surface

a/3ySef is also referred to : these two surfaces, and also the surfaces aafiySe and abafiyS

are considered by Dr Hierholzer (1) in his excellent paper " Ueber Kegelschnitte im

Raume," Math. Annalen, t. 11. (1870), pp. 563—586, and to him are due the equations

given in the sequel for the surfaces abcdef and a/3y8e£ : the researches of the present

Memoir are in fact a continuation and development of those in the Memoir last

referred to.

1 I was grieved to hear of Dr Hierholzer's death last autumn, at Carlsruhe, at the early age of 30.

13—2
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2. In the Table, the upper margin refers to the surfaces, and the left-hand margin

to the points, lines, and curves situate on these surfaces respectively ; the body of the

Table showing the number, and in ( ) the multiplicity, of these points, lines, and

curves in regard to the several surfaces respectively. Thus, points a ; for the surface

abcdef, 6 x (2), there are 6 such points, each of them a 2-conical (ordinary conical)

point on the surface : so abcdea, 5 x (4), there are 5 such points, each a 4-conical point

on the surface (viz. instead of the tangent plane there is a quartic cone) ; and so on.

Similarly, lines ab (viz. these are the lines joining two points a, b) ; for the surface

abcdef, 15 x (1), there are 15 such lines, each a simple line on the surface ; surface

abcdea, 10 x (2), there are 10 such lines, each a double (ordinary nodal) line on the

surface ; and so on. We have in two places the multiplicity (2 + 2), which refers to

a tacnodal line, as presently explained. The corner letters G, P, L denote respectively

proper cone, plane-pair, and line-pair, as afterwards explained.

3. The lines and curves referred to in the left-hand margin are :

(1) ab, line joining the points a and b.

(2) a, line a.

(8) [ab, a, /3, 7], pair of lines meeting each of the four lines, or say the

tractors of the four lines ab, a, /3, 7. As regards the surface abafiyS,

the multiplicity is given as (2 + 2), viz. the line is (not an ordinary

nodal, but) a tacnodal line, each sheet touching along the whole line the

hyperboloid a/3y.

(4) [a, /3, 7, §], tractors of the four lines a, /3, 7, 8.

(5) [ab, cd, a, /3] tractors of the four lines ab, cd, a, /9.

(6) abc, def, line of intersection of the planes abc and def.

(7) abc, de, a, line in the plane abc joining the intersections of this plane by

the lines de and a respectively.

(8) abc, a, /?, line in the plane abc joining the intersections of this plane by

the lines a and /3 respectively. As regards the surface abcda/3, the

multiplicity is given as (2 + 2), viz. each line is (not an ordinary nodal,

but) a tacnodal line, each sheet touching along the whole line the plane

abc.

(9) Cubic abcdef, cubic curve through the six points a, b, c, d, e, f common

intersection of the cones each having its vertex at one of the points

and passing through the other five.

(10) Quadriquadric a(3y, Se£, intersection of the quadric surfaces aj3y and Sef, that

is, the quadric surfaces through the lines a, ft, 7 and S, e, £ respectively.

(11) Excuboquartic a/37, <>6> a> quartic curve generated as follows : viz. taking any

line whatever which meets the lines a, ft, 7 (or say any generating line

of the quadric oifiy), the plane through this line and the point a meets

the lines 8, e in two points respectively; and the line joining these

meets the generating line in a point having for its locus the excubo

quartic curve in question (theory further considered in the sequel).
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Special forms of (Quadri-)Cones.

4. We have to consider the special forms of (quadri-)cones ; these are : 1°. The

sharp-cone, or plane-pair ; that is, a pair of two planes, intersecting in a line called

the axis, the vertex being in this case an indeterminate point on the axis. Observe

that a plane-pair passes through a given point when either of its planes passes

through such point ; it touches a given line when its axis meets the given line.

2°. The flat-cone, or line-pair ; viz. this is a pair of intersecting lines, their point of

intersection being the vertex of the line-pair, and the plane of the two lines being

the diametral of the line-pair. Observe that the line-pair passes through a given point

when its diametral passes through such point ; it touches a given line when either of

its lines meets the given line. 3°. There is a third kind, the line-pair-plane ; viz.

the two planes of the plane-pair may come to coincide, retaining, however, a definite

line of intersection, or axis : or again, the two lines of a line-pair may come to

coincide, retaining a definite plane or diametral; that is, in either case we have a

plane passing through a line; and which is to be considered indifferently as two

coincident planes intersecting in the line, or as two coincident lines lying in the plane.

But there is not, in the present Memoir, any occasion to consider this third kind of

special cone.

The letters C, P, L in the Table denote that the cone is a (proper) cone, plane-

pair, or line-pair, as the case may be.

Singular Lines and Curves on the Surfaces.

5. We may establish a priori the existence, and even to some extent the multi

plicity, of the several lines and curves on the surfaces abcdef... a/3y$e£ Thus:

1°. Lines ah : take for the vertex of the cone a point at pleasure on the line ah ;

the cone passing through b will ipso facto pass through a ; and the conditions

are thus that the cone shall pass through h and satisfy four other conditions—

in all, five conditions : and there is thus a cone with the point in question as

vertex; that is, the line ah is situate on the surface. Moreover, for the surfaces

abcdef abcdea, abcdafi, abcafiy, aboifiyS respectively, for a given position of the

vertex on the line ah, the number of cones is 1, 2, 4, 4, 2 respectively : and

these are the multiplicities of the line ah on the several surfaces respectively.

2°. Lines a : take for the vertex of the cone a point at pleasure on the line a ; then

the cone ipso facto touches the line a, and there are only five other conditions

to be satisfied ; that is, we have a cone with the vertex in question ; or the

line a is situate on the surface. Moreover, for the surfaces abcdea, abcdajB,

abca/3y, abafiyS, aafiySe, <x/3y8e£ respectively, the number of cones is 1, 2, 4, 4, 2, 1

respectively: and it may be seen that the multiplicities of the line a are the

doubles of these numbers, or are =2, 4, 8, 8, 4, 2 for the several surfaces

respectively.
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3°. Lines [ab, a, ft, y] : taking the vertex in one of these tractors, the cone cannot

be a proper cone, but (if it exist) it must be either a line-pair having the

tractor for one of its lines, or else a plane-pair having the tractor for its

axis. The two cases are :

Surface abcafiy. Cone is a plane-pair, the two planes intersecting in the tractor,

and passing, the one of them through the points a, b, the other through the

point c. The vertex being an indeterminate point on the tractor, the tractor is

situate on the surface.

Surface abafiyS. Cone is a line-pair, one line being the tractor, the other a line

drawn in the plane of the tractor and ab to meet S, and which meets the

tractor in an arbitrary point thereof: the tractor is thus a line on the surface.

4°. Lines [a, /3, y, S] : taking the vertex in one of these tractors, then, as in the last

case, the cone is either a line-pair having the tractor for one of its lines or

a plane-pair having the tractor for its axis. The three cases are :

Surface abajSyh. Cone is a plane-pair, the two planes intersecting in the. tractor

and passing through the points a, b respectively.

Surface aajSyhe. Cone is a line-pair, one line being the tractor, the other a line

in the plane of the tractor and a, meeting the line e and meeting the tractor

in an indeterminate point.

Surface oiftyhe^. Cone is a line-pair, one line being the tractor, the other a line

drawn from an indeterminate point of the tractor to meet the lines e and f

5°. Lines [ab, cd, a, /3]. Cone is a plane-pair, the two planes intersecting in the

tractor, and passing through the points a, b and the points c, d respectively.

6°. Line abc, def. Cone is a plane-pair, consisting of the two planes abc and def.

7°. Line abc, de, ol. Cone is a plane-pair, the two planes intersecting in the line ;

one plane being abc, the other a plane through the line de.

8°. Line abc, a, /3. There are two cases :

Surface abcdafi. Cone is a plane-pair, the two planes intersecting in the line ; the

one being abc, and the other passing through the point d.

Surface abcajSy. Cone is a line-pair ; one line being abc, a, /3, the other a line

in the plane abc meeting the line §, and meeting the line abc, a, f3 in an

indeterminate point.

9°. Cubic abcdef. Each point of the cubic is the vertex of a proper cone passing

through the cubic, and therefore through the six points ; that is, the cubic is

a line on the surface abcdef,

10°. Quadriquadric a/3y, Sef. Cone is a line-pair ; viz, it is composed of the lines

drawn from any point of the curve, one of them to meet the lines a, /3, y,

and the other to meet the lines 8, e, £

11°. Excuboquartic a/3y, Se, a. Cone is a line-pair ; the two lines being, one of them

a line at pleasure meeting a, /3, y, the other the line which, in the plane of

the other line and the point a, meets the lines 8, e.
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Mode of obtaining the several Equations : Notations and Formulce.

6. The equations of the several surfaces are obtained by taking as centre of

projection an assumed position of the vertex, and projecting everything upon an

arbitrary plane ; the projections of the given points and lines are points and lines in

the arbitrary plane, and the section of the cone by this plane is a conic ; the equation

of the surface is thus obtained as the condition that there shall be a conic passing

through m given points and touching 6 — m given lines.

7. We take as current coordinates {X, T, Z, W), or when plane-coordinates are

employed (£, 77, f, co) : the coordinates of the vertex are throughout represented by

(x, y, z, w); but in explanations &c, these are also used as current coordinates. The

plane of projection is taken to be W=0. The coordinates of the given points a, &a,

are taken to be (xa, ya, zai wa), &c. There is no confusion occasioned by so doing,

and I retain the ordinary letters (a, b, c, f, g, h) for the six coordinates of a line, it

being understood that these letters so used have no reference whatever to the given

points a, b, &c. ; viz. the coordinates of the given lines a, &c, are (aa, ba, ca, fa, ga, ha),

&c. ; there is sometimes occasion to consider the coordinates of other lines ab, &c, but

the notation will always be explained.

8. I write Z, m, n, p, q3 r for the coordinates of the line joining the vertex

(%, y, z, w) with a point (x, y\ z\ w)\ viz.

I —yzf —y'z> p = xw' — x'w,

m = zx' — z'x, q = yw' — y'w,

n = xyf — x'y, r = zw' — z'w,

(la=yZa — ya2!> &c., this being explained when necessary); and also

P = . hy — gz + aw,

Q = — hx . +fz + bw,

R=. goo —fy . + cw,

S= — ax — by — cz . ,

(Pa = hay — gaz + aaw, &c, this being explained when necessary).

This being so, then projecting from the vertex {x, y, z, w), say on the plane W — 0f

the x, y, z coordinates of the projection of a point a are as^ : qa : ra(pa = xwa — xaw, &c.) ;

and the equation of the projection of a line a is

PaX+Qa7 + iC£=0,

(Pa=hay — gaz+aaw, &c). We thus have, in the projection on the plane W=Q, the

m points and 6 — m lines situate in and touched by the conic.
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The following notations and formulae are convenient:

9. pabc = 0 is the equation of the plane through the points a, b, c; Viz.

pabc — x , y , z , w

Ma> Va> za> Wa

®b, yb, Zb> Wb

®c j y& > %c t wc

Of course pbac = —pabcy &c. Observe that here, and in the notations which follow,

the letter p is used as referring to the coordinates (x, y> z, w), and that the index

of p (= 1 when no index is expressed) shows the degree in these coordinates.

10. paa = 0 is the equation of the plane through the point a and the line a ;

viz. paa is the foregoing determinant, if for a moment b, c are any two points on

the line a; or, what is the same thing,

pa* = Pax + Qay + Baz + Saw,

where

Pa= • hya-gza + awa,

Qa=-hxa . +fza+bwa,

Ra= 9®a-fya • +CWa,

foa = axa oya cza . ,

and (a, 6, c, /, g, h) are the coordinates of the line a: observe that paa =paa.

11. p2a/3y = 0 is the equation of the quadric surface through the lines a, /3, yr

viz. we have

p*a/3y = (agh) x2 + (bhf) y2 + (cfg) z2 + (abc) w2

+ [(abg ) — {cah )] xw

+ [(bch ) - (abf)] yw

+ [(caf)-(bcg)]zw

+ [(bfg) + (chf)]yz

+ [(cgh) + (afg)]zx

+ [(ahf) + (bgh)] xyy

where

agh = &a > go. i i^a

ay) gy, fiy

&c.

(aai ba, ca,fa, #«, h), (dp,...), (fl&y, ...) being the coordinates of the given lines a, /3, y.

Observe that p2j3ay = —p2a/3y, &c.

c. viii. 14
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12. It is to be noticed that, writing

P= . hy — gz+a/w,

Q = — hoc . +fz + bw,

Rz= gx—fy . -f CW,

S = — ax — by — cz . ,

viz. Pa = hay — gaz + aaw, &c, then that we have identically

X , fi , v , p = — (hoc + fiy + vz + pw) . p2a/3y,

and further that we have identically

-p*a/3y = LapPy + MapQy + i\^BY + naj35fv,

where

L = (af -a'f)x + (bf -b'f)y + (of - c'f) z - {bo - b'o) w,

M = (ag — a'g)x + (bg' — b'g) y + (eg' — c'g)z — (ca' — c'a) w,

N = (ah' - a'h) x + (bh! - b'h) y + (oh' - c'h) z - (ah1 - a'b) w,

12 = (gh' - g'h) x + (hf - h'f) y + (fg'-fg) z + (af - a'f+ bg' - b'g + oh' - c'h) w ;

and L^, &c. are the values of L, &c. on substituting therein (aa, ...) and (a?,...) for

the unaccented and accented letters respectively.

13. Observe that we have

L + (a'f+ b'g + o'h)x = . - c'Q + b'R -fS,

M+( „ )y= o'P . -a'R-g'S,

N+( „ )z = -b'P + a'Q . -h'S,

fi+( „ )w= f'P+g'Q + h'R . ;

and similarly

whence also

-L+ (af + bg' + ch')x = . - cQ' + bR' -fS',

-M + ( „ )y= oT . -aR'-gS',

-N + ( „ )z = -bP'+aQ' . -Jiff,

-a+( „ )«/ = fP' +gQ' + hR' . ;

h'M - g'N + a'a = - (af+ b'g + c'h) P',

-h'L . +/JV+6'n=-( „ )Q',

g'L-f'M . +c'ft = -( „ )R',

-a'L-b'M-c'N . =-( „ )8';
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and

KM -gN + aO = (af + bgf + ch')P ,

-hL . +/ZVr+Ml = ( „ )Q,

gL-fM . +cO = ( „ )R,

-aL-bM -cN . = ( „ > jST .

14. psa . aft . yS = 0 is the equation of the cubic surface through the lines a, ft, y, 8

and aaft, ay8 (viz. aaft is the line from a to meet a, ft, and so ay8 is the line from

a to meet y, 8). Observe that the conditions which determine this cubic surface thus

are that the cubic shall pass through

a; the points of aaft on a and ft respectively, 3 other points on a, 3 on ft, and

1 on aaft ;

also the points of ay8 on y and 8 respectively, 3 other points on y, 3 on 8, and

1 on ay8 ; in all, 1 + 9 + 9=19 points;

viz. the conditions completely determine the surface.

15. We have

fa . aft . y8 = x , y , z , w

Zap, Jfaj5, iVa^, I2a/3

^yS> *yS)
i\^, a

yS

viz. this determinant, equated to zero, gives the equation of the surface.

To prove this, take as before the unaccented letters (a, b, c, /, g, h) to refer to

the line a, and the letters with one, two, and three accents to refer to the lines

ft, y, 8 respectively ; write also L, M, N, O and L', M\ JV, XI' for Lap, &c, and Ly8, &c,

respectively. Referring to the foregoing expressions for L, M, N, O, and observing that

for a point on the line a, the values of P, Q, B, S are each = 0, then for such a

point we have L + (c&/+ b'g + c'h) x=0, &c, that is, L : M \ N : £1 = % \ y \ z : w, and

these values satisfy the equation of the surface, which is thus a surface passing through

the line a ; and similarly it passes through the lines ft, y, 8.

To show that the surface passes through the line aaft, take the coordinates of

the point a to be 0, 0, 0, 1 ; then the line aaft is given as the intersection of the

planes a% + by + cz=0 and ax + b'y + dz = 0, that is, $ = 0 and S' =0. And the

equation of. the surface, writing therein xa, ya, za, wa = 0, 0, 0, 1, becomes

x , y , z

L, M, N

L\ W, Nf

= 0,

14—2
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or, as this may be written,

8 , S' , z

aL +bM +cJST, a'L + b'M +&N, N

aL' + bM' + cN'} a'L' + VM' + c'N', W

and, for a point on the line aa/3, this is

= 0;

aL+bM +cN, a'L + VM + c'N

all + bM' + cN', a'L'+ VM' + c'N'

= 0.

But in the equations - a'L - VM - c'N = - (a'f + b'g + c'h) S\ and - aL - bM - cN

= (af' + bg' + ch')S) writing S = 0 and £' = 0, we have aL+ bM +cN=0 and a'L+b'M+c'N^O,

and the equation is satisfied ; that is, the surface passes through the line aa/3, and

similarly it passes through the line ayB.

Surface abcdef.

16. The equation may be written

pabe . pcde .pacf.pdbf— pabf . pcdf'. pace . pdbe = 0,

where pabe = 0 is the equation of the plane through the points a,b,e\ and the like

for the other symbols. The form is one out of 45 like forms, depending on the

partitionment

ab .cd^

ac . db

ad . be

(ef),

of the six letters.

17. Investigation. In the projection, the six points (pa, qa> ra) are situate on a

conic; the condition for this is

(p, q, rf = 0,

where the left-hand side represents the determinant obtained by writing successively

(Pay <Ia> ra), &c, for (p} q, r). The equation in question may be written

where

abe . cde . acf'. dbf— abf'. cdf . ace . dbe = 0 ;

abe ■
Pa > Qa> ^a

Pb, qb> n

Pe » tye > 7*e

, &c;

and substituting for pa,..., their values, we have abe = w2. pabe, whence the foregoing

result.

■(Surface abcdef.}
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18. Singularities. The form of the equation shows at once thatC1)

(0)(2) The point a is a 2-conical point; in fact, for this point we have pabe = 0,

pacf= 0, pabf— 0, pace = 0.

(1) The line ab a simple line; in fact, for any point of this line we have

pabe = 0, pabf— 0.

(2) The line abe . cdf a simple line ; in fact, for any point of this line we have

pabe = 0, pcdf= 0.

(9) To show analytically that the cubic curve abcdef is a line on the surface,

observe that the equation of the surface is satisfied if we have simul

taneously (X being arbitrary)

pabe . pacf— X . pabf . pace = 0,

X.pcde . pdbf— pcdf.pdbe = 0.

The first of these equations is a cone, vertex a, which passes through the points

by e c, f and which, if X is properly determined, will pass through the point d ; the

second is a cone, vertex d, which passes through the points b, e, c, f and which, if

X is properly determined, will pass through the point a ; the two determinations of X are

dabe . dacf— X . dabf . dace = 0,

X . acde . adbf— acdf. adbe = 0 ;

giving the same value of X; and the equations then represent cones, the first having

a for its vertex, and passing through d, b, e, c, f; the second having d for its vertex,

and passing through a, b, e, c, f; the two intersect in the line ad, and in the cubic

curve abcdef, which is thus a curve on the surface.

Surface abcdeoc.

19. The equation may be written

(pabe . pcde . p2aac . db —pace . pdbe . p2aab . cd)2

+ ^pabe . pcde . pace . pdbe . pabe . pdbc . paa . pda = 0,

or, what is the same thing,

(pabe . pcde . p2aac . db -f pace . pdbe . p2aab . cd)2

+ 4<pabe . pcde .pace . pdbe . pbad . pcad . pbot . pea = 0,

(the equivalence of the two depending on the identity

— p2aab . cd . p2aac . db + pabe . pdbc . paa . pda — pbad . pcad . pba . pea = 0)

1 Or course, as regards the present surface and the other surfaces for which the equation is given in

an unsymmetrical form, the conclusion obtained in regard to any point or line of the surface applies to

every point or line of the same kind. Thus ab being a simple line, we have also ad a simple line, although

the equation, as written down, does not put this in evidence.

2 The bracketed numbers refer to the lines of the Table.

{Surface abedea.}
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where, as before, pabe=0 is the equation of the plane through the points a, b, e;

p2aacdb = 0 the equation of the quadric surface through the lines a, ac, db ; and

pact. = 0 the equation of the plane through the point a and the line a.

The above forms are 2 out of 30 like forms, as appears by the partitionment

' ab, cd^

ac , db V ea.

ad, be j

20. Investigation. In the projection, the equation of the conic through the five

points may be written

(X, y, zy

(p, q> r)2

= 0,

where the symbol denotes a determinant the last five lines of wThich are obtained by

giving to (p, q, r) the suffixes a, b, c, d, e respectively. This is at once transformed

into

abe . cde . acA . dbA — ace . dbe . a&A . cdA = 0,

or, what is the same thing,

pabe.pcde . acA . dbA —pace.pdbe . a&A . cdH = 0,

or say,

pabe . pede (A"X + B" 7 + G"Z) (A'"X + B"Y+ G"'Z)

-pace .pdbe(AX + BY+ CZ) (A'X + B'Y+ C'Z),

where pabe, &c. signify as before, and

AX + BY+CZ-- X, Y, Z

Pa) Uay ^a

and so for A'X + BY+ C'Z, &c, the suffixes for A', B', C being (c, d), and those for

A", B", G" and A"\ B"\ G'" being (a, c) and (d, b) respectively.

21. Passing to the reciprocal equation, and making the conic touch the line a,

we obtain the equation of the surface in the form

[pabe .pede Pa , Qa , R* —pace . pdbe

A", B" , G"

A"\ B"\ G"

+ ^pace . pdbe . pabe . pede

-La > tya > -K>c

A, B, C

A', B', C

Pa, Qa, Ra

A , B , G

A", B", C"

-La f tya j -tta

A' , B' , C

A'", B", C"

= 0,

{Surface abedea.}



503] MlTHE VERTICES OF CONES WHICH SATISFY SIX CONDITIONS.

(where Pa = hay — gaz + aaw = 0) or in the equivalent form wherein we have in the first

term + instead of — , and in the second term the determinants

■* a ? tya j -k^a 5 -La > tya ? -t^a

A , B , G A', B' , C

A'", B'", C" A", B", G"

22. {The question, in fact, is to find the reciprocal of the form

X (ax + by + ez) (a'x + b'y + c'z) - ft, (a"x + b"y + c"z) (a'"x + b'"y + c'"z) = 0 ;

taking £, ??, £" for the reciprocal variables, the coefficient of £2 is

{X (be' + b'c) - fi (b"c'" + b'"c")f - (2Mb' - 2/xb"b'") (2\ce' - 2/xc"c"),

viz. this is

X2 (be - b'cf + p? (b"c'" - b'"o'J + 2XM {2bb'c"o'" + 2b"b'"cc' - (be' + b'c) (b"e" + b'"e"%

or, as it may be written,

{X (be' - b'c) ± p (b"c'" - b'"c")Y + 2X/m ( 2bb'c"c'" + 2b"b'"cc'

Taking the upper signs, this is

}X (be' - b'c) + fi (b"c'" - b'"c")Y + i\fi

-j + (bc-b'c)(b"c"-b'"c")

(-(bc' + b'c)(b"c'" + b'"c")^

viz. the term in X/x is

Taking the lower signs, it is

bb'c"c'" + b"b'"co'

bc'b"c'" - b'eb'"c"

: + 4<\fJ.(bc'"-b'"c)(b'c"-b"c').

{X (be1 - b'c) - p (b"c'" - b'"c")Y + 4>\fi I bb'c"c'" + b"b'"cc'\ _

\-bc'b",e"-b'cb"c'")'

viz. the term in Xfi is

^\lM(be"-b"c)(b'e'"-b'"c');

and it is thence easy to infer the forms of the other coefficients, and to obtain the

reciprocal equation in the two equivalent forms

a, b, c a", b" , c" a , b , c

a', b', c' a'", b'", e" a'", V", c"

{X f, v, $ -im £ , f, , f }» + 4A/* | , t? , r

a, b, e a", b" , e" a , b , c

a', V, c' a'", V", c'" a", b" , c"

g , v , K =0,

a' , V , c'

a", b", c"

£ , v , £ =0,

a' , V , c'

a'", b'", c'"

which are the required auxiliary formulae.^

{Surface abedea.}
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23. To reduce the foregoing result, we have

A , B, G = xwa - wxa , ywa - wya , zwa - wza

xwh — tuxb, ywb — wyb, zwb — wzb

proportional to the three determinants which contain w, of the set

x , y , z , w

xa, y<x-> Za, wa

®b, yb> Zb, Wb

, viz. A — w y , z , w

ya-> za> Wo,

Vby Zb, ™b

&c:

and similarly A', B', C are proportional to the three determinants which contain w, of

the set

, &c.X,
y >

z , w , viz. A'=w
y> z , w

XCi yc, Zc, wc yC} Zc, wc

%d, ya, Zd, w&
j yd, zd, Wd

Hence, omitting the factor w, and writing (a, b, c, f, g, h) and (a', b', c', f, g', h') for

the coordinates of the lines ab and cd respectively, we have

A= hy — gz + a,w, A'— h!y — g'z + a'w,

B^-hx +fz+bw, B=-h'x +f'z +b'w,

and thence

C = gx — fy + cw9 Gf — g'x — i'y

BG'-B'G = £lx-Lw,

CA'-C'A^ny-Mw,

AB'~A'B = nz-JSr<w,

+ c'w;

where

L = (af -a'f)# + (bf - b'f) y + (cf - c'f )* - (be' - b'c) w,

^= (ag' - a'g) # + (kg' - k'g) 2/ + (eg' - eg) # - (ca' - c'a) w,

JV = (ah/ - a'h) a? + (bh' - b'h) y + (ch' - c'h) z - (ab' - a'b) w,

a = (gh' - g'h) x + (hf' - h'f ) y + (fg' - fg) * - (af' - a'f + bg' - b'g + ch' - c'h) w :

and consequently

Pa, Qay Ra

A , B , G

A\ B', 0'

= 12 (xPa + yQa + zRa) - w (LPa + MQa + NRa)

or omitting the factor — w, say it is = LPa + MQa + NRa + £lSa, viz. this is =p2aab.cd.

{Surface dbedea.]
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We have similarly

A", B", C"

A'", B'", C"

taken to be =p2a ac . db.

24. We have in like manner the other two determinants

and Pa, Qa, Ra

A' , B' , C

A'", B C"

a , b , a

A\ B'\ C"

taken to be = p2a ab . ac and p2a cd . db respectively.

But we have

p2aab ,ac=paa.pabc,

(viz. geometrically the hyperboloid through the lines a, ab, ac breaks up into the plane

paa through the line a and point a, and the plane pabc through the points a, b, c).

And similarly

p2a cd.db — —p2a dc ,db = -\-p2a db . dc—pod .pdbc ;

whence, substituting for the several determinants, we have the foregoing equation of the

surface.

25. Singidarities. The form of the equation shows that

(0) The point a is a 4-conical point: in fact, for this point we h&ve pabe = 0>.

p2oc ac .db= 0, pace = 0, p2a ab ,cd= 0.

(1) The line ab is a double line : in fact, for any point of the line we have

pabe = 0, p2ct ab . cd = 0, pabc — 0.

(2) The line a is a double line : in fact, for any point of the line we have

p2a ac.db = 0, p2a ab . cd = 0, paa = 0, pda = 0.

(7) The line abe.cd.OL is a simple line: in fact, for any point of the line we

have pabe = 0, p2a ab .cd — 0. Observe that, on writing in the equation

pabe = 0 the equation becomes (p2a ab . cd)2 = 0 ; so that the surface along

the line in question touches the plane pabe.

Surface abcdafi.

26. The equation of the surface is

Norm {Vpaa .pa$ .pbcd — ^/pba .pbfi .pcda + "Jpea .peft .pdab — V'pda . pd/3 . pabc} = 0,

where the norm is the product of 8 factors.

As before, paa = 0 is the equation of the plane through the point a and the

line a; and pbcd — 0 the equation of the plane through the points 6, c, d. The form

is unique.

{Surface abedap.}
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27. Investigation. In the projection, the equation of the conic touching the pro

jections of the lines a, (3 is

*J(PaX + QaY+RaZ)(P?X + Q?Y+ RPZ) + AX + BY+ CZ= 0,

where A, B, G are arbitrary coefficients. To make this pass through the projection of

the point a, we must write X : 7 : Z—pa : qa : ra; viz. we thus have

PaX + QaF+ RaZ = wa(x Pa + yQa + z Ra)

- w (xaPa + yaQa + zaRa),

= -W (xaPa + yaQa + ZaRa + WaSa),

and similarly

We thus have

= — w. paa ;

PpX + QpY+RpZ^-w.pa/3.

w \lpaa . pa/3 + Apa + Bqa + (7ra = 0.

Or, forming the like equations for the points b, c, d respectively and eliminating, the

equation is

\lpaa. pap, pa, qa, ra = 0;

*/pba.pb/3, pb, qb, rb

V'pea. pep, pc, qc, rc

*Jpda.pd/3, pd, qd, rd

"which, substituting for (pa, qa, ra), &c, their values, viz. pa = xwa — xaw, &c, is readily

converted into

x , y , z , w = 0.

^paa. pap, xa, ya, za, wa

\lpbcL .pb/3, xb) yb) zb, wb

Vpca . pep , xc, yc, zc, wc

*Jpda.pdp, xd, yd, zd, wd

or, what is the same thing,

Vpaa . pa/3 .pbed — M'pba . pbp . peda + Vpca . pc/3 . pdab — \/pda . pd/3 . pabc = 0 ;

viz. taking the norm, we have the form mentioned above.

28. Singularities. The equation shows that

(0) The point a is an 8-conical point; in fact, for the point in question

paa = 0, pa/3 = 0, peda — 0, pdab = 0, pabc = 0 ; each factor is of the form

01, and the norm is 08.

{Surface abcda(3.}
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(1) The line ab is a 4-tuple line. To show this, observe in the first instance,

that we may obtain the 8 factors of the norm by giving to the radical

p̂aa. pa/3 the sign +, and to the other three radicals the signs +, —,

at pleasure. For a point on the line in question, we have pdab — 03.

pabe = 0 ; hence the norm is the product of the four equal factors

*Jpaa .pa/3 . pbcd — s/pba . pbft . pcda,

and the other four equal factors obtained by writing herein -f instead of —.

Now for a point on the line ab, we may write for x, y, z, w the values

iixa + vxb, uya-\-vyb, uza + vzb, uwa + vwb, where u, v are arbitrary coefficients. We have

paa — u . aacx. + v . baa = v . baa = — v. oboe,

pa/3 = v . ba/3 = — v. ab/3,

pboi = u . aba + v . bba = u . abay

pbft = u . ab/3,

pbcd = u . abed + v . bbed = u . abed,

pcda= u . acda + v . beda = v . beda = — v . abed,

where aba = 0 is the condition that the points a, b and the line a may be in the

same plane (or, what is the same thing, that the lines ab and a may intersect), viz.

baa is = Paxb + Qayh + Razb + Sawb . And similarly abcd = 0 is the condition that the

four points a, 6, c, d may be in a plane ; viz. we have

abed- %a> Va, *a> Wa

Xb , Vb, Zb> Wb

Xc , ye, Zo> Wc

00dy ych Zd, m

Substituting, we have V'paa .pa/3 . pbcd and *Jpba.pb/3 .pcda, each equal (save as to

sign) to uv *Jaba . ab/3 . abed ; that is, the four equal factors of one set will vanish. The

vanishing factors are of the form 01, and the norm is 04, that is, the line in question,

ab, is a 4-tuple line.

(2) The line a is a 4-tuple line ; in fact, for any point of the line we have

paa = 0, pba = 0, pea = 0, pda = 0; each factor of the norm is therefore evanescent, of

the form 0^, and the norm itself is thus =04.

29. (5) The line (ab, cd, a, /3) is a double line. To show this, take z = 0, w=0

as the equations of the line in question ; then we have ha = 0, hp = 0, zawb — zbwa = Q'r

or say wa = \za, wb — \zb: and zcwd — zdwc = 0 ; or say w0 = fjLZc, wd = f^zd (X and ju,

arbitrary coefficients). Putting for shortness

I = (g - \a) x - (f+M)y, J = (g - pa) x - (f + ph)y ;

{ Surface abedafi. }
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viz. Ia = (ga— ^&a) w — (fa + ^ba) y, &c, and writing z = 0, w = 0, we have paa. .pa/3 = za2IaIp,

pba .pbf3 = zb2IaIp , £>ca . £>c/3 = zc2JaJp , ^cte .$>d!/3 = zd2JaJp ; and the factor of the norm

(reverting to the expression thereof as a determinant) is

x , y

Za^lJfi, ®a, ya, *a> ^a

zb*J~IaIp, ®b, yb} zb, \zb

z^JaJp, xc, yc, zGi fxzc

zd^JaJ^, xd, yd, zd, fizd

which vanishes. In fact, resolving the determinant into a set of products of the form

+ 2 . 13 . 45, where the single symbol denotes a term of the top line, and the binary

symbols refer to the second and third lines, and the fourth and fifth lines respectively

{denoting minors composed with the terms in these pairs of lines respectively); then

each product will contain a term 14, 15, or 45, and the minor so designated (to which

ever of the two pairs of lines it belongs) is =0. The factor is thus evanescent, being,

&s it is easy to see, = 01. There are two factors which vanish ; viz. taking the first

radical to be +, the second radical must be also +, but the third and fourth radicals

may be either both -f- or both — ; the norm is thus = 02, viz. the line (ab, cd, a, @) is

a double line.

30. (8) The line abc, a, fi is a double line. To prove this, take w = 0 for the

equation of the plane abc, and (z = 0, w = 0) for those of the line in question ; we have

Aa = 0, hp=0, wa = 0, wb = 0, wc = 0] and writing 7a = - gax +fay, Ip = - g^x -\-fay, then

for z — 0, w = 0, the factor expressed as a determinant is

which is

Za^Ialp,

X,
y •

Zt^Ialp,

^a> ya, za,

Z^Tjp,

Xb, yb, Zb,

\lpdoi . pd/3,

XCy

%d>

yc,

yd, Zd, Wd

Wd >sll*Ifi X, y. .

za, %a> ya, za

Zb, Xb, yb, Zb

Zc, XCi yc Zc

.and consequently vanishes, the form being 01. There are two such factors, viz. the

radical ^pda.pd/3 may be either + or — , hence the norm is = 02.

31. But it is to be further shown that the line is tacnodal, each sheet of the

surface being touched along the line by the plane w — 0 : we have to show that the

{Surface abcdafi.}
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A >Jpact. pa/3, xa, ya, za, .

A^/pba.pb/3, xbi yb, zbi .

A^pca.pc/3, xc, yc, zCi .

A*Jpdct.pd/3, xd, yd, zd) wd

factor operated upon by A =XSX + YSy + ZSz + W8W, reduces itself for z = 0, w = 0 to

a multiple of W. Considering the factor in the form of a determinant, the result of

the operation is

Z, F, Z, W

's/paa . pa/3, xay ya, za, .

*Jpba.pb/3, xb, yby zb) .

\/pca.pc/3, xc, yc, ze,

*Jpda.pd/3, xd, yd} zd, wd

the first term is

X, Y, Z, W

Za\/laIp, ®a> Va, Za, .

zb *JlaIpt ocby yb, zb, .

ZC "Jlalfi, ®C> yC> Zd

^/pda.pdfi, xdi yd, zdi wd

where the first column may be replaced by

*Jpda . pd/3 — zd *JlaIp >

and the term in question thus becomes

{wdZ *J7Jp +W(-zd *JTJfi + *Jpda.pd/3)} . abc,

if for shortness

SOai ya> *a

®b> Vb, Zb

&c> ya Zc

■abc.

As regards the second term, we have

which is

But

2 vpaa . pa/3

IaApa/3 + 10 ApaoL

pace = x (- gaza) + y {faza) + z (gaxa -faya) + w 0<A ~ Kya - caza)>

= xa (gaz - aaw) + ya (-faz - baw) + za (- g^ +fay - caw) ;

and thence

Apaa = xa (gaZ- aaW) + ya {-faZ- baW) + za (-gaX +faY - caW),

{Surface abedafi.}
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with the like formula for Apafi ; hence

where

IaApa/3 + IpApaa

2VX7e =

■■ Axa + Bya + Gza,

A =

5 =

2WT{I"( 9^-aaW) + h( g,Z-a,W%

La^P

Jjjj {/, (-AZ-baW)+Ia(-f,Z-bfiW)\,

La±p

The term in question is thus

oo , y , .

Axa + Bya+Cza, xay ya, za

Axb + Byh + Czb, xh , ybi zh , .

Axc + Byc + Czc, xc , yc , zc , .

AVpda.pd/3 , xdi yd, zd> wd

viz. replacing the first column by

- Ax -By

A Vpcfa .pd/3 - Axd - Byd - Gzd ;

this is

and we have

= (Ax + By) wd . abc ;

Ax\By= L C //3( sr*x-£y) + ia( g?v-fey)]z

2 \//a^ [+ J, (- aax - 6ay) + Ia (- a^ - %)] TT,

if for shortness

M={-g?x +fpy) (aax + bay) + (- gax +fay) (a^x + b^y) ;

viz. the whole term is

-M
wd \-iJlJtZ- -f^L. W[ abc.

Hence the first and second terms together are

W\-ed "JIJ? + Vpdat . pd/3 - -jJ?L wd\ abc ;

viz. this is a multiple of W, which was the theorem to be proved.

{Surface dbcdafi.}
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32. The equation is

Surface abcafiy.

Norm Vpaa, Vp&a, Vpca =0,

Vpo/3, \/pbfi, \/pc/3

vpay, *Jpby, \fpcy

where the norm is a product of 16 factors, each of the order §. As before, paoc~0

is the equation of the plane through the point a and the line a ; viz. paa has the

value already mentioned.

83. Investigation. In the projection, the equation of the conic touching the pro

jections of the lines a, ft, y is

A VPaX + QaY + RaZ+ B VP^X + Q?Y+ R?Z + G VPVX + QyY+ RyZ = 0 ;

and to make this pass through the projection of the point a, we must write herein

JT.: Y : Z=pa : qa : ra. As before, we have

PaX + QaY+RaZ = wa(xPa + y Qa + zRa)

- W (0CaPa + yaQa + ZaRa\

= - W {0CaPa + Va Qa + ZaP* + WaSa),

= — w . paa ;

and so for the other terms; the equation thus is

A *Jpaa + B \/pa/3 + G >Jpay = 0 ;

or forming the like equations in regard to the points b, c respectively, and eliminating

we have a determinant =0, and then, taking the norm, we obtain the above-written

equation of the surface.

34. Singularities. The equation of the surface shows that

(0) The point a is 8-conical: in fact, for the point in question we have

paa = 0, paj3 — 0, pay = 0 ; each factor is 0*, and the norm is 08.

(1) The line ab is 4-tuple. To prove this, observe that the sixteen factors are

obtained by attributing at pleasure the signs + , — to the radicals

Vpfr/3, Vpc/3, *Jpby, *Jpcy ; hence there are four factors in which Vp&/3, *Jpby

have determinate signs, but in which we attribute to the radicals

Vpc/3, Vpc7 the signs + or — at pleasure. It is to be shown that the

four factors each vanish for a point on the line ab ; that is, on writing

therein for #, y, z, w the values uxa + vwb, uya + vyb> &c« But we thus

{Surface abcapy.}
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have, as before, pact = — v . aba and pboi = u . aboL, with the like formula with

/3 and 7 in place of a. The factor thus becomes

V — uv Va&a, Va&a, *Jpca.

Va&/3, VafyS, Vpc£

Va&7, *Jaby, Vpcy

which vanishes, being — 01 ; and the norm is thus = 04, viz. the line is

4-tuple.

(2) The line ol is 8-tuple : in fact, for a point on the line we have paa — 0,

phot — 0, pea = 0, whence each factor vanishes, being =0% and the norm

is therefore 08.

(3) The line (ab} a, ft, 7) is 4-tuple: in fact, writing # = 0, iu = 0 for the

equations of the line, we have ha = 0, hp = 0, hy = 0, and zawb — zbwa = 0,

or say wa = \za, wb = \zb. Hence, writing

I=(g-\a)x-(f+\b)y,

viz. Ia — (ga — ^^a)oc — (fa + Xba)y, &c, for z = 0, w = 0, we have paa = zaIa>

pba = zbIa; and similarly paft = zaIpy pb/3 = zbIp, and pay = zaIy, pby = zbIy.

The factor thus is

*Jzazh vra, V/„, NpCOL

v^, ^h, */pc/3

>JTy, V/y, ^pcy

which vanishes, being = 01 ; there are four such factors, or the norm

is 04; whence the line is 4-tuple.

(8) The line abc.a.ft is a 4-tuple line. To prove it, take as before w = 0 for

the equation of the plane abc, and (z — 0, w — 0) for the equations of

the line in question. We have ha = 0, hp = 0, wa = 0, w& = 0, wc = 0 ;

whence (if 0 = 0, w = 0), writing for shortness I = gx—fy (viz. Ia=gax—fay,

I^=g^x—f^y), we have ^>aa, jp&a, pca = Iaza, Iazby IazCy and similarly

£>a/3, pb/3, pc/3 = Ipza, Ipzbi Ipzc: the factor thus is

*Jl*Za ,

^/pay , Vp67 , '\/pC7

which vanishes, being = 01 : and there are four such factors, obtained by

giving to the radicals the signs + , — at pleasure : hence the norm is

= 04.

{Surface abcafiy.}
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Surface aba/3y8.

35. The equation is

Norm {^Ipaa . pba . p2fiy8 — *Jpaj3 . pb/3 . p2y8a + \/pay . pby . p28a/3 — VpaS . pb8 . p2a/3y\ = 0,

where the norm is the product of 8 factors each of the order 3. As before, paa = 0

is the equation of the plane through the point a and the line a; viz. paa has the

value previously mentioned : and p2/3y8 = 0 is the equation of the quadric surface through

the lines /3, y, 8.

36. Investigation. In the projection, taking f, rj, £ as current line-coordinates, the

equation of the conic passing through the projections of the points a, b is

where A, By C are arbitrary coefficients. To make this touch the projection of the

line a, we must write f- : rj : £= Pa : Qa : Ra ; and then

PaZ + qaV + n^= PaPa + qaQa + raRa>

= wft (a? Pa + y Qa + z Ra)

— V) (%aPa+ Va Qa. + Za Pa),

= — W (0CaPa + yaQa + ZaRa + WaSa),

= — w. paa,

PbZ + qbV +nt=s -w .pba.

Hence the equation is

w p̂aa.pba + APa + BQa + CPa = 0 ;

and forming the like equations for the lines j3, y, 8 respectively, and eliminating, we

have

and similarly

= 0;p̂aa. pba, Pa} Qa, Pa

V'pa/3, pb/3, Pp, Qp, Rp

\lpay. pby, Py, Qy , Ry

»Jpa8.pb8, PB, Qs, P5

which, throwing out a factor w, becomes

*Jpaa . pboi ,p2/3y8 — Vpa/3 . pb/3 . p2y8a 4- \lpay .pby .p28a/3 — VpaS . pb8 . p2a/3y = 0 ;

or, taking the norm, we have the above written equation.

37. Singularities. The equation shows that

(0) The point a is a 4-conical point ; in fact, for the point in question we have

paa = 0, pa/3 = 0, pay — 0, pa8 — 0 ; each factor is = 0^, and the norm

is =04.

{Surface aba(3yd.}
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(1) The line ab is a 2-tuple line. To prove this, we have for the coordinates

of a point on the line in question uxa + vxb, uya + vyb, &c. ; the values

of pact, pba become as before — v . aba, + u . aba, and similarly for pa/3, pbj3,

&c. ; so that, omitting the constant factor V —uv, the value of the

factor is

aboi . p2/3yS — abj3 . p2ySa + aby . p2haj3 — abB . p2a/3y.

Taking (a, b, c, f, g, h) for the coordinates of the line ab, we have

aba = a/a + bga + oha + iaa + g6a + hca,

with the like expressions for ab/3, &c. ; and substituting for p2fiy$, &c, their values,

the factor is

y"> yz zx xy

fagh fabc fabg —fach fbch -fbcg fgh fhgh

ghhf gabc — gach gbch - gabf gcaf gchf hafg gahf

W$ habc habg — habf hcaf — hbcg hbfg

abhf acfg abch — abcg abfg + achf acgh abgh

bagh Wg — bach hcaf bchf bcgh + bafg bahf

cagh cbhf cabg — cabf chfg cafg cahf + cbgh

viz. the value of the factor is {&(fagh) + g (bagh) + h (cagh)} x2 + &c, where fagh =faa^gyhs

is the determinant

/ a> g> h

the suffixes in the four lines being a} /3, y, S respectively.

Collecting, this is

( • cbhfy — bcfgz +fabcw) ( . hy — gz + aw)

(- caghx . + acfgz + gabcw) (—hx . + fz + hw)

(+ baghx — abhfy . + habcw) ( gx — fy. + cw)

(- afghx - bfghy - cfghz . ) ( a# + by + c^ . )

+ &c#A[w(aa?-+b2/ + c#)--#( . h^ — g^ + a^)]

+ cahf[w(&x + by + cz) — y(—hx . + £s+bw)]

+ a&/# \w (&x + hy + cz) — z ( gx — iy . + cw)] = 0 ;

or, what is the same thing,

AP + BQ+CR + DS = 09

{Surface abcdap.}
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where

A = {— bcghx + cbhfy — bcfgz +fabcw},

B — {— caghx -f cahfy + acfgz + gabcw],

C = \+ baghx — abhfy + abfgz + habcw},

D = {— afghx — bfghy — cfghz + (bcgh + cahf-h abfg) w],

P — ( . hy — g£ + aw),

Q = (- ha? . + & + hw),

R = ( g# — ft/ . + cw),

$ = ( &x +by + cz . ) = 0,

the right-hand factors vanishing for the values uxa + vxb of the coordinates.

38. It thus appears so far that the factor is = 01 ; it is, in fact, = 02, viz. we

can show that, operating upon it with

A = Xdx + Ydy + Zdz+ WdW)

the value (for any point of the line ab) is =0. We have

A *Jpaa .pba .p2/3y8 = -—* ^ = p2/3yS + *Jpaa .pba . A .p2/3y8,

2vpaa . pba

where Ibct {— Apba) is what pba. becomes on writing therein (X, F, Z, W) in place of

(x, y, z, w). Writing, as before, for x, y, z, w the values uxa + vxb, &c, we have

paa = — v . aba, pba = u . aba ; and putting for shortness

— v.lba + u. laa = lka} &c,

the expression in question, divided by V — uv, is

= - 2vu {aba . Ap2/3yh - &c.}

+ {Ika . p2/3yS - &c.},

where, denoting the determinants

X Y Z W

uxa-vxb, uya-vyb, uza-vzb, uwa-vwb

by (a7, b', c', f, g', h'), we have

Ika = a'fa + b'f« + c'ga + faa + g'ba + h'ca.

But a&a . Ap2/3y$ — Aaba . p2fiy$, since aba is independent of (%, y, z, w); and the

expression is

= - 2vuA (AP + BQ + CR + DS)

+ AP' + BQ'+CR' + DS\

{Surface abcdap.}
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where F, Q', R, S' denote h.'y — g'z + afw, &c., and where, finally, x, y, z, w are to be

replaced by uxa + vxb) &c. Since for these values P, Q, Ry S vanish, the expression

becomes

= - 2vu (A&P + B&Q + CAR + DAS)

+ AF+BQ' + CR' +DS';

that is

= A {P' - 2uvAP) + B(Q'- 2uvAQ) + C(R'~ 2avAR) + D (S' - 2uvAS)

and we have, in fact, F — 2iwAP = 0, &c. For, writing for a moment

x, y, z, w = uxa + vxb, uya + vyb, uza-\-vzb, uwa-\-vwb,

x\ y\ z\ w' = uxa-vxb, uya-vyb, uza-vzby uwa-vwb\

then, for instance,

where

and thence

S' = a!x + Vy + cz,

a', b', c' = Yz' - Zy\ Zx' - Xz, Xy' - Yx ;

X, F, Z

oo , y , z

x', y', z'

= 2uv(&X + bY+cZ)

= 2uvAj8T;

and similarly for the other equations. The factor is thus = 02 ; there is only one such

factor, and the line ab is double.

(2) The line a is an 8-tuple line: in fact, for a point on the line we have

paa = 0, pba = 0, p2ySa = 0, p2Saft = 0, p2afty = 0 ; and the factor vanishes, being = 01.

Each of the factors is 01, and the norm is = 08.

39. (3) The line [ab, a, ft, y] is a double line. To prove this, observe first that

for a point on this line we have p2afty = 0.

Taking as before z = 0, w = 0 for the equation of the line ab, a, ft, y, we have

ha — 0, hp = 0, hy = 0, and zawb- zbwa=0; or say wa = Xza, wb = \zb; whence, writing for

shortness I= — (g — \a) x + (f+ \b) y, viz. Ia = — (ga — ^&<x) os + (fa + \ba) y, we have (when

z — 0, w = 0)paa — zaIa,pba = zbIa) or omitting the factor ^zazb, ^1paa . pba = Ia ; and so

for ^paft.pbft and ^Jpay.pby. The factor thus is

Ia . p2fty$ - 1? . fySa + Iy . p2Saft ;

viz. writing z = 0, w = 0 in the expressions of p2ftyS, &c, this may be written

X [(g -Xa)x- (/+ Xb) y] {(agh) x> + [(ahf) + (bgh)] xy + (bhf) y%

where observe that 2 denotes a sum of three terms of the form

a.ftyS-ft.ySa + y.Saft.

{Surface abcda(3.}
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Adding thereto a fourth term — 8 . a/87, the value of the sum would be = a/3y8, or

the sum of the three terms is == ajSyS + 8 . a/37, where the symbols represent deter

minants. But in each case the determinant a/3y is = 0, as containing the column

ha, hp, hy, the terms of which are each =0: thus %g . agh is = gagh — g8 . agh, where

in gagh the suffixes are a, /3, 7, 8, and in agh they are a, /3, 7 : that is, we have

Xg . agh = gagh. And the whole expression thus is

= xd (gagh — Xaagh)

+ °°2y (gahf— Xaahf+ gbgh — Xabgh —fagh — Xbagh)

+ xy2 (gbhf — Xabhf —fahf — Xbahf—fbgh — Xbbgh)

+ f ( -fhbf-Xbbhf),

where gahf denotes the determinant , a, h, f , with the suffixes a, /3, 7, 8, in the

four lines respectively, and so in other cases : the terms, such as gagh, which contain

a twice-repeated letter, vanish of themselves ; and in the coefficients of x2y and xy2, the

terms which do not separately vanish destroy each other in pairs, gahf—fagh = 0, &c. ;

whence the factor vanishes, being =01; there are two such factors (viz. the zero term

*Jpa8 .pb8 .p2a/3y may be taken with the sign + or — at pleasure), and the norm is thus

= 02.

40. But the line is tacnodal, each sheet of the surface touching along the line in

question the hyperboloid p2a/3y. To prove this, write

A = X8x+Y8y + Z8z+W8w;

we have for the hyperboloid, writing z — 0, w = 0,

Ap2a(3y = (afg . x + bfg . y)Z+(abg . x - abf. y) W;

and it is to be shown that

A (\/paa . pba . p2j3y8 — Vpa/3 . pb/3 . p2y8a + *Jpay . pby . p28a/3 + VpaS . pb8 . p2a/3y)

each contain the factor Ap2af3y ; or, what is the same thing, that

A2 \fpaa . pba ,p2/3y8

contains the factor in question, S denoting the sum of the first three terms of the

original expression. The value is

\ 2 wpaa. pba '

where Paa, = Apaa, denotes what pact becomes on writing therein X, T, Z, W for

x, y, z, w ; and the like as to Pba. Substituting for paa and pba their values zaIa and

Zyla, and multiplying by ^/zazb, the expression is

= Z {{zaPba + zhPaa)p2$y8 + 2zazbIa Ap2/3y8],

{Surface abcdap.}
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where we have

zaPbct + zbPaa

= zb {xa (Zga - Waa) + ya (- Zfa - Wba) + za [X (- #a + Xaa) + F(/a + \ba) + (\Z-W) ca]}

+ za {xb (Zga - Waa) + yb (- £/tt - Wba) + zb [X (- ga + \aa) + F(/tt + \ba) + (\Z - F) cj},

= 0&#a + #a«%) ( Zga - TFaa)

+ (Wo + *(#&) (" ^/a - Wba)

+ 2*a*& {X (- ga + \aa) + Y (fa + Xba) + (XZ - F) ca}.

Also

zazbIa = sas6 {(- #a + \aa) x + (fa + \ba) y],

p2/3yS = x2 . a^A + xy (ahf + fy/A) + y2 . hbf

Ap2j3y8 = X.(2x.agh + y (ahf+ bgh)

+ Y.x (ahf+ bgh) + 2y . hbf

+ Z.x(cgh+afg) + y(bfg+chf)

+ W. x (abg — cah) + 2/ (^ ~ °bf)*

41. The whole expression is a linear function of X, F, i?, TT, and it is easy to

see cb priori, or to verify, that the coefficients of X> Y, each of them vanish. The

coefficient of Z is

= 2 {(zbxa + zaxb) ga - 0^+ zayb)fa + 2\sas5ca} ^78

+ %zazb [(- #a + \aa) x + (/a + \&a) y] [x (cgh + q/#) + y (bfg + c//)],

with a like expression for the coefficient of W.

The foregoing expression may be written

(zbxa + zaxb) 2 # [agh . #2 + (a//+ bgh) xy + bhf. y2]

- {zbya + ^y6) %f\agh . ^2 + (>//+ 6^) xy + 6A/. ?/2]

+ 2\zazb 2 {c [a#A . #;2 + (>//+ 6^A) ^ + bhf. y2]

+ (aa? + by) [(cgh + afg) x + (bfg + chf) y]}

+ 2zazbt (- gx +fy) [(cgh + afg) x + (bfg + eft/) y].

The first sum is

#2 . gagh + ay (#aft/+ gbgh) + y2 . #&//

= -h8y(afg.x + bfg.y)]

where o/#, 6/^r denote determinants with the suffixes a, /?, 7. Similarly the second

sum is

= -hx(afg .x + bfg.y);

the third sum is

(asx + bBy) (afg .00 + bfg. y),

and the fourth sum is

(- gsoo +f8 y) (afg .x + bfg. y).

{Surface abcda(3.}
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The whole coefficient of Z thus contains the factor (afg . x + hfg . y) ; and similarly it

would appear that the whole coefficient of W contains the factor (abg , x — abf'. y)9 the

other factor being the same in each case ; viz. the two terms together are

+ (ZbVa + ZaVb) ^SX

« > A{Z(afg-a> + bfg.y)+W(abg.v-abf.y)}-,

+ Zkzazb(a8x + b8y) '

\ + 2zazb(-gsx+fdy),

where the second factor is Ap2afiy, which is the required result. See post, Nos. 59

et seq.

42. (4) The line [a, /3, 7, 8] is an 8-tuple line ; in fact, for any point of the

line in question we have p2/3y8 = 0, p2y8a = 0, p28a/3 = 0, p2a/3y = 0 ; whence each factor

is 01, or the norm is 08.

I notice that the surface meets the quadric p2aj3y in

lines a, /3, 7 each 8 times 24

„ («, A 7, 8) „ „ 16

„ (aft, a, ft 7) „ 4 „ 8

24 x 2 =48

Surface aaftySe.

43. The equation is

(p2a/3e . jp^Se . p3accy . S/3 + p2OLye . p28fie . psaot/3 . 7S)2

— 4p2afte . £)27(5e . p2a7e . £>2S/3e . p2a(3y . jp3Sfty . pact . £>Sa = 0 ;

or, what is the same thing,

(p2a/3e . p2y8e.pzaay . 8/3 —p2aye .p28/3e . p2aaj3 . 7S)2

— 4p2afte . ptySe . p2«7e . p28j3e . _p2/3aS . p27«S . pfia . £>7a = 0 ;

the equivalence of the two depending on the identity

p*aaj3 . 7S . pzaay . 8/3

— p2a/3y . p28/3y . £>aa . p8a

-f p2/3aS . p27«S . £>/3a . jp7<3 = 0 ;

where, as before, p2a/3e = 0 is the equation of the quadric through the lines a, ft e,

and pact = 0 is the equation of the plane through the line a and the point a ; viz.

p2aj3e, &c, and pact, &c, have the values already mentioned: pdaa/3.y8 = 0 as already

mentioned is the cubic surface through the lines a, ft 7, 8 and oaft (278.

{Surface aapyde.}
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44. Investigation. In the projection, using line-coordinates, the equation of the

conic touching the five lines may be written

(£, v, ?)3

(p, q, zy

0;

where the symbol denotes a determinant the last five lines of which are obtained by

giving to (P, Q, R) the suffixes a, ft, 7, 8, e respectively. This is at once transformed

into

afte . y8e . ayA . 8ftA - aye . 8fte . aftA . 7SA = 0,

or, what is the same thing,

p2afte . p2y8e . (fryA . 8/3A - p2aye . p2S/3e . aftA . 7SA = 0 ;

or say

p2afte .p2y8e (A"% + £"77 + C"£) (A'"% + #"17 + C'"0

-p2aye . p2S/3e (4f + BV + C£) (4'f + JB^ + 0'£) = 0 ;

where p2afte, &c, signify as before ; and

A£+BV + CS =

-La i *%a ? -Eva

Pp> Qp> Up

and so for A'% + B'tj + C'%, &c., the suffixes for .A', 23', C" being (7, 8) ; and those for

4,,f+jB/,^ + 0/,C and ^L,,,f + jB/,,i7+a,,,C being (a, 7) and (8, ft) respectively/

45. Passing to the reciprocal equation, and making the conic pass through the

point a, we obtain the equation of the surface in the form

{p2aye .p28fte Pa> Qui ^a

A, B, C

A\ B\ C

+ ^p2aye .p28fte .p2afte ,p2y8e

— p2afte « p2y8e Pa j §a > ^a

A", B", G"

A'", B'", G"

Pa, qa> ra

A, B , G

A", B", G"

Pa

A'

A'"

B' , G'

B'", G'"

= 0;

or in the equivalent form, where in the first term we have + instead of — , and

in the second term the determinants are

Pa > Qa > ra , Pa ■> Qai ra

A , B , C A', B'} C

A'", BT\ Gm A\ B", C"

46. To reduce this result, observe that we have

A, B, G= hy — gz + aw, — hx +fe +bw, gx —fy + cw

h'y — gz + o!w, — h'x +fz + b'w, g'x —fy + c'w

{Surface aafiyde.}
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where, for convenience, I retain the unaccented and accented letters (a, .-..), (a',...)

instead of these letters with the suffixes a. and /3 respectively. Writing as before

L =(af-a'f)x+...

M = {ag — a'g) x + . . .

N =(ah'-a'h)x + ...

Q, = (gti — g'h)xJr ...

then

A = £lx — Lw,

B = % - Mw,

C =£lz - Nw,

and similarly

A' = Qfx — 2/w,

where for Z', M\ N\ fl' we have (a", ...) and (a'",...). Hence

BC'-B'C = w y , z , w

m\ isr, n'

with like expressions for (M' — O'J. and AB' — A'B\ and substituting, we have

Pa) Qai ^a>

X , ^ , £ , W

z, if, jt, a

27, if7, N\ Q!

or substituting for pa, qa> ra their values xwa—wxa, ywa — wya, zwa — wza, this is

Pay qa> ^a =-W2

4, B, G

A', B\ C

L\ M\ N', nf

whence, omitting the factors w2, the equation is

Pa, qa> ra = w

A, B, G

A', B', C

X ,
y . z , w

®a) Va, za > Wa

L, M, N, a

{p20Lye .p28/3< x , y , z , w

%ai i/a > za •> ^a

L, M, n, n

L\ M\ N\ of

+ 4*p2a<ye . p2S/3e . p2a/3e . p2ySe

— p2aj3e . p2ySe x , y , z , w

%a > Va i za > ^a

£", if", ir, 12"

L,

y

Va

M

z , w

Za , Wa

N , D,

M"\ N'", a"

00 > y > % }

®a •> Va i %a >

L' , m' , w ,

L", M", N", a"

w

Wa

Q'

M" W", Q"

{Surface aaf}y8e.}

C. VIII.

o,

17
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where I recall that for (i, ...), (L\ ...), (L", ...), (2/",...) the suffixes are (a, /3), (7, 8),

(a, 7), and (8, /3) respectively. The values of the first two determinants thus are

p3aa/3 . 78 and p3aay . 8/3 respectively : that of the third is p3aafi . ay ; viz. this is

=p2a/3y . paa ; similarly, that of the fourth is p3ay8 . 8/3, which is = —p3a8y . 8/3 = +p3a8/3.8y ;

or finally this is — p28/3y.pa8t And we have thus the before-mentioned equation of the

surface.

47. Singularities. The equation of the surface shows that

(0) The point a is a 2-conical point: in fact, we have for this point p3aa/3 .78 = 0,

p3aay . 8/3 = 0, paa = 0, pa8 = 0.

(2) The line a is a 4-tuple line : in fact, for any point on this line p2a/3e — 0,

p3aa/3 . 78 = 0, p2aye = 0, p3aay .8/3 = 0, p2a/3y = 0, p2aa = 0.

(4) The line (a, /3, 7, e) is a 2-tuple line: in fact, for any point on the line

we have p2aj3e = 0, p2ocj€ = 0.

(10) The excuboquartic a/3e.y8.a is a simple curve: in fact, for any point of

this curve we have p2a/3e = 0, p3aaj3 . 78 = 0, these two surfaces inter

secting in the lines a, /3 and the curve. It is, moreover, obvious that

the surface is touched along the curve by the hyperboloid p2a/3e.

I notice that the surface meets the quadric p2afty in

lines (a, /3, 7)' each 4 times, 12

„ (a, /3, 7, 8) „ twice, 4

» .(«> 0, y> O » » 4

curve aa/37 . Se „ „ 8

14x2 = 28

Surface af3y8e£.

48. The equation of the surface may be written

p2a(3e . p2y8e ,p2ay% . p28i3^-p2a/3^.p2y8^ . p2aye .p28/3e = 0,

where p2a/3e = 0 is the equation of the quadric through the lines a, /3, e ; viz. £>2a/3e

has the value already mentioned.

The form is one of 45 like forms depending on the partitionment

ay. 8/3 r(e, O

a8.(3y)

of the six letters.

{Surface a(3y8e£.}
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49. Investigation, The projections of the six lines are tangents to a conic: the

condition for this is (P, Q, R)2 = 0, where the left-hand side represents the determinant

obtained by writing successively (Pa, Qa, Ra), &c. for (P, Q, R). The equation may be

written

afie . 7§e . ay£ . S#£— afi%. 78 £. aye . Sfiy — 0,

where

Ctfie = Pa, Qa, Ra

P/3, Qfiy Rp

and substituting for Pa, &c, their values, we have afie = w . p2afie ; whence the fore

going result.

50. Singularities. The equation shows that

(2) The line a is a 2-tuple line: in fact, for each point of the line we have

p2afie = 0, p*ay£ = 0, p2afi£= 0, p2aye = 0.

(4) The line (a, /3, e, f) is a simple line : in fact, for each point of the line

we have p2afie = 0, p2afi% — 0.

(9) The quadriquadric afie. 70^= 0 is a simple curve on the surface: in fact,

for each point of the curve we have p2afie = 0, p2yS^—0.

It may be remarked that the surface meets the hyperboloid p2afie in

lines (a, fi, e) each twice, 6

v («, A e, 7) once, 2
??

» (a, A <?> S) 2»

» O, A e, 0 2
j>

curve afie. 78£ 4
35

2x8 = 16

51. It might be thought that there should be on the surface some curve afiy8e%,

such as the cubic abcdef on the surface abcdef; but I cannot find that this is so.

The equation of the surface is satisfied if we have simultaneously (X being arbitrary)

p2afie . p2ay£ — \p2afi£ . p2aye = 0,

\p2ySe .p28fit;- p2y8£ . p2Sfie = 0 ;

which equations represent quartic surfaces, the first of them having a for a double

line, and passing through the lines fi, 7, e, f (13 + 4 x 5 = 33 conditions, so that the

equation of such a surface contains only an arbitrary parameter X); and the second

having S for a double line, and passing through the lines fi, 7, e, £ But I see

no condition by which X can be determined so as to have the same value in the

two equations respectively. Of course, leaving it arbitrary, the two quartic surfaces

intersect in the lines fi, y, e, f an(i i*1 a curve of the order 12 depending on the

arbitrary value of X, which curve lies on the surface afiySe^.

{Surface afiyde?.}

17—2
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The Excuboquartic a/3% Se, a.

52. The notion is, that we have a fixed point a, two fixed lines 8, e, and a

singly infinite series of lines, or say the generating lines of a skew surface : each

generating line determines, with the point a, a plane ; and if in this plane we draw,

meeting the lines 8, e, a line to meet the generating line in a point P, then the

locus of this point P is the curve about to be considered.

53. In the case in question, the singly infinite series of lines is that of the lines

which meet each of the lines a, /3, 7, or say these are the generatrices of the hyper-

boloid a/3y: the locus, or curve afiy, Se, a, is (as mentioned above) an excuboquartic.

It is not necessary for the purpose of the memoir, but it is interesting to consider in

conjunction therewith the excuboquartic arising in like manner from the directrices of

the hyperboloid; it will appear that the two curves are the complete intersection of

the quadric a/3y by a quartic surface. Observe that the two curves are given as

follows: viz. considering for the quadric a(3y any tangent-plane through the point a,

and drawing in this plane, to meet the lines 8 and e, a line, this meets the section

of the quadric surface by the tangent-plane in two points, the locus of which is the

aggregate of the two curves: viz. the section being a line-pair, the two points belong,

one of them to a generatrix and the other to a directrix of the quadric surface.

54. It is convenient to take x = 0, y = 0 for the equations of the line 8 ; z = 0, w = 0

for those of the line e : for then, for any plane Ax -f- By + Gz + Dw = 0, the line in this

plane and meeting the lines 8 and e, has for its equations Ax 4- By = 0, Cz + Dw = 0 ;

or, what is the same thing, for the plane P = 0 the equations of the line are

Pxy=0, Pzw = 0, where Pxy> Pzw denote the terms in x, y and in z, w respectively.

I take also x0, y0y z0, w0 for the coordinates of the point a, and PS—QR = 0 for

the equation of the quadric surface, P, Q, Ry S being given linear functions of (x, y, z, w) :

we have then say P — 6R = 0, Q— 0S = O for the equations of any generatrix, and

P — (f)Q = 0, R — <j>S = 0 for the equations of any directrix of the hyperboloid.

The equation of the plane through the point a and the generatrix P — 6R = 0,

Q^0S = O} is clearly

(Qo-0So)(P -0R )-(Po-0Ro)(Q -0S ) = 0;

so that for the line in this plane, meeting the lines 8 and e, we have

(Q0 - 0SO) (Pxy - 0Rxy) - (P0 - #Po) (Qccy - 08xy) = 0,

(Qo — 0S0) (Pzw — 0RZw) — (Pv— 0-Ro) (Qzw ~ 0SZW) = 0 ;

and joining thereto the equations

n ■£_ y -L%y T ± zw tyxy t *%zw

±t o -£v%y ~T J^zw J^xy T" -ttzw

(equivalent in all to three equations,) the elimination of 0 gives the required curve :

the equations thus are

P^f_QP = 0,

(Q0S — QS0) {PxyR — PRXy) — (PqR> — -P-Ro) (QxyS — QSxy) = 0,
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or, as the second equation may also be written,

Wo^ "~~ y^o) \-Lxy-tizw ~~ -Lzw-ttxy) ~~ (•* o ** ~~ ■*■**<)/ (Slxy&zw "~~ Hzw^xy) == " 5

viz. the second equation represents a cubic surface having upon it the lines (P = 0, R = 0)

and (Q = 0, $=0): it therefore intersects the quadric PS — QR = 0 in these two lines,

and besides in an excuboquartic curve, which is the required locus.

55. Representing the determinants

P 9 Q , R , S

xyi *%xy > J^xy ) Say.

HZW) -^ZWi &Z1

by (a', b', c', f, g', h'), viz. a' = QP0-Q0P,...

f = PS0- P0S, ... ;

by (a, b, c, f, g, h ), viz. a =QxyRzw- QzwRxy,

so that (a',...) are linear functions, (a,...) quadric functions, of the coordinates; the

equation of the cubic surface is gb' — bg' = 0, viz. the excuboquartic arising from the

generatrices is the partial intersection of the quadric PS — QR = 0 and the cubic

gb' — g'b = 0 ; the two surfaces besides intersecting in the lines (P = 0, P = 0) and

(Q = 0, flf = 0).

It appears, in the same manner, that the excuboquartic arising from the directrices

is the partial intersection of the quadric PS — QR = 0 and the cubic he' — ch' = 0 ; the

two surfaces besides intersecting in the lines (P ==■ 0, Q = 0) and (R = 0, S = 0).

56. But the elimination may be performed in a different manner, as follows:

from the first two equations in 0, multiplying by Pzw, —Pxy and adding, and so with

Qmi — Qxy> &c., we obtain

(Qo - 0S0) ( - 0b) - (P0 - 0PO) (- c + 0f ) = 0,

(Qo - ftSo) ( c + 0a) - (P0 - 0RO) ( 0g) = 0,

(Qo-0So)(-h ) - (Po-0Po)( a+0h) = O,

We then have

(Qo-ftSo)( f-0h) - (Po-ORo)( g

- c + 0f c + 0a

)=0.

0:
a + ^h f_0h'

or, what is the same thing,

h02 + (a - f) 0 + c = 0.

Using this equation, written in the form (a + 0h) 0 = — c + 0f, to transform the first or

third of the four equations in 0, we obtain

-aPo-bQo-cPo+0(-hPo . + fP0 +b£0) = 0;

and using the same equation, written in the form (f— 0h)0 = c + 6

second or fourth equation, we obtain

to transform the
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and hence, eliminating 0, we obtain

(hQ0 - gP0 + a£0) (- aP0 - bQ0 - cP0) - (- hP0 + ffi0 + hS0) (gP0 - fQ0 . + cSQ) = 0,

which, as being of the second order in (a, ...), represents a quartic surface. The

equation remains unaltered by the interchange of Q, R, and the consequent interchanges

among (a, b, c, f, g, h) : hence the quartic surface contains not only the excuboquartic

arising from the generatrices, but also that arising from the directrices ; and these

two curves are the complete intersection of the quartic by the quadric PS — QR = 0.

57. I obtain this same result also as follows. Consider a point (P1} Qlf Rly S±)

on the quadric surface; PiSi— Q1R1 = 0; the tangent plane at the point is

PS1-QRl-RQ1 + SP, = 0;

and if this passes through the point a, then

Po81-QoBl-B0Q1 + S0P1 = 0.

The line which in the tangent-plane meets the lines S, e is given, as before, by the

equations

■Lzw^i Hzw-^i J^zw^li ~r &zw-Li = U.

Remembering the significations of (a,...), the last three equations give

& : Hi ' -ft : -Pi= • hQ0-gP0 + a£0

-hP0 . +fP0 + b>Sf0

gP0 -fQ0 . +c#0

- aP0 - bQ0 - cP0 . ;

and substituting these values in S1P1 — Q1R1 — 0, we have the above equation of the

quadric surface.

58. Or again, changing the notation, I take the equation of the quadric surface

to be

(a , b , c , d , /, g , h , I , m , n ~§x} y, z, w)2 = 0.

A tangent-plane hereof is

%x + rjy + tz + cow = 0,

where £, 77, £, o> are any quantities satisfying the relation

(A, B, G, D, F, G, H, L, M, &§&, v, £ o>)* = 0,

the capitals denoting the inverse coefficients.

Supposing that the tangent-plane passes through a fixed point a, coordinates

(a, /3, 7, 8), we have
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and if the equations of the lines 8, e are as before (x = 0, y — 0) and (z = 0, w = 0) ;

then for the line in the tangent-plane meeting the lines S, e, we have

%x + rjy — 0, %z + o)W = 0.

These last equations may be represented by

^=ly, 7) = — l%, ^=mw, co = — mz;

and, substituting these values, we have

(A,...l$ly, — Ix, mwy — mz)2 = 0,

(a , ...][fo/, — lx, mw, — mzf = 0,

that is

(Ay2 - 2Hxy + Bx\ - Fxw + Oyw - Lyz + Mxz, Gw2 - 2Nwz + Bz2Jl, m)2 = 0,

and

(ay — fix, yw — 8z][l> m) = 0.

Whence, eliminating Z, m, we have the quartic equation

(Ay2 - 2Hxy + Bx2, - ifow + Gfyw - Lyz + ilfe, CW - 2Nzw + Dz2\yw - 8#, #» - a?/)2 = 0.

Further Investigation as to the Surface abafiyS.

59. The theorem that in the surface abafiyS, the equation of which is

Norm {\/paa . pba . p2/3y$ — \lpaft .pb/3 . p2y8a + ^fpay.pby . p28a/3 — *Jpa8 .pbS . p2a(3y\ = 0 ;

the lines (ab, a, {3, y) are tacnodal, each sheet touching along the line the quadric

p2a/3y, may be proved in a different manner by investigating the intersection of the

surface with the quadric p2afiy.

For this purpose take the equation of the quadric to be yz — xw = 0 ; the equations

of the lines a, /3, y will be

z -Xaw = 0\ /z — \pw=0\ fz — Xyw=0

x — Xay = 0/ \x — Xpy = 0/ \x — Xyy = 0,

and we may write (a, b, c, f, g, h) for the coordinates of the line S. The equation of

the surface will be

Norm •! 2 [± Vpaa .pba (\p — Xv) / (a —/) xz — (Xp + Xy) yz + XpXyyw \ ]

+ (& ~~ #) ^0 ^y (y# — #w)

+ c (# — X/3 w) (z — Xyw)

+ h (x— X$y)(x — \yz ) j

- y/paS . pbS (Xp - Xy) (Xy — Xa) (Xa — Xp) (yz — xw)l ;
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where 2 denotes the sum of the three terms obtained by the cyclical interchange of

a, /3, 7; and

pact = (za - Xwa) (x - Xy) - (xa - Xya) (z - Xw),

pba = (zb - Xwb) (x - Xy) - (xb - Xyb) (z - Xw) ;

X here standing for Xa ; and similarly for paft, &c.

60. To obtain the intersection with xw — yz = 0, writing w=~, then

paa = [za -Xwa-- (xa - Xya)] (x - Xy), (X = Xa),
x

pba = [zb - Xwb --(xb- Xyb)] (x - Xy) ;

x

or say

*Jpaoi . pba = Vifa (# — Xay);

also the expression in { } becomes

" Ka "^ ~x + ° i + A' ^ " ^y} ^ "" xv2/) ;

so that the norm in question is

Norm Z^Wa(Xe-Xy){(a-f)Z- + c^2 + h}(x-Xay)(x-Xpy)(x-Xyy);

or say

Norm 2 ViK (\p - Xy) {hx2+ (a-f)zx + c*2} (a? - Xay)(x - X^) (a? - Xyy) ;

where i!fa is now considered to stand for

{(zax - zxa) - X (wax - yaz)} {(zbx - zxb) - X (wbx - ybz)}.

Observing that the norm was originally the product of 8 factors, this breaks up into

{hx2 + (a -f)zx + cz2}8 {(x - Xay) (x - \py) (x - Xyy)}* = 0,

and

Norm2 \IWa (\fi - Xy) = 0,

where the new norm is the product of 4 factors.

61. Writing for greater convenience X, p, v in place of Xa, Xp, Xy, and observing

that Ma is a quadric function of Xa, that is of X, the last-mentioned norm is

Norm *s/A + £\ + UX*(p -v),

which is easily seen to be

= (4AO- B2) (fi - v)2 (v - X)2 (X - fi)2 ;

or writing for a moment

(A + BX + OX2) = (P - QX) (F - Q'X),
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whence

then

and we have

whence

A=PF, B = -(PQ' + FQ), C = QQ';

4*AC-B* = -(PQf-P'Qy\

P, Q = zax-zxcti wax-yaz,

P'> Q, = zbx-zxb, wbx-ybz,

PQ! - P'Q = {zaWh - ZbWa) X2

+ fyaPb - VbZa - (XaWb - 0CbWa)} XZ

+ (paVb - %hya) z2 ;

viz. if (a, b, c, f, g, h) are the coordinates of the line ab, this is

= hx2 + (a - f) xz + cz2.

Hence, omitting the constant factor (fi— v)4(v— \)4 (\— (jl)4- {that is (A^— Xy)4(XY — Aa)4(A,a — \p)4},

the foregoing equation norm2 — 0 becomes

[hx2 + (a - f) xz + c^2]4 = 0,

and the intersections of the quadric with the surface are obtained by combining the

equation xw — yz = Q with the several equations

{htf2 + (a - f) zx + C52}8 = 0,

{0 - \ay) (x - \py) (x - \y)}8 = 0,

{hx2 + (a - f) zx + cz2}* = 0 ;

viz. these are

lines (a, ft, 7, S) each 8 times 16

line (0 = 0, z = 0) 16 „ 16

lines a, ft, y each 8 „ 24

line (x = 0, y=0) 24 „ 24

lines [ab, a, ft, 7] each 4 „ 8

line (x = 0, z = 0) 8 „ 8

(16 + 24 + 8) x 2 = 48 + 48

But it is clear that the lines (x = 0, y = 0) and (x = 0, z = 0) are introduced by the

process of elimination, and are no part of the intersection. The complete intersection

consists of the lines (a, ft, <y, S) each 8 times, the lines (a, ft, 7) each 8 times, and

the lines [ab, a, ft, 7] each 4 times. But the last-mentioned lines being only double

lines on the surface, this means that the two sheets each touch the quadric surface,

or that the lines are tacnodal.

C. VIII.
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504.

ON THE MECHANICAL DESCRIPTION OF CERTAIN SEXTIC

CURVES.

[From the Proceedings of the London Mathematical Society, vol. iv. (1871—1873),

pp. 105—111. Bead April 11, 1872.]

The curves in question mighfc be taken to be those described by a point G

rigidly connected with points A and B, each of which describes a circle: but the

construction is considered under a somewhat more general form. I consider a quadri

lateral, the sides of which are a, b, c, d> and the inclinations of these to a fixed line

a> ft, y, S. This being so, if a, b, c, d, and one of the angles, say S, are constant, then

we have between the three variable angles the relations

a cos a + b cos /3 + c cos y + d cos 8 = 0,

a sin a + b sin f3 + c sin y + d sin S = 0,

giving rise to a single relation between any two of the variable angles ; and we con

sider a curve such that the coordinates at, y of any point thereof are given linear

functions of the sines and cosines of the three variable angles, or, what is the same

thing, of the sines and cosines of any two of these angles. We thus unite together

what would otherwise be distinct cases ; for everything is symmetrical in regard to the

sides a, b, c and the corresponding variable angles a, ft, y, irrespectively of the order

of succession of these sides : and we can thus, in the discussion of the curve, employ

any two at pleasure, say a, /3, of the variable angles, without determining whether the

sides a, b are contiguous or opposite.

Eliminating, then, the variable angle y, we obtain between a, /3 a relation which,

if we write therein tanja = ^, tan|-^8 = ,y, takes the form (*^, l)2 (v, 1)2 = 0; viz. either

of the variables u, v is expressible rationally in terms of the other of them and of the

root of a quartic function thereof; say v is a rational function of u and sjU. And
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hence a curve for which the coordinates x, y are rational functions of u, v, is a curve

having a deficiency D = 1, or, what is the same thing, having a number of dps. less

by unity than the maximum number {= \ (n — l)(n— 2), if n be the order of the curve}.

It will further appear that the relation (*$w, 1)2X^> l)2 = 0 is satisfied by the

values u = v — i and u = v=—i (if, as usual, i = V — 1).

In the curve in question, the coordinates (x, y) are given linear functions of the sines

and cosines of a, ft ; and if we make the curve meet an arbitrary line Ax + By -h G=0,

we obtain between the sines and cosines of a, /3 a linear relation which, substituting

therein the expressions in terms of u, v, takes the form

(*$>, l)8.(l + ^) + (*]j>, l)2.(l+<>=0,

viz. this is a relation of the form (f$u, l)2(v, 1)2 = 0, such that it is satisfied by

the four sets of values u = ± i, v = ± i, and therefore in particular by the values

u = v = i and u = v = — i.

Hence, considering the intersections of the curve by the arbitrary line, the values

of (u, v) are given by the two equations (*$w, l)2^, 1)2 = 0, (f$u, l)2(v, 1)2 = 0; these,

regarding for a moment u, v as ordinary rectangular coordinates, represent each of them

a quartic curve having two dps. at infinity on the axes u = 0, v = 0 respectively : each

of these points reckons therefore as 4 intersections, and the number of the remaining

intersections therefore is 4.4—2.4, =8. But, by what precedes, the two quartic curves

have also in common the points u = v = i and u=v = — i\ and rejecting these, there

remain 8 — 2, =6 intersections.

The conclusion is, that the curve is a sextic curve of deficiency 1, that is, having

9 dps. The reasoning may be presented under a slightly different form as follows :

regarding u, v as coordinates, we have the curve (*$/m, l)2 (v, l)2 = 0, a binodal quartic

curve, and having therefore the deficiency 1 ; the curve passes, as above-mentioned,

through the points v. = v = i and u = v = — i. The required curve is obtained as a

transformation of the quartic curve by formulae of the form x : y : z (= 1) = P : Q : R,

where P, Q, and R {= (1 + vf) (1 + v2)} are quartic functions of the coordinates u, v,

such that P = 0, Q = 0, R = 0 are each of them a quartic curve passing twice through

each of the nodes and once through each of the before-mentioned points, (u = v = i)

and (u = v = — i), of the binodal quartic curve. Hence the curve in question is a curve

of the order 4.4 — 2.4 — 2.1, =6, and having the same deficiency as the binodal

quartic, that is, the deficiency is = 1.

I observe that the sextic curve does not, in general, pass through the circular

points at infinity, but it intersects the line at infinity in three distinct pairs of points ;

one of these, or all three of them, (but not two pairs only,) may coincide with the

circular points at infinity, the circular points at infinity being, in the latter case, triple

points, or the curve being tricircular : this will appear presently.

To obtain the foregoing equation (*][w, l)2 (v, 1)2=0, the elimination of y gives

(a cos a + b cos ft + d cos S)2 + (a sin a + b sin /3 + d sin S)2 = c2,

18—2
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that is

a2 + 12 _ C2 + d2 + 2ab cos («-/?) + 2ad cos (a - S) + 2&d cos (/3 - 8) = 0 ;

or, substituting herein the values

cosa =
1-u2

1+u5

this is easily found to be 0

1

1

2v

, sm a =
2t£

: 1 + i65

. 1-t;2 . - 2v
2 , cos p = ^-^ , sm 0 --—

1 -M2
1+^2

2u

(a + b)2-2(a+.b)d cos 8 + d2 - c2 2ad sin 8 (a - 6)2 + 2 (a- b) dcosS + d2- c2

25c? sin 8 2&6 2bd sin 8

(a -bf-2(a-b)d cos 8 + d2 - c2 2a<i sin 8 (a + 6)2 + 2 (a + 6) rf cos 8±d2-c2

or writing, for greater convenience, 8 = 0, that is, taking a, /3, 7 to be the inclinations

of the sides a, b, c to the fixed side d, this is 0 =

1 2u u2

2v

(a + b - df - c2 0 (a-£ + d)2-c2

0 2ab 0

{a-b-d)2-c2 0 (a + b + df-c2

or say this is

(A + £w2) + Sabuv + v2(G+ Du2) = 0,

where, writing for shortness

a+d—b— c =\, — a + b+c+d = \'9

b+d — c— a = fi, —b+c+d + a = /jf,

c+d — a — b = v, — c+d + a + b=v',

a + b + c +d = a, —d + aJrb+c=p';

A = -Vp', B = X/Jl', C = X'fJL, D = va.

then

We at once verify that the equation is satisfied by u = v = + i, viz. this will be so

if only

A-B-C+D-8ab = 0,
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and we have

A + D = 2 (a + 6)2 + 2d2- 2c\

B + C = 2(a-b)2 + 2d2-2c2;

whence the relation in question.

Writing u = i, we have

{v (G - D) + 4aW}8 = - 16a262 - (J. - 5) ((7 - D)

whence

?;((7-JD)=±iqq:8a& + il-£+Cf-i)}

= i(G-D) or -i(^---B);

.4 — 5
so that, corresponding to u = i,v?e have the values v = i and v^ — i-^ ^; and similarly,

.A — B
corresponding to u = — i, the values v — —i and v = i -^ n .

.4 — G
And in like manner, corresponding to v = i, we have the values u = i and u = — i -^ ^ ;

-4 — G
and to v = — i, the values u = — i and % = i ^ =r .

i) — 1/

It is easy to show that, if u = i + e, v = i + f are the values consecutive to u = v = i,

then a€+&£=0: in fact, substituting the foregoing values in the relation between u, v,

and writing for 8ab its value, =A—B — C + D, we have

A+B(-l + 2ie) + (A-B-C+ D){-l + i(e + Z)} + G(-l + 2iO + D{l-2i(e + 0} = 0,

which is

= 6(A + B-C-D) + Z(A-B + C-D) = Q',

or finally ae + 6£=0. And similarly, if u = —i + e, v = — i+% are ^ne values consecutive

to n — v — — i, then we have the same relation ae + &£=0.

The points at infinity on the sextic curve are those for which 1 + u2 or 1 + v2,

or each of these, is =0; viz. the values of uy v for the six points are

A-G\ .(A- G
u = % + 6, - i - e, % , - % , - % ig _ DJ , l[B -Dj'

_-^ • y 'A~B -A~B

v — % -\- ±, — % — c„ ~~ ^ n __ j)> ^ p — ji > * > "~ *'

where, instead of u = v = i and u — v — — % I have written down the consecutive values of

it, v, and as before e, f are infinitesimals such that ae + b£=0.

Suppose that the coordinates cc, y of a point on the sextic curve are

x = a cos a + c sin a + b cos /3 + d sin /3,

y = &' cos a + c' sin a + b' cos /3 + d' sin /3 ;
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i . + 1 i
then, if u = ± (i + e), cos a =— , sin a = ^— , and similarly if v = ± (i + £), then cos /3 = — ^ ,

6 6 ^

sin /3 = -=77- • Hence the points at infinity of the sextic curve are as follows :

lo. u = ± (i + e), v not = ± (i + J),

— ai ± c — a'i ± e' p , . „

a? = , y = , first pair of points ;

2°. v = ± (i + f), u not = ± (i + e),

— bi + d — h'i + d' . . „
# — ^_ ^ ^ = _=— f second pair of points ;

3°. u=±(i + e), fl=±(i+f),

— sd + c — bi + d a'i + c' - h'i + d

00 — \ C, )

ae + 6£=0, as above, third pair of points ;

which six points are in general distinct from each other, and from the circular points

at infinity.

The foregoing values of oc, y may be said to be " circular quoad a" if a = c',

a' = — c ; and similarly to be " circular quoad ft," if b = d', b' = — d.

And we see at once that if the values are circular quoad a} then the first pair

of points coincide with the circular points at infinity ; and that, in like manner,

if the values are circular quoad j3, then the second pair of points coincide with the

circular points at infinity; but if the values are circular quoad a and /3 respectively,

then each of the three pairs of points coincides with the circular points at infinity :

so that these are then triple points on the curve ; or the curve is tricircular, having

besides the two triple points, 3 dps.

The relation between u, v gives

{v (G + Du2) + kabu}2 = 16a2b2 . u* -(A+ Bu2) (G + Du%

and it thus appears that if any one of the functions A, B, G, D is = 0, the function

under the radical sign is a mere linear function of u2, say it is L 4- Mu2 ; introducing

a new parameter 0 such that u = \/ \j/j) ^ ^i» we nave ^L+Mu2 = */L —^, and

consequently u, v are each of them a rational function of 0. Hence, when any one of

the relations in question is satisfied, or say, when a + d = b + c, b + d = c-\- a, or c + d = a + b,

the curve becomes unicursal : there is no diminution of the order, and the curve is

consequently a unicursal sextic, or sextic with 10 dps.
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It would at first sight appear that the curve might become unicursal in a different

manner ; viz. it would be unicursal if

16a2b2u2 -(A + Bu2) (C + Du2)

was a perfect square; but this is only the case when one of the four sides -a, 6, c, d

is =0. The condition in fact is

AD + BG- 16a2b2 = 2 V'ABC<D ;

that is

Xk'fifi' - vv'p'a- - 16a2b2 = 2 V - Xk'fifi'p'v ;

where, putting for shortness M = d2 — a2 — b2 — c2, we have

Xk' = M- 2bc + 2ca + 2ab,

fifi' = M + 2bc - 2ca + 2ab,

vv' =M+2bc + 2ca-2ab,

-pa =M- 2bc - 2ca - 2ab ;

and thence

W'fi/j/ = M2- 4<b2c2 - 4c2a2 + 4a5*2 + 4*abM + 8c2ab,

- vv'p'cj = M2- 4<b2c2 - 4<c2a2 + 4<a2b2 - 4<abM - Sc2ab,

and the equation thus becomes

M2 - 462c2 - 4<c2a2 - 4<a2b2 = V(if2 - 462c2 - 4cW + 4a262)2 - 16a2b2 (M+ 2c2)2,

viz. putting for a moment X = M2 — 4c2 (a2 + b2), this is

(X - 4a262)2 = (X + 4a262)2 - 1Mb2 (M + 2c2)2,

that is

16a2&2{X-(M + 2c2)2} = 0;

or, substituting for X its value, the equation is

64a262c2 (M+ a2 + b2 + c2) = 0,

that is a2b2c2d2 = 0.

We may have simultaneously 1°, a = d, b = c; 2°, b = d} a — c; 3°, c — d, a=b; the

three cases are really equivalent, but the results present themselves in different forms.

1°. Here A = 0, B = ^a(a — b), (7=0, D = 4<a(a + b); the relation between u, v

contains the factor u, and throwing this out, and also the constant factor 4a, it is

u [(a -b) + (a + b) v2] + 2bv = 0,

viz. u is given as a rational function of v.
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2°. Here A = 0, B = 0, C=4<b(b — a), J5 = 4&(6 + a); the equation contains the

factor vt and throwing out this and also the constant factor 4&, the equation is

v [(& - a) + (6 + a) u2] + 2au = 0,

viz. v is given as a rational function of m.

3°. Here A = 4a (a — c), 5=0, 0=0, JD = 4a (a + c) ; or, dividing by 4a, the

equation is

(a — c) + 2a w + (a + c) i*2y2 = 0 ;

viz. this is

(wy + 1) [(a + c) ww 4- a — c] = 0,

which may be reduced to

(a + c)uv + a — c =0,

giving u or v each a rational function of the other.

I do not discuss the theory in detail, but only remark that in each case there is

a conic thrown off, and that in place of the sextic we have a unicursal (or trinodal)

quartic curve.
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505.

ON THE SURFACES DIVISIBLE INTO SQUARES BY THEIR

CURVES OF CURVATURE.

[From the Proceedings of the London Mathematical Society, vol. iv. (1871—1873),

pp. 120, 121. Read June 13, 1872.]

Professor Oayley gave an account of an investigation recently communicated by

him to the Academy of Sciences at Paris. The fundamental theorem is that, if the

coordinates x, y9 z of a point on a surface are expressed as functions of two parameters

p, q (such expressions, of course replacing the equation of the surface); and if these

parameters are such that p = const., q = const, are the equations of the two sets of

curves of curvature respectively; then (writing for shortness

dx dx
dp"*1' dq~X"

d?x

dp-

— Xo,

d2x d2x

dpdq 4' dq2
'' ^5)

and the like for y9 z), the coordinates x9 y, z9 considered always as functions of p, q,

satisfy the equations

^a + yiV2 + %&% = 0,

yl9 zY = 0.

The last equation is equivalent to

x2 , y2) z2

%4> y±> z±

x4 + Axx + Bx2 = 0,

y, + Ay, + By2 = 0,

z± + Azx +Bz2 = 0;

C. VIII. 19
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and if in the notation of Gauss we write

xf + yi + ^^G,

then adding the equations multiplied by x1} yl9 zx respectively, and also adding the

equations multiplied by x2y y2, z2 respectively, we find

A~ * E dq> *~ 2G dq

and the equations thus become

\_dE 1 dG
AX*~ E dqXl~ G dqW2~0>

&c. &c. &c,

which, in fact, agree with the equations (10 bis) in Lame"s " Lemons sur les coordonnees

curvilignes," Paris (1859), p. 89. The surface will be divisible into squares if only

E : G is the quotient of a function of p by a function of q} or say if

E=@P, G = ®Q,

where © is any function of (p, q), but P and Q are functions of p and q respectively;

we then have

l_dE_^^ ldG_ldB

E dq ~~ <& dq' G dp ~ © dp '

and the equations for x> y, z are

1 d© 2. d®
^4~© dqXl © dp**-"'

&c. &c. &c,

viz. x, y, z being functions of p, q such that x±x2 + y{y2 + zxz2 = 0, and which besides

satisfy these equations, or say which each of them satisfy the equation

9 Id© 1 d© _

© dq © dp 2

then the values of a?, y, z in terms of (p, q) determine a surface which has the

property in question.
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506.

ON THE MECHANICAL DESCRIPTION OF A CUBIC CURVE.

[From the Proceedings of the London Mathematical Society, vol. IV. (1871—1873),

pp. 175—178. Eead November 14, 1872.]

If the coordinates x, y of a point on a curve are rational functions of sin<£, cos<£,

Vl — &2sin2c£, the curve has the deficiency 1, and conversely in any curve of deficiency 1

the coordinates xy y can be thus expressed in terms of the parameter </>. Hence

writing sin 0 = k sin </>, the coordinates will be rational functions of sin (f>, cos 0, cos 0,

or say of sin </>, cos $, sin 0, cos 0 ; and for the mechanical representation of the relation

k sin cf> = sin 0, we require only a rod OA rotating about the fixed point - 0, and con

nected with it by a pin at 4, a rod AB, the other extremity of which, B, moves in

a fixed line Ox. The curve most readily obtained by such an arrangement is that

described by a point G rigidly connected with the rod AB ; this is however a quartic

curve (with two dps., since its deficiency is =1). I first considered the cubic curve

xy - 1 = V(l - x2) (1 - k2x2),

or say

xy - 1 = - \/(l-x2)(l-k2x2) ;

writing herein x — sin <p, and as before k sin cf> = sin 0, we have then y sin <f> — 1 — cos 0 cos (f> ;

which values may be written

x = sin <£,

1 - cos (0 + 6) . a

u sin cj>

I found, however, that this was not the cubic curve most easily constructed ; and I

ultimately devised a mechanical arrangement consisting of

1. Rod OH, and connected with it by a pin at H, rod HI Q).

1 There was a mechanical convenience in this, but observe that producing OH to meet IP in I', the

single straight rod OHT might have been made use of.

19—2
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2 Square ACD, and connected with it by a pin at D, rod DG.

3. Square EOF \ the two squares being connected by a pin at G.

4. Rod IJ.

 

The rod OH rotates about a pin at 0 ; taking HA = HI, there is a pin at A

connecting a fixed point of this rod with the extremity A of the square ACD: the

fixed point B of this square moves along the line Ox. There is a pin at 1" connecting

the extremities of the rods HI, IJ\ and this slides along the leg 40 of the square

ACD, the rod IJ being always at right angles thereto: finally the legs of the square

EOF are always parallel to Ox, Oy, and the rod DG at right angles to EG. I have

omitted from the description the parallel-motion rods or other arrangements necessary

for giving these fixed directions to the rod IJ, the square EGF, and the rod DG.

It will be seen that the angles AOB, ABO are variable angles connected by an

equation of the form above referred to; and that the lines IJ, GF determine by their

intersection the point P; and the lines GE, DG determine by their intersection the

point Q ; the curve about to be considered is that determined by the relative motion

of P in regard to Q ; or say the curve the coordinates of a point of which are

I write

x = QO, y = GP.

ZA0B = 6, zAB0 = <l>,

0A = a} AB = b, AC = c, GD=d,

AH = HI = ±h.
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We then have a sin 0 = b sin <£ ; and moreover the length AI being = h cos (0 + </>),

and therefore IC = c — h cos (0 + 0), we have

nTt c — A COS (# + </>)
y = 0jT = - v

sm</>

# = Q(7 = c£ sin <f) ;

whence also

or we have

that is

xy = d{c — h cos (0 + <£)} ;

7 f 7 / A, ®2\ , f-, & x2\ 7 b x2}

or rationalising and reducing, this is

xhf ~^jx*y- 2cdxy + J2 - ch + h2 (l + -)\ x2 + d2 (c2 - h2) = 0,

a quartic curve with two dps.

In the particular case a = b, the relation between 0. <j) is simply 0 = <fi ; the curve

should become unicursal.

Writing in the equation - = 1, the equation takes the form

Qj

x[y j x\ — d(c — h)> [xy — d (c + h)} = 0 ;

the second factor is extraneous, and the curve is the hyperbola

xly —-j x) — d (c — h) = 0,

as at once appears from the foregoing irrational form of the equation.

In the particular case h = c, the equation contains the factor x, and omitting this

it becomes

2bc

"W-ri*

f bV
2cdy + c ( 1 + - J x = 0;

viz. we have here a cubic curve with three real asymptotes meeting in a point which

is also the centre of the curve.

If simultaneously a = b and h = c, then the equation is

2c(2c \
y--jX)(ocy- 2cd) = 0,

2c
the actual locus being in this case the line y — -j- x = 0.

CL
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Writing h = c, and for greater convenience h = c = d = 1 ; also to fix the ideas

supposing b < a, and writing - = k, — sin X, then we have

sin 6 = h sin <ft,

x = sin <ft,

_ 1 - cos (6 + <ft)

y '

that is

^ sin (ft

xy = 1 - VI - a;2 Vl - fe2 + fe2,

giving the rationalised equation

x(y2 - 2kx2)- 2y + 4<x = 0 ;

the angle (ft may be anything whatever, but 6 varies between the limits + X, the

simultaneous values of these angles and of the coordinates being

(ft = 0 0 = 0 x = 0 y = o

(ft = 90° e = x X = 1 y = 1 + sin X

(ft = 180°
6 = 0 x = 0 y = ± °o

(ft = 270° e = -x X = — 1 2/ = - (1 + sin X)

(ft = 360° 6 = 0 a? = 0 y = o;

and it thus appears that the mechanism gives the continuous branch which belongs

to the asymptote x = 0 of the cubic curve ; the other two branches belong to

m = sin (ft, y = t~~t—— , which would require a slight alteration in the arrange

ment of the mechanism.

I remark that if AH, HI had been unequal, then writing Z HIA = ^, this would

be connected with 6 + <ft by an equation of the form

sin (0 + (ft) = m sin %,

and the coordinates x, y would be rational functions of the sines and cosines of

6, <ft, ^; the deficiency is in this case >1.
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507.

ON THE MECHANICAL DESCRIPTION OF CERTAIN QUARTIC

CURVES BY A MODIFIED OVAL CHUCK.

[From the Proceedings of the London Mathematical Society, vol. IV. (1871—1873),

pp. 186—190. Read December 12, 1872.]

The geometrical principle of the oval chuck is the well-known one that if a

plane move in such manner that two lines Ox, Oy, fixed in the plane and moveable

with it, pass through two fixed points A, B, respectively, then any fixed point P traces

out on the plane an ellipse. The point A is on the (geometrical) axis of the mandril;

there is connected with the head a guide-ring moving horizontally; the point B is

the centre of the guide-ring, this being a ring connected with the head, moveable

horizontally at right angles to the axis in such wise that the distance AB of the

two centres is adjustable to any given value; the fixed point P is the tool, which

practically is held on the level of the axis, that is, at a point in the line AB. The

guide-ring remains fixed during the motion of the lathe.

It occurred to me that a chuck applicable to ornamental turning might be con

structed by giving to the guide-ring a reciprocating motion synchronous with the

rotation of the mandril; viz. for this purpose it is only necessary to affix to the axis

of the mandril an eccentric, working in a frame attached to the guide-ring so as to

move the centre B of the guide-ring backwards and forwards along the line AB:

the curve is thus that described by the fixed point P upon a plane moving in such

manner that the lines Ox, Oy pass always through the points A, B respectively; the

former of these being a fixed point, the latter of them a point moving according to

determinate law backwards and forwards along a fixed line through A.

The plan is carried out in a drawing apparatus which I have had constructed

in wood, the axis being here vertical instead of horizontal, and the details of course

different from what they would be for a lathe.
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The apparatus consists of a piece of inch-board, about 10 inches long by 7 inches

broad, pierced with a circular hole of 1 inch diameter for a vertical axis : the edges

of the board serve as guides for the frame L, which carries the guide-ring, and resting

on the board we have the frame M, itself guided by the frame L: the two frames

move independently of each other, but they can be clamped together; the axis has

 

i i

I I

 

upon it a square nut, the sides of which work in the slot of an eccentric, the throw

of this being adjustable by means of a screw passing through the nut and axis, and

there is above the eccentric a square nut shown in the figure. This is capable of

rotation round the axis, so that two of its sides may be placed either parallel with

or inclined to the sides of the slot ; but I fix it with two sides parallel to those of

the slot by means of a screw run into the axis. The upper surfaces of the last-

mentioned nut and of the guide-ring are flush with each other; and we then have

a table or bed having, on its under-surface, guides which work on the outer edges

of the guide-ring and on two edges of the nut. It will be observed that the bed

may be placed in two different positions, viz. the guides may work on either pair of

edges of the nut, those which are parallel to the sides of the slot, or those which

are at right angles to it.

Supposing the bed placed as above upon the guide-ring and nut, then if the

frames L and M are disconnected, and the former of them is fixed, the frame M will,

on rotation of the axis, be carried backwards and forwards by the eccentric, but this

will in no wise affect the motion of the bed; the arrangement is then equivalent to

the oval chuck, and a pencil fixed above the bed in any given position will trace out

upon it an ellipse. If, however, the frame L, instead of being fixed, is clamped to

the frame M, then the two frames, and therefore the guide-ring, are carried backwards

and forwards by the eccentric, and the curve traced out by the pencil is no longer

an ellipse; it is, as I proceed to show, a special form of trinodal quartic; viz. there

is a tacnode (=two nodes) at infinity, and a third node, which may be a crunode,

cusp, or acnode. In the last-mentioned case, the acnode or conjugate point is, as

usual, not exhibited by the mechanical description, and the curve has no visible

singularity.



507] 153CERTAIN QUARTIC CURVES BY A MODIFIED OVAL CHUCK.

Let the coordinates of the fixed point P, referred to axes through A, the first of

them perpendicular to, and the second coincident with, AB, be b, c; let the distance

AB be =a; and let 0 denote the angle BAO: then, if x, y are the coordinates of

P referred to the origin 0 and axes Ox, Oy, we have

x -f a cos 0 = b sin 0 + c cos 0,

y ~—b cos 0 + c sin 0,

p

/

B /

s
\
\
\
\
\
\
\
1

1

/
/
/

which, if a be constant, gives a quadric equation, or the curve is an ellipse; and, in

particular, if b = 0, that is if the point P is on the line AB, then we have

or the curve is

x — (c — a) cos 6, y = c sin 9,

+ ? = !■

(c-ay

But if a is a given function of 0, then the equation is still found by eliminating

0 between the two equations for x and y. In particular, if the distance AB is given

as the perpendicular upon the tangent of a circle, as shown in the figure, then if k

be the radius AG of this circle, and X the inclination of A0 to Ax {k and X being

taken to be constants), we have

a ■■= k cos (0 + X),

and the equations are

xt= b sin 0 + }c — k cos (0 + X)} cos 0,

y= — b cos 0 + c sin 0.

The elimination is nearly the same as if b were = 0 ; viz. we may determine 7, a in

such wise that

b sin 0 + c cos 0 = 7 cos (0 + a), = y cos <f> suppose,

— b cos 0 + c sin # = 7 sin (0 + a), = 7 sin ^> ;

c. viii. 20
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and then

x — y cos (j> — k cos (</> -f X — a) cos (0 — a),

2/ = «y sin </>.

I will, for greater simplicity, at once write 6 = 0: the equations thus are

x = (c — k cos 6 cos X + A? sin # sin X) cos #,

3/ = c sin # ;

x = (c + A? sin 6 sin X) cos 6 — k cos2 # cos X ;

&cosX/0 oX / kv . ^ \ 1 /- -
x + —-— (c2 - ^2) = c -f —- sin X - Vc2 - y\

or say the first is

whence we have

that is

c2x -f- k cos X (c2 — 3/2) = (c2 -I- % sin X) Vc2 — £/2,

an equation which will assume a more simple form if either X = 0 or X = 90°; that is,

if in the apparatus the nut-sides which guide the bed are either at right angles, or

parallel, to the sides of the slot.

Taking the general case, and writing for convenience cos 6 = £, sin 6 = 77, the curve

is given by equations of the form

# = (£ V, 1)2>

? + if = l;

viz. the elimination of £, 77 from these equations leads to the equation of the curve.

The points of the curve have thus a (1, 1) correspondence with those of the circle

|» + rf = 1 ; or, the circle being unicursal, the curve is also unicursal. Moreover, con

sidering the intersections of the curve with an arbitrary line ax + by + c = 0, the points

of intersection correspond to the points of intersection of the circle by the quadric

a(£> V> l)2 + &(£ V> l)2 + c = 0; viz. there are four points of intersection, or the curve

is a quartic, and hence it is a binodal quartic. But it is a binodal quartic of a

special form : to show this more clearly, I introduce for homogeneity the coordinates

z, f, so that the foregoing equations become

x : y : * = (£ v, f)2 : (£ v, £)2 : f2, where ?2 + V2 - £2 = 0 ;

the curve corresponding to these equations is, as just seen, a binodal quartic. But in

the case in hand the form is the more special one,

x : y : * = (£ 77, £)2 '• ?£ : Z\ where f» + ^-£» = 0.

The intersections by the arbitrary line ax + by + az = 0 are the points corresponding to

the intersections of the circle %2 + v2-£2 = 0 by the quadric a(£ 77, £)2 + &££+ c£2 = 0,
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giving four intersections. But the intersections by the line by + cz = 0 (that is, by any

line through the point y = 0, z = 0) are obtained from the equation b%% + c£2 = 0 ; viz.

this breaks up into &f + c£=0, f=0, and the last factor combined with the equation

of the circle gives f = 0, £2 + rf — 0, the two circular points at infinity, corresponding

each to the point y = 0, # = 0 : the other factor gives points corresponding to two

variable points on the curve ; that is, a line through the point y = 0, z = 0 meets the

curve in this point twice and in two other points. Again, making 6 = 0, or taking the

line to be the line at infinity z — 0, the equations then are f2 = 0, £2 + ??2 = 0 ; viz. we

then have the circular points at infinity each twice, corresponding to the point y — 0,

z = 0 four times, and no other point; that is, the line z = 0 meets the curve in the

point y = 0, z = 0 four times. We thus see that the curve has at y = 0, z = 0, that is

at infinity on the line y = 0, a tacnode (counting as two nodes), the tangent at this

point being the line at infinity z = 0. The curve being trinodal has of course one

other node.

20—2
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508.

ON GEODESIC LINES, IN PARTICULAR THOSE OF A QUADRIC

SURFACE.

[From the Proceedings of the London Mathematical Society, vol. IV. (1871—1873),

pp. 191—211. Read December 12, 1872.]

The present Memoir contains an investigation of the differential equation (of the

second order) of the geodesic lines on a surface, the coordinates of a point on the

surface being regarded as given functions of two parameters p, q, and researches in

connection therewith ; a deduction of Jacobi's differential equation of the first order

in the case of a quadric surface, the parameters p, q being those which determine

the two sets of curves of curvature ; formulas where the parameters are those which

determine the two right lines through the surface ; and a discussion of the forms of

the geodesic lines in the two cases of an ellipsoid and a skew hyperboloid respectively.

Preliminary Formulas.

1. I call to mind the fundamental formulas in the Memoir by Gauss, "Disquisitiones

generales circa superficies curvas," Comm. Gott. recent, t. vi., 1827, (reprinted as an

Appendix in Liouville's edition of Monge,) together with some that I have added to

them. The coordinates w, y, z of a point on a surface are regarded as given functions

of two parameters p, q, these expressions of as, y, z in effect determining the equation

of the surface, and we have

dx + \d2x = a dp + a'dq + \ (a dp2 + 2a' dp dq + a" dq2),

dy + \d2y = bdp + b'dq -f \ (fidp2 + 2/3'dp dq + /3"dq2),

dz + \d2z = cdp + c'dq + \ (ydp2 + 2y dp dq + <y"dq2),

A, 5, C =bc' — b'c, cd — c'a, aV — a'b ;
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whence differential equation of surface is

Adx + Bdy + Gdz = 0.

Also

E, F, G = a2 + b2 + c2, aa' + W + cc\ a'2 + b'2 + d2 ;

so that element of length on the surface is given by

dx2 4- dy2 + dz2 = Edp2 + 2JFW!p dg + Gdq2 ;

= (#, JF, G$dp, dg)2;

or, as I write it,

and moreover

The equation (E, F, GQdp, dq)2 = 0 determines at each point on the surface two

directions (necessarily imaginary) which are called the "circular" directions. Passing on

the surface from point to point along the circular directions, we obtain two series of curves

(always imaginary) which are the l< circular " curves ; the equation (E, F, GQdp, dq)2 = 0

is the differential equation of these curves ; and if we have E = 0, G = 0, then this

becomes dpdq = 0 ; viz. we have in this case p = const, and q = const, as the equations

of the two sets of circular curves respectively. It is clear a priori, and will be shown

analytically in the sequel, that the circular curves are geodesic lines.

I write also

E\ F', G' = Aa + B/3+ Gy, Aa' + B{3' + O/, Ad' + Bff' + Cy",

or, what is the same thing, E\ F\ G' represent the determinants

a, b, c a, b, c a , b , c , respectively,)

a!, b', c' a\ V, c' a , b' , c'

<*, 13, V a, P, 7
a", /3", 7

(these last symbols do not occur in Gauss). [They are the D, D\ T>" of Gauss.]

2. The radius of curvature of normal section corresponding to direction dp : dq is

given by

p _ (E, F, G^dp, dq)2

V" (E\ F\ GJdp, dq)2'

whence it appears that the directions of the inflexional or chief tangents (the Haupt-

tangenten) are determined by the equation

{E\ F, G'Jdp, dq)2 = 0.

The directions in question are imaginary on a surface such as the ellipsoid where

the curvatures are in the same direction, but on a concavo-convex surface they are

real; and in particular on the hyperboloid they coincide with the directions of the

generating lines. We may on any surface pass from point to point along the chief

directions ; we have thus on the surface two sets of curves which are the chief curves ;
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the differential equation of these is (E'} F'9 G'fdp, dq)2=0; and in particular if

E' = 0, G' = 0, then this becomes dpdq = 0, or we have p = const., q = const, for the

equations of the two sets of chief curves respectively. On the hyperboloid the chief

curves are the two sets of generating lines. The chief curves are not in general

geodesic lines, but on the hyperboloid, qua straight lines, they are, it is clear, geodesic

lines.

3. The directions of the curves of curvature, or the principal tangents, and the

corresponding values of the radius of curvature are determined by

p _ Edp + Fdq _ Fdp + Gdq

V ~ E'dp + F'dq " F'dp + G'dq '

or, what is the same thing, these directions are determined by the equation

= 0.dq\

E ,

E',

The same equations may be written

— dq : dp =

— dq dp, dp2

F , G

F' , Q'

pE'-VE_PF'-VF

pF' - VF PGf - VG '

that is the principal radii of curvature are determined by the equation

p2 (E'G' - F'2) -PV (EG' + EG - 2FF') + V2 (EG - F2) = 0,

(last term is = V\ but it is better to retain the original form): and then, p being

either root, the last preceding equations give the direction of the curve of curvature

corresponding to the given value of the radius of curvature.

If p=z const., q = const, are the equations of the two systems of curves of curvature

respectively, then the quadric equation in (dp, dq) must become dpdq = 0; this will be

so if F = 0, F' — 0 ; and we thus have these equations, viz. written at full length

they are

dpx dqco + dvy dqy + dpz dqz = 0,

0,(JjipJb , dpy , dpz

(JjqJU , dqy , dqZ

QjipQjqOC, dpdqy> QjpQjqZ

as the conditions in order that p = const., q = const, may be the two systems of curves

of curvature. The former of these equations merely expresses that the two sets of

curves always intersect at right angles.
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General Theory of the Geodesic Lines on a Surface.

4. I now proceed to investigate the theory of geodesic lines on a surface, the

surface being determined as above by means of given expressions of the coordinates

x, y, z in terms of the parameters p, q.

The differential equation obtained by Gauss for the geodesic lines is in a form

not symmetrical in regard to the two variables ; viz. his equation is

jg df + 2fdp dq + f- dp* = Us d Mp + Fdq ,
dq 1 dp ± 2 dp ■* ds

where, as above,

ds" = (E, F, G£dp, dq)\

If we herein consider p> q as functions of a parameter 9y and write for shortness

d6p, deq, d62p, &c. = p', q'9 p\ &c,

also

a = (E, F,G%p', qj,

and

dpE=E1} dqE = E2, &c,

then the equation is

(Ep' + FqW
(Eu Flf G&p', qy-2^n(t = 0.

We have

where N is the part containing p", q", which I will first calculate ; viz. we have

N= a (Ep" + Fq") - (Ep + Fq') £12',

= n (Ep" + Fq") - (Ep' + Fq') {(Ep' + Fq') p" + (Fp' + Gq') q"},

= p" {ED, - (Ep' + FqJ\ + q" {FQ, - (Ep' + Fq') (Fp' + Gq')} ;

or substituting for H its value, this is

= p"(EG-F*)q'*-q"(EG-F*)p'q', = -q' (EG- F*)(p'q" - p"q');

wherefore

(^rO'-im^-* (EG ~ F2}w ~ p"^'

and the equation becomes

n (E^ + 2F1p/q/ + G1qf') - 2M+ 2tf (EG - F2) (p'q" -p"tf) = 0 ;

whence we foresee that the whole equation must divide by q.
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5. We have

M= (p'dE + q'dF) ft - (Ep' + Fq') (Ip'HE+p'q'dF+ ^dG),

= dE{p'D,-^(Ep' + Fq')}

+ dF {q'il - p'q' (Ep' + Fq')}

+ dG{ -\^(Ep' + Fq')},

or say

2M= dE[ p'*(p'E+q'F) + 2p'q'(p'F+q'G)]

+ dF[ 2q'* (p'F + q'G)]

+ dG[-^(p'E + q'F) ],

= (Exp' + E2 q') [ p'* (Ep' + Fq') + 2p'q' (Fp' + Gq1)]

+ (FlP' + F2 q') [ 2q'> (Fp' + Gq')]

+ (G1p'+G2q')i-q'*(Ep' + Fq') ].

The term in p'4 is EExp'4, which is also the term in p'4 of ft (E^+ 2Fxp'q' + G^'2) ;

whence ft (E.p'2 + 2F1p'q' + G^) - 2M divides by q'.

Proceeding to the reduction:

Term in Ex is

Ex .p'* ft -p's (Ep' + Fq') - 2p'*q' (Fp' + Gq'), =EX.- p">q' (Fp' + Gq1) :

term in Fx is

Fx . 2p'q'a - 2p'q'2 (Fp' + Gq'), = F, . 2p'*q' (Ep' + Fq') ;

term in GL is

G, . g'2ft + p'q'" (Ep' + Fq'), = G, {2p'q'* (Ep' + Fq') + q'* (Fp' + Gq')}.

6. The remaining terms in E2, F2, G2 require no reduction, and the result is

Ex [-p* (Fp' + Gq')} - E2 { p^ (Ep' + Fq') + 2p'q' (Fp' + Gq')}

+ F, \2 p* (Ep' + Fq')} - F2 {2q^ (Fp' + Gq')}

+ Gx {2p'q' (Ep' + Fq') + q^ (Fp' + Gq')} - G2 {- q> (Ep' + Fq')}

+ 2 (EG- F*) (p'q" -p"q') = 0,

or, what is the same thing,

(Ep' + Fq') \(2FX - E2)p'> + 2GlP'q' + %'2}

- (Fp' + Gq1) {ElP'> + 2E2p'q' + (2F2 - GJ q'*}

+ 2(EG-F*)(p'q"-p"q') = 0,

which is the required differential equation of the second order: the independent

variable has been taken to be the arbitrary quantity 0; but taking 6=p, or q, say

6=p, we have p' = 1, p" = 0, and the equation then contains (besides p and q) only

q" and q', that is, dp*q and dpq, and is therefore a differential relation between p and q.
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7. Instead of starting, as above, from the equation given by Gauss, we may use

the geometrical property that at each point of a geodesic line the osculating plane

passes through the normal of the surface.

Considering, as above, p, q as functions of a variable 0, then, 0 becoming 0 + d0>

the new values of p, q are

p +p'd0 + \p"d6\ q + q'd0 + \q"d02 ;

and that of x is

x + a (p'd0 + \p"d02) + a' (q'd0 + lq"d02) + £ (ap'2 + 2a'p'q' + a"q'2) d<92 ;

or calling this x + x'd0 + ^x"d62, we have

of = op' + aY, x" = ap" + «Y' + ap'2 + 2a'pY + a"q'2 ,

and so

2/' = bp' + &Y? y" = bp" + 6Y7 + iSp,a + 2#pY + £y»,

zf = op' +^ /' = Ci/' + cy + yp'2 + 2y'pY + 7V2 •

The condition in question is expressed by the equation

A, B, G

x' , 2/r , s'

= 0,

that is

+ = 0.

A, B, G

ap' + a'q' , bp' + b'q' , op' + c'q'

ap" + a'q", bp" + b'q", cp" + c'q"

A, B, C

ap' + a'q, bp' + b'q', cp + c'q'

ap'2 + 2ajpY + a'Y2, £p'2 + 2j8'pY + Z3'Y2> 72>'2 + 7W + 7 Vs

8. The first determinant is the sum of three terms such as A (be' — b'c) (p'q" — p"q') ;

viz. this is A2 (p'q" —p"q')y or the determinant is

(A* + B2 + C2) (p'q" - p'Y)> = C#ff - F2) (p'q" -/Y)-

The second determinant is the sum of three terms such as

(ap2 + 2afp'q' + a'Y2) [B (cp + c'q') - G (bp' + b'q%

where the factor in [ ] is

p' [c (ca' — da) — b (ab' — a'b)] + q' [d (ca' — da) — b' (ab' - a'b)\

C. VIII. 21
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which is =p' (a'JE—aF)-\-q; (a/F—aG). We have thus the second determinant, and

the equation becomes

(EG-F*)(PY-p"q[)

+ (ap'\ + 2«>Y + «Y2 ) {p' 0'# - aF) + 4 ^F - aG))

+ <J3p'* + 2/3>Y + /SY2) {!>' (^ - W) + 4 (VF - bG)}

+ fa'* + 27>Y + r/Y») {jp' (c'# - gF) + #' (cT - o©)} = 0,

an equation of the same form as that previously obtained, and which can be without

difficulty identified therewith.

The Circular Curves are Geodesies.

9. I proceed to show that the circular curves are geodesies; viz. that an integral

of the geodesic equation is

(E, f, a\P\ 2? = 0.

Starting from this equation, we have

2 {(Up' + Fq')p" + (Fp' + Gq') q"\ + (ElP' + E2q)p'> + 2 (FlP' + F2q')p'q' + (GlP' + G2q') '<? = 0.

Now the equation, writing therein Ep' + Fq' —- \q', gives Fp + Gq = — \p' : these equations

may be written

Ep'+(F-X)q' = 0,

(F+\)p'+G q' = 0,

the value of X being therefore — X2 = EG — F\ The result just obtained thus becomes

2\(p"q'-p'q")

+ [(ElP' + E4) p' + (FlP' + F4 )q'].-\ (Fp' + Gq')

+ [(FlP' + F4)p' + (GlP' + G2q) q'] . i (Ep' + Fq),

that is

2(EG-F>)(p'q"-p"q')

- (Fp' + Gq') {ElP'* + (E2 + F^p'q' + F2q'»]

+ (Ep + Fq' ) [FlP'* + (F2 + G,) p'q' + G,q'*] = 0 ;

or what is the same thing, adding hereto the zero value

A (E, F, G\p\ q')\ = (Fp' + Gq') Aq' + (Ep' + Fq') Ap',

where A is arbitrary, the equation is

2(EG-F*)(p'q"-p"q')

+ (Ep' + Fq1) [FlP'* + (F2 + GJ p'q' + G2q'* + Ap']

- (Fp' + Gq') [ElP'»- + (E, + FJ p'q' + F2q'> - Aq'] = 0 ;

viz. taking A = (F1 — E2)p' + (G1 — F2)q', this agrees with the geodesic equation.

The foregoing integral, (E, F, GJ^p', q')2 = 0, is, I believe, a particular, not a singular,

solution of the geodesic equation.
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The Chief Lines are not in general Geodesies.

10. That the chief lines are not in general geodesies appears most readily as

follows :

To find the condition in order that p = const, may be a geodesic, we write in the

geodesic equation p' = 0, p" = 0 : the equation thus becomes

Fq' . G2q/2 - Gq' (2F2 - G1) q2 = 0;

that is we have

FG2-2F2G+GG1 = 0

as the condition in order that p = const, may be a geodesic : the condition that it

may be a chief curve is G' = 0, which is a different condition.

We have of course, in like manner,

2EF1-E1F-EE2 = 0

as the condition in order that q = const, may be a geodesic ; and E' = 0 as the

condition that this may be a chief curve. If p = const., q == const, are each of them

at once a geodesic and a chief curve, then the four equations must all be satisfied,

viz. we must have

FG2-2F2G + GG1 = 0, 2EF1-E1F-EE2 = Q,

£' = 0, £" = 0.

Special Form of the Geodesic Equation.

11. In the case where the curves p = const., q = const, intersect at right angles

(and in particular when these are the curves of curvature), we have P=0; whence

also F1 — Q, F2 = 0 ; and the geodesic equation assumes the more simple form,

Epf (-E2p/2 + 2G1p'q' + G2q2)

-Gq* ( E1p'2 + 2E2p'q'-G1q'2)

+ 2EG(p'q'/-p"q') = 0-

[llft. In the case of a surface of revolution we have

x — pcosq, y=psinq, z^p\

E is of the form 1 + P'2, P' = dpP, where P is a function of p only, and we have

ds2 = (1 + F2) dp2 +p2dq2,

that is

E=l+P2, E1 = 2P'P\ E2=>0,

P = 0,

G=p2 , Gj = 2p , (?2 = 0;

21—2
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hence the differential equation is

(1 + P2) [p2 (p'q" -p"q') + 2pp'2q'} -p2p'2iPP" + psq'3 = 0 ;

this has an integral

(l + P'2)p'2 1= 1

p'q2 p2 C2'

or say

C2s'2=p4q'2

where

Writing here p, ty for p, q, where p is the distance of the point from the axis,

and yjr is the longitude reckoned from an arbitrary meridian, then the equation is

Gds = p2dyjr,

which is the equation given by Legendre, Theorie des fonctions elliptiques, t. I. p. 361.

This may also be written

— = cos 7

P

if 7 be the inclination of the geodesic line to the parallel of latitude.]

Geodesies on a Quadric Surface.

T2 1J2 Z^

12. In the case of a quadric surface — +Y-H— = 1, writing for shortness

^ a o c °

a} ft, 7 = 6 — c, c — a, a — b, we may express the coordinates x, y, z in terms of two

parameters p, q as follows :

— fty oo2 = a(a +p) (a + q),

— ya y2 = b (b + p) (b + q),

— a/3 z2 — c (c +p) (c + q),

where, in fact, p = const., q = const, are the equations of the two sets of curves of

curvature respectively. Writing moreover

p = P Q = g

(a+p)(b+p)(c+p)' * (a + q)(b + q)(c + q)'

we have

ds2 = l(p-q) (Pdp2 ~ Qdq2\

that is

E, F, G=l(p-q)P, 0, l(q-P)Q;

and the geodesic equation becomes

Pp' {Pp'* - 2Qp'q' + (Q + q-pQ')q'z

+ Qq' {(P+p-q P')p'* - 2Pp'q' + Qq'*}

- 2(p-q)PQ(p'q"-p"q') = 0,
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where P', Q' stand for dpP and dqQ respectively ; viz. this is

p's . P2

+ py .-PQ+(p-q)P'Q

+ p'q'*.-PQ + (q-p)PQ'

+ t- Q*

-2(p-q)PQ(p'q"-p"q')=0.

13. This has a first integral,

V(^)+V(<£H

where 0 is the constant of integration ; or say this is

6 (p'2P - q2Q) +p2qP - q'2pQ = 0 ;

viz. differentiating logarithmically, this gives

2p'p"P - 2q'q"Q +P'*P' ~ 4*Q = 2p'p,fqP - ZqYpQ + P'* WF + <l'P) - t (pg'ff + V'Q)

p'2P-q'2Q p/2qP-q2pQ

which, multiplying out the denominators, is in fact the foregoing geodesic equation.

To verify, consider first the part involving p\ q" : this is

(2p'p"P - 2gV'Q) (p,2qP - q/2pQ) - (2pp"qP - 2qYpQ) (p2P - q'2Q),

which is

= 2p'p"P . q/2Q (q -p) - 2tftf'Q.p'*P (q -jp),

that is

= 2(q-p)PQp'q(p"q'-p'f),

or say

= 2(p-q)PQp'4(pY-p"4)-

We have next the part

{p'tp* - q*Q') (P'*qP - q^Q) - [p2 (qp'P' + q'P) + q2 GW +p"Q)} (p/2P - q/2Q\

which is readily found to be

= _p'tf {p'sp* +p'*q> (_ PQ +p _ qPQ) +p>q>2 (-PQ + q -pPQ) + q'*Q2}

and the equation is thus verified.

14. We have consequently

^\/\(a+p)(b+p)(c+p)(0+p)) + dqV\(a + q)Q

involving the arbitrary constant 6 as the differential equation of the first order of

x2 y2 z2

the geodesic lines on the quadric surface —h K- H— = 1 : the geodesic lines in question
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all touch the curve of curvature determined by the parameter d, that is the curve

which is the intersection of the surface by the confocal surface

x2 y2 z2 __

15. In the particular case #=oo, the equation becomes

Pdp2-Qdq2 = 0,

that is

pdp2 qdq2
= 0,

(a + p) (b +p) (c + p) (a + q) (b + q)(c + q)~

which is the differential equation of the circular curves on the surface.

16. The signification of the case 0 = 0 is not at first sight so obvious. Supposing

that 6 is first indefinitely small, and writing the equation in the form

x2 y2 z2 . n/x2 y2 z2\ 0

we have the series of geodesies touching the (imaginary) curve of curvature, the

X2 I/2 Z2

intersection of the surface by the imaginary cone -£ + t£ + -£ = 0. These are, in fact,

a o c

the right lines on the surface: I apprehend that the intersection in question is not

a proper envelope, but is the locus of nodes of the geodesies, viz. each geodesic is

to be considered as a pair of lines belonging to the two sets : I do not, however,

quite understand this.

17. I say that the geodesies in question are the right lines on the surface;

viz. writing in the differential equation 0 = 0, it is to be shown that the differential

equation of the right lines is

dP , d(l = 0

V(a +p) (b +p) (c+p) */(a+q) (b + q)(c + q)

or what is the same thing, that the integral of this equation represents the right

lines on the surface.

Writing the equation of the surface in the form

we have at once

a b c '

x %y __ / z

\/a sjb \ sjc) ?

\Ja *Jb <j \ sjcl '
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(a- an arbitrary parameter) as the equations of a right line on the surface ; viz.

considering x, y, z as denoting the foregoing functions of p and q, these two equations

are forms of a single relation between p, q, a, which relation expresses that the point

(p, q) is situate on the right line determined by the parameter a. We may from

this integral equation deduce without difficulty the foregoing differential equation; viz.

Ave have

dx idy dz

dx idy 1 dz

cr yV

dx2

a

dy2 r/r2

— = 0;
c

or multiplying these equations,

and substituting herein for dx, dy, dz their values in terms of dp and dq, we find

the required equation

dpp dq2 _

(a+p)(b+p)(c+p) (a + q)(b + q)(c + q)~

18. I return to the integral equation involving cr : we have to rationalise this

equation, that is, obtain from it an equation containing x2, y2, z2, and then substituting

for these their values in terms of p, q, we have the required relation between p, q, cr.

We at once obtain

*f*-«)-(-4)(iOF-*(-4n-i

or if for greater convenience we introduce in place of cr a new parameter cf>, deter-

mined by the equation a2 + — = — , the equation is

'%2 y2\ . /. . z2\)2 M ,.„ ^z2

Writing for shortness p + q = X, pq—Y, we have

-$ri~ = a? + aX+Y, -yayj- = ¥ + bX+Y, -a/3-= c2 + cX + Y;

Cv 0 C

and substituting these values, the equation becomes

{/3(&2+&X+F)-a(a2 + aX+F)-G^

or, what is the same thing,

{/362 - aa2 - c/>7 (a/3 - c2) + X (/3b - <xa + </>7c) + F (/3 - a + <j>y)}2 + 4a/3 (c/>2 - 72) (c2 + cX + F) = 0.

19. This is an equation, quadric as regards p, and also as regards q, viz. it is

of the form

(a + 2hp + gp2)

+ 2q (h + 2bp + fp2)

+ q2(g+ 2f> + cp2) = 0,
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and it leads to a differential equation

where

P = (h + 2bp + fp2)2 - (a + 2hp + gf) (g + 2f> + cp2),

Q = (h + 2bq + iqj - (a + 2% + gq2) (g + 2fg + c?2) ;

and upon effecting the calculation, it is found that we have

P = - 8a2/32 (<jS>2 - 72) (a + b - 2c - </>) (a +_p) (6 + p) (c + p),

Q=- 8a2/32 (cj>2 -cy*)(a + b-2c- <f>) (a + q) (b + 2) (c + q),

viz. P, Q are the same multiples of (a+p) (b+p) (c+p), (a + q)(b + q)(c + q) respec

tively; so that, omitting the common factor, or taking P, Q to represent the last-

mentioned functions respectively, we have

VP + VQ~ '

and since the parameter <£ has disappeared, we see that the original equation involving

c/> is the general integral of this differential equation ; viz. that the differential

equation belongs to the right lines on the surface.

20. The form of the integral equation may be simplified by introducing instead

of ^ a new parameter K, connected with it by the equation

rr 8b — aa + 6c

& = —7s r— , or cf> =

(0-a)K-0b+aa

c-K

viz. we thence deduce

0 - a + <£ = - 2<x/3

/3b-aa + <l)C = - 2<z/3K

0b2 -aa?-<]> (a/3 - c2) = 2a/3 (ac + bc-ab + 2cK)

<f> + y = 2/3(K-b)

<j>-y = -2oi(K-a)

where the sign (-r-) is used to signify that the functions preceding it have to be

divided by a denominator which in fact is = c — K. The equation thus becomes

(ac + bc-ab-2cK-KX-YT-4>(K-a)(K-b)(c2+cX+Y)=:0;

and if we moreover write

v, fju, X = abc, be + ca + ab, a + b + c,

and instead of if introduce the parameter C, = X — K, the equation becomes

{-fJb-2c2 + 2cC-(X-C)X-Y}2 + (b + c-C)(c + a-C)(c2+cX+Y) = 0;
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or expanding and reducing, this is

(F+(X-C)I)8

+ F(-2^ + 4\C-4C2)

+ fJL2- kvG = 0,

or say

/a2 - kvC

+ (2fi\ -4*v- 2fiO) (p + q)

+ (-2/^ + 4XC-4C2)^

+ (\-C)2(p2 + q2 + 2pq)

+ 2(\-C)pq(p + q)

+ py = o,

viz. this, containing the constant C, is the general integral of the differential equation

where

P = (a +p) (b +p) (c +p), —v + fip + \p2 -f_p3,

Q=(a + q)(b + q)(c + q), = v + fiq + \g2 + g3.

21. The constant (7 is connected with the parameter cr, which originally served

to determine the right line, by the equation

12 (/3-a)(\-0)-/3& + aa

°' + <t J c-(\-C)

or, what is the same thing,

1 2 2c2-a2-b2-C(2c-a-b)
(T + - =t~ ^ \ L .

a o — c (J — a — o

Reverting to the equation between p, q, <£, I remark that if </> be therein con

sidered as variable, we have the differential equation

\JQ dp + ^Pdq + \/<& d<j> = 0,

where P, Q have the foregoing values

P = - 8a2/32 (02 -rf)(a + b-c- </>) (a +_p) (6 +p) (c +p), Q = &c. ;

and where, if the integral equation be written in the form

i+ 2^ + ^=0,

then we have <I> = M2 — NL, viz. we thus find

3> = 16a2/32 (a + jj) (b + p) (c +_p) (a + j) (6 + g) (c + j).

c. viii. 22
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22. Changing the notation, and writing

P = (a+p)(b+p)(c+p),

Q=(a + q)(b + q)(c + q),

* = (02 _ y) (a + ^ _ 2c - 0),

the equation is

dfo dy V2 rfc/> _

or if, instead of 0, we introduce the original parameter a, then, observing that

2da __ d<fi

a V</>2-72'

we at once find

where

2 = 7(l+<r4)-2(a + &--2c)<72,

or, what is the same thing,

2 = a (o-2 - l)2 - & (a-2 + 1)2 + c . 4<j2;

viz. passing from a point (p, q) on the line a- to a consecutive point (p + d|p, q 4- dg)

on the line cr + d<r, the above is the relation between the variations dp, dq, da. If t

be the parameter of the other line through the same point, then we have in like

manner, say

dp dq Mr __ a

(viz. one of the radicals \JP, VQ must present itself wTith a reversed sign): and we

thus have dp, dq each expressed in terms of da, dr\ viz. we have the increments

dp, dq when a point passes from (a, r) fco (cr + da, r + dr). These results will be

presently obtained in a more simple manner.

FormidcB where the position of a Point on the Surface is determined by means of the

two Lines through the Point

23. We may determine the position of a point by means of the parameters a, r

of the two lines through the point. The equations of these are

x_ iy _ / z \ x iy _ /- z \

\/a \Jb~' ° V \lc) ' \]a \jb~T\ a/c) '

x iy _ 1 / z \ x iy _ 1 / z \

sja \/b a [* <\JcJ' Va \/b tV~ *Jc) '
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and from these equations we deduce

x gt + 1 iy CTT — 1 Z T — <J

s]a t + <r \/b r + cr *Jc t + ct'

We have thence

^a=(T*-l)d* + (<T>-l)dT (-),

~ = -2rda- + 2<rdT (-=-),

y C

where denom. = (t + o-)2 : regarding cr, r as the parameters in place of p, q, these show

the values of the first differential coefficients a, a'; b, h'; c, c'. We deduce

^1=-2W5c(o-t + 1) +, B = -2iv/ca(<rr-l) ~, C = - 2i *Jba (t - a) ~,

where denom. = (t + cr)3. We have, moreover,

^± = - 2 (t2 - 1) do-8 + 2 (o-t + 1) 2<fcr dr - 2 (o-2 - 1) dr2 (-*■),

9f727/

-£ = - 2 (t3 + 1) C&72 + 2 (C7T - 1) 2dadT - 2 (V + 1) c£x2 (-r),

^ = + 4t do-2 + 2 ( t - o-) 2^0-cZt + 4o-cZt2 (-5-),

where denom. = (t + a)s : giving a, a', a" ; /3, /3', /3" ; 7, 7', 7". We deduce as the

numerators of E' (= 4a + 5/3 + Gy) and 0' (= Aa" + Bj3" + Cy"),

4d */abc {(err + 1) (t2 - 1) - (err - 1) (r2 + 1) - 2r (r - cr)}, = 0,

and

4ri*/abc {(or + 1) (a2 - 1) - (ctt - 1) (a2 + 1)+ 2ct(t- cr){, = 0 ;

that is, 1?' = 0 and (?' = 0 ; or the differential equation of the chief lines is dcrdr = 0,

which is right. The value of F'(=Ad +B0' + Cy) is hardly required, but it is readily

found to

= U ^labc {- (<TT + l)a + (<TT - l)2 - (T - <J)Y + (T + Cr)6,

or since the term in { } is = — (t + cr)2, we have

„, — 4i Va&c

(t + <t)4 '

24. The values of E, F, G (ds? = Edo*+2Fd<rdT + Qdi*) are

E = o,(t*-1)* -5(t2 + 1)2 + c.4t2 (+),

F = a(T2-l) (cr2 - 1) - b (T2 + 1) (cr2 + 1) - G. 4<TG (-5-),

(? = a(c72-l)2 -6(cr2 + l)2 +C.4cr2 (+-),

where denom. = (t 4- cr)4.

22—2
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We have, it is clear, (E1 = d<rE, E2 = dTE, &c.)

4 4
E == — E, G2 = — G.

<T + T CT + T

Hence the condition FG2 — 2F2G + GG1 = 0, in order that cr = const, may be a geodesic,

reduces itself to

cr + t

and similarly, the condition — 2EF1 + E1F+EE2 = 0, in order that t = const, may be a

geodesic, reduces itself to

--A_2F- 2^ +^ = 0.

We have at once

#2 = 4a(T2-l)(Tcr + l) _4&(t2 + 1)(t<t-1) +4c.2t(ct- t) O),

©1 = 4a(<72-l)(TO- + l) -46(o-2+l)(TCr-l) -4c.2(7(cr- T) (-5-),

^ = 2a (t2 - l)(rcr -<t2 + 2) -2&(t2 + 1) (to- -a-2- 2)- 2c. 2t(t-3<t) <»,

i^2==2a(cr2--l)(TO---T2+2)--2&(cr2+l)(TCr--T2-2)-2c.2cr(o--3T) (-),

where denom. = (or + t)5 ; and substituting these values, the conditions are verified : we

thus again see a posteriori that the right lines a — const, and r = const, are geodesies.

25. The last-mentioned values of E, G are E = T -r- (t + cr)4, # = £ -f- (T + o-)4 ; and

writing for a moment

A = a (t2 - 1) 02 - 1) - b (t2 + 1) (a-2 + 1) - c . 4crr,

we have jP= A -r (t + ct)4, the value of cfe2 is thus

= Td(T2 + 2^(7*7 + 2*T2 -r (T + Cr)4,

which should be

where, as before,

P, Q = (a +2>) (6 +p) (c +£>), (a + ?)(& + g) (c + q),

respectively. We have already found

dp dq 4<dcr __

cZp dg 4c?t _

or, what is the same thing,

dp _ 9 (da dr
VP~~zWS + \7t,

7q W£~vt;;
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and we ought therefore to have identically

that is

or, what is the same thing,

which are easily verified.

26. In fact, the equation

(P-qy= t2-(t+<t)4,

f-tf = J.Vt2-(t + o-)4;

(p-q)2 = T2-(t + o-)4,

p + q = A+(t + a)2,

- 4- 7-4— + —— = 1
a -4- u b + u c + u

gives for u a quadric equation, the roots of which are u — p, u = q; that is, we have

p + q = x2 + y2 + z2 — a — b-~ c,

pq = — (b + c) x2 — (c + a) y2 — (a + b) z2+bc + ca + ab\

and substituting herein for x2, y2, z2 their values in terms of <7, r, we find

p + q = a (a2 - 1) (t2 - 1) - b (a2 + 1) (r2 + 1) - 4crcr 4- (t + <r)2,

_pgr = 6C (o-T + 1)2 _ ca (o-T _ 1)2 + al (o- _ T)2 -f- (t + o-)4,

the first of which is, in fact, p + q = A+(r + a)2. And from the two equations, forming

the combination (p + q)2 — 4<pq, we at once obtain the other equation

(i3-#=2T-(r+<ry.

27. The most ready way of obtaining the relations between the differentials of

p, q, a, t, is from the foregoing expressions of p + q, pq. Writing for a moment

p + q=A + (cr + t)2, pq = B + (a + t)2, we have p2 (a + t)2 - Ap + B= 0, q2 (a + r)2 - Aq +B = 0 ;

viz. the first of these equations is

p2 (a + r)2-p [a (a2 - 1) (r2 - 1) - b (a2 + 1) (t2 + 1) - 4c<7t]

+ 6c (or + l)2 - ca (o-r - I)2 + ab (<r - r)2 = 0,

which is quadric in p, <r, t. The negative discriminants in regard to these variables

respectively are ST, 4PT, 4P2 respectively, and we have thus the equation

dp ,9(d<r dr\_

and the like equation for dq.

28. In the first integral of the geodesic lines, introducing a, t instead of p, q,

the equation becomes

/( P \fd(T] dr\ /( 9 \(d°- ilA-o-
VW^ws+vt; vW+wws vt;"Uj
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or, what is the same thing,

/1. (da dr\2 , ^ f da d:

that is,

x n /da2 dr2\ ~ r~ . ^ , Nn dadr

or substituting herein for p — q, pq} p + q the values V2T, B, A, each divided by

(a + r)2, this is

6 (Tda2 + Sdr2) + 2 (2£ + 6A) dadr = 0,

or say

0 (Wo-2 + 2,4dWr + tdr2) + 4>Bdadr = 0 ;

viz. writing herein 0 = 0, the equation is dadr — 0, giving the right lines on the

surface; and writing 6 = cc , it is Tda2 + 2Adadr + %dr2 = 0, giving the circular lines.

29. The equation ds2 = Tda2 + 2Adadr + Xdr2 + (r + a)4 shows that the right lines

a, a + da, t, t + dr form on the surface an indefinitely small parallelogram, the sides

whereof are VT da ■+ (r + o-)2 and VS cZt -r- (r + o-)2, viz. the ratio of the coefficients of

da, dr is of the form function a ~ function t ; and it thus appears that it is possible

to draw on the surface the two sets of right lines, the lines of each set being at

such intervals that the surface is divided into parallelograms, the sides of which have

to each other any given ratio (the angles being variable); viz. if this ratio be as

m : 1, then, to determine the relation between a, r, we must have VT da = + m VS dr,

or what is the same thing, —r^=-±m-p=. In particular, if m = l, the parallelograms

will be rhombs; and we must then have

da _ dr

^ -VT;

viz. this being in terms of a, r, the differential equation of the curves of curvature,

it appears that the two sets of lines may be taken so as to divide the surface into

indefinitely small rhombs, such that, drawing the diagonals of these, we have the two

sets of curves of curvature.

The Ellipsoid and the Shew Hyperboloid.

30. I have thus far considered a quadric surface in general, the various theorems

being applicable as well to the ellipsoid and the hyperboloid of two sheets as to the

skew hyperboloid, the right lines being of course imaginary for the first-mentioned

surfaces; but I will now consider the ellipsoid and the skew hyperboloid separately.

31. First the ellipsoid. We have here a, b, c all positive, and I assume as

cc2 i/2

usual a>b>c. The principal sections are all ellipses, viz. —h|-=l is the major-
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V z

mean, or say the minor section, ^-h—=1 the minor-mean, or say the major section,

x2 z2

and —I— = 1 the mean, or umbilicar section. The elliptic coordinates _p, q enter into

the equations symmetrically, but we distinguish them by taking p to extend from — c

to — b, and q to extend from — b to — a. Thus p = const, denotes the curves of

M

5^^— "^^*5£

^^-—___
^^ir

X 11

curvature of the one kind ; viz. p — — c denotes the major-mean section —h 7- = 1,

p^ — b the portions UU' and TJ"TJ'" of the umbilicar section; and q — const, denotes

the curves of curvature of the other kind, viz. q= — b the remaining portions U' TJ"

v2 z2
and JJ"' U of the umbilicar section, q-= — a the minor-mean section ~ -f- - = 1 ; say

p = const, the major-mean curves, and q = const, the minor-mean curves.

32. Hence, in order that the equation

dp \/{(a+p)(b+p)(c+p)(6+p)J ±dq\/[
(a + q)(b + q)(c + q)(e + q)h"

of the geodesic lines may be real {observing that we have a-\-p, b+p = +, c+p,

p = — , and a + q=+, b + q, c + q, q = —, consequently p + (a +p) (6 + p)(c +p) = +, but

q-r-(a + q) (b + q) (c + ?) = — }, we must have 8 + p, 6+q of opposite signs, that is

0+p = -\- and 0 + q = — ; or 0 included between the limits a, c. Or, what is the

same thing, — 0 is included between the limits — c, —b, say — 0 has a p-value ; or

else between the limits — b, — a, say — 0 has a q-value. This is conveniently shown

0 G P B Q A

in the annexed diagram of the values of —p, -q, — 0. Hence on the ellipsoid we

have two kinds of geodesic lines, each of them touching a real curve of curvature;

viz. those which touch a major-mean curve and those which touch a minor-mean

curve : the transition case, answering to the value 0 = b, is that of the geodesic lines

which pass through an umbilicus. I have considered the theory more in detail in my

memoir " On the Geodesic Lines of an Ellipsoid,,, Mem. R. Ast 80c, t. xxx., pp. 31—53,

1872, [478].
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33. Next, for the skew hyperboloid, we have a and & = +, c = — , and I assume

for convenience a > b. Attending to the signs, we still have therefore a>b>c. The

principal sections are one of them an ellipse, and the other two hyperbolas, viz. the

x2 y2 ... y2 z2

minor section is the ellipse —{- 7- = 1, the major section is the hyperbola j~ H— = 1,

x2 z2

and the mean section is the hyperbola —b — = 1 : there are no umbilici. The elliptic

Qj G

coordinates enter symmetrically ; but, as before, we distinguish them, viz. we take p to

extend from — c (a positive value) to infinity, and q from —b to —a. Thus p — const.

x2 y2

denotes the curves of curvature of the one kind, viz. p = — c the ellipse —h j- = 1,

and every other value of p an oval curve surrounding the hyperboloid ; and q = const.

y2 z2

the curves of curvature of the other kind, viz. q = — c the major hyperbola j--\—= 1,

0 0

x2 z2

q= — b the mean hyperbola —j— = 1, and each intermediate value gives a curve of

Q> C

curvature of a hyperbolic form : we may say that p = const, determines the oval curves

of curvature, and q = const, the hyperbolic curves of curvature.

34. In the equation of the geodesic lines we have a + p, b + p, c + p, p all

positive ; but a + q — +, b + q, c + q, q each = — ; hence p -r- (a +p) (b +p) (c +p) — +, but

q + (a + q)(b + q)(c + q) = — ; therefore 8+p and 6 + q must be of opposite signs, or

we must have 6 + p = + and 6 + q = - ; or what is the same thing, 6 may have any

value from — p to -f, or say — 8 any value from p to q ; that is, the value of — 6

may be positive and greater than — c, positive and less than — c, negative and less

than — by negative and between — b and — a ; viz. in the first case — 8 has a ^-value,

PC 0 B Q A

and in the fourth case it has a g-value, but in the second and third cases it has

neither a p- nor a ^-value. This is better seen from the diagram. It follows that

we have, on the hyperboloid, geodesic lines of four different kinds : those which touch

a real curve of curvature, oval or hyperbolic, and those which touch no real curve

of curvature, but for which — 8 has a positive value from. 0 to — c, or a negative

value from 0 to —b. And there are the transitional cases — 8 = — c, where the

T2 U2

geodesic touches the ellipse —h y- = 1 ; 0 = 0, where the geodesic becomes a right

line ; and — 8 — —b, where the geodesic touches the mean hyperbola —h - = 1.

Qj C

35. To explain this more in detail, consider the geodesies which start from a

point M of the hyperboloid. To fix the ideas, consider the axis of z as vertical, and

take the point M in the positive octant of the hyperboloid ; and let Ml represent

the direction of the oval curve of curvature, if9 that of the hyperbolic curve of

curvature, if5 that of one of the right lines.
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The geodesic of initial direction Ml touches at M the oval curve of curvature

Ml, and lies wholly above this curve ; it makes an infinity of convolutions round the

upper part of the hyperboloid, cutting all the oval curves of curvature for which p

has a (positive) value greater than px (if px is the value of p corresponding to the

oval curve through M), and ascending to infinity: or considering the curve as described

in the opposite sense, it descends from infinity to touch the oval curve through if,

after which it again ascends to infinity.

Next, if the initial direction is M2, we have a geodesic of the same kind, only

descending below M to touch a certain oval curve having for its parameter p2(p2> — c< p^).

We come next to a critical direction MS, for which the geodesic descends below

x2 y2

M to touch the oval curve of parameter ps = — c, that is, the ellipse —h^r-=l. But

it is to be observed that, whatever the initial point M may be, the geodesic makes

below M an infinity of convolutions round the hyperboloid, so that it does not in

fact ever actually touch the ellipse, but has this ellipse for an asymptote. That this

is so appears from the consideration that the ellipse, qua plane curve of curvature, is

a geodesic; so that, starting from a point of the ellipse in the direction of the ellipse,

the geodesic coincides with the ellipse, or, besides the ellipse itself, there is not any

geodesic which touches the ellipse.

Next, if the initial direction be M4t, the geodesic does not here touch any oval

x2 y2

curve; it descends through M below the ellipse —h^-=l, lying in the upper and

lower portions of the hyperboloid, and making round it an infinity of convolutions.

36. We come, then, to the initial direction M5, which is that of the right line;

the geodesic here coincides with the right line.

In the cases which follow, the geodesic lies in the upper and lower portions of

the hyperboloid, cutting all the oval curves of curvature.

Initial direction M6 : the geodesic does not touch any hyperbolic curve of curvature,

but makes round the hyperboloid an infinity of convolutions.

c. viii. 23
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Initial direction M7 : the geodesic touches at opposite infinities the mean hyper

bola — + — = 1, it lies wholly in front of the plane y = 0 of this hyperbola.

CL C

Initial direction MS : the geodesic touches a hyperbolic curve of curvature parameter

q8 where q8 (negative) is between — b and q9 the parameter of the hyperbolic curve

of curvature through M\ viz. it cuts all the hyperbolic curves the parameters of which

are between — 6 and q8y but does not cut the remaining curves the parameters of

which extend from q8 to —a.

Lastly, initial direction is if9, that of the hyperbolic curve of curvature through M;

the geodesic touches this curve, cutting all the hyperbolic curves the parameters of

which are between — b and g9, but not any of those the parameters of which are

between q9 and —a.

37. If in the differential equation of the geodesic line we consider p, q as the

elliptic coordinates of a given point M of the curve, the equation for a given value

of 0 determines the direction of the curve ; or conversely, if the direction be given,

the equation determines the value of the parameter 0. Writing

dp y> = p dqsjq = ^

*J(a+p)(b+p)(c+p) ' ^(a+^yCb + q)(c + q)

then P, Q are proportional to the rectangular coordinates of a consecutive point M\

measured from M in the directions of the hyperbolic and oval curves of curvature

respectively; and the differential equation of the geodesic lines gives

P ±-4= = 0;

*/p+0 ~ *Jq + d

viz. if $ be the inclination of the geodesic to the hyperbolic curve of curvature, then

Q = Ptsna(f)> or we have ^ = ^, that is, jptan2<£ — q = 0(1 — tan2<£); hence, if for

the right line 6 = X, then p tan2 \ — q = 0 ; and therefore 0 = ^-^-—-—— ^ ; viz.

2 1 — tan2 (f>

<j> = 0, 0 = — q, = oo , 0 = —p) as it should be.
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509.

PLAN OF A CUKVE-TBACING APPARATUS.

[From the Proceedings of the London Mathematical Society, vol. iv. (1871—1873),

pp. 345—347. Eead May 8, 1873.]

I have devised a curve-tracing apparatus on the following plan :

Imagine two planes II, IT moving in the same horizontal plane, and above the

two planes respectively the two points P, P' moving in the same or a parallel plane.

To fix the ideas, suppose that the two planes each move according to a law (that

is, let the motion of each of them depend on a single variable parameter; for instance,

they may each of them rotate about an axis) ; but let the motion of the two points

be free.

Suppose, next, that the planes are connected together in such manner that the

motion of one of them determines the motion of the other (e.g. by a train of wheel-

work) ; and that the two points are also connected together in such manner that the

motion of one of them determines the motion of the other (e.g. by a pentagraph; or

by a slotted rod, the slot of which works on an axle, so as to allow the rod to

move lengthways as well as rotate).

Suppose, finally, that one of the points, say P', is attached to a point of the

plane IT ; then the plane II being set in motion, this determines the motion of IT,

consequently of P', consequently of P ; and the moving point P, or say the pencil P,

will describe on the moving plane II a curve, the nature of which will of course depend

on the nature of the motions of II, II', and on that of the connection between these

planes and of the connections between the points P and P'.

I propose to describe the apparatus as nearly as I have actually constructed it.

(See sketch-plan Fig. 1, and side-elevation Fig. 2.)

The framework of the instrument consists of two longitudinal bars (B) each about

three feet long, one inch thick, and three inches broad, supported edgewise at a

distance of about eighteen inches on the cross-pieces G, G; and half-way between

them, supported by the same cross-pieces, is an axis carrying at each extremity two

mitre wheels. The bars B support three cross-pieces D} D, D, and between these are

23—2
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the moveable cross-pieces E, E carrying the axes A, A with the attached mitre

wheels, and circular disks X, X. Each of these wheels separately may be placed (as

in the figure) out of gear with the two vertical wheels, or it can (by moving the

Fig. 1.

 

cross-piece E) be brought into gear with either of these wheels. Each axis A passes

through a circular disk H, capable of rotating about it, so that it may be fixed in

any position, and serving as the bearing for the plane X.

The disks X, X may be regarded as being themselves the planes II, II (say these

planes are rigidly attached to X, X respectively); or we may, in any other manner,

move the plane II by means of the disk X; for instance, X may carry a spur-wheel

gearing into a spur-wheel on the under surface of II, and thereby communicating a

Fig. 2.

 

rotation of different velocity to the plane II ; or the connection may be as in the

ordinary oval chuck. In any such case, the disk H (which, for this reason, was made

to project beyond X) serves as a support for the plane II, and the apparatus con

nected therewith; and observe that the angular position of such apparatus, and

therefore of the path of any point of II, may be varied at pleasure by moving the

disk H through any angle.

Detached altogether from the rest of the instrument, or what is better, supported

on longitudinal pieces carried by the cross-pieces G, G we have a bridge (see fig. 1)

capable of adjustment as regards height, and serving as a support for the pentagraph-

apparatus, or other connection of the one plane II with the pencil which works upon

the other plane II.

It is hardly necessary to remark that in the simple form of the instrument where

the disks X, X are themselves the planes II, II, then putting the mitre wheel of one

plane X in gear with either of the corresponding vertical wheels, and making the plane

rotate, the other plane X will rotate with the same angular velocity, in the same or

the opposite direction, or it will remain at rest, according as its mitre wheel is in

gear with one or the other of the corresponding vertical wheels, or is out of gear

with each of them.
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510.

ON BICURSAL CURVES.

[From the Proceedings of the London Mathematical Society, vol. IV. (1871—1873),

pp. 347—352. Read May 8, 1873.]

A CURVE of deficiency 1 may be termed bicursal: there is some distinction

according as the order is even or odd, and to fix the ideas I take it to be even.

A bicursal curve of the order n contains

\ n (n + 3) - {^(n — 1) (n — 2) — 1}, = Sn constants ;

hence, if the order is = 2n, the number of constants is = 6n; such a curve is normally

represented by a system of equations

(x, y, *) = (1, 0)» + (l, 0)«-V®,

where © is a quartic function, which may be taken to be of the form (1 — 02) (1 — k202),

or otherwise to depend on a single constant; viz. (#, y, z) are proportional to w-thic

functions involving such a radical : since in the values of (%, y, z) one constant divides

out, the number of constants is 3 {(n + 1) -f (n — 1)} — 1 + 1, = 6n, as it should be.

But the curve of the order 2n may be abnormally or improperly represented by

a system of equations

0, y, *) = (1, 0)n+k + (l, 0f+*-2V®,

viz. these equations, instead of representing a curve of the order 2n + 2k, will represent

a curve of the order 2n, provided only there exist 2k common values of 6 for which

each of the three functions vanish. The passage to a normal representation is effected

by finding 8' a function of 0, V® (viz- an irrational function of 0) such that the

foregoing equations become

(x, y, *) = (!, 0')" + a 0T-V©';
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it is shown that such a transformation is possible, and a mode of effecting it, derived

from a theorem of Hermite's in relation to the Jacobian H, © functions, is given in

Clebseh's Memoir "Ueber diejenigen Curven, deren Coordinaten sich als elliptische

Functionen eines Parameters darstellen lassen," Grelle, t. lxiv. (1865), pp. 210—270. The

demonstration is a very interesting one, and I reproduce it at the end of this paper.

I remark, in passing, that the analogous > reduction in the case of unicursal curves is

self-evident; the equations

(x, y, s) = (l, 0)"+"

will represent a curve, not of the order n + k, but of the order n, provided there

exist k common values of 6 for which the three functions vanish ; in fact, the three

functions have then a common factor of the order k, and omitting this, the form is

(*, y, *) = (1, 6f.

Returning to the curves of deficiency 1, we see that a curve of the order 2m + 2n

contains Q(m + n) constants, and is normally represented by a system of equations

(x, y, z) = (1, 6)m+n + (1, 6)m+n~2 V®.

Such a curve may be otherwise represented: we may derive it by a rational trans

formation from the curve (D = 1) of the order 4 (binodal quartic), the equation of

which is

(1, u)2(l, v)2 = 0;

viz. the coordinates are here connected by a quadriquadric equation; and we then

express oo, y, z in terms of these by a system of equations

(x} y, z) = (1, u)m (1, v)n.

It is, however, to be observed that the form of these functions is not determinate :

each of them may be altered by adding to it a term {(1, u)m~2 (1, v)n~2} {(1, uf (1, v)2),

where the second factor is that belonging to the quadriquadric transformation, and

the first factor is arbitrary. Using the arbitrary function to simplify the form, the

real number of constants is reduced to (m + l)(n + 1) — (m — l)(n — 1), =2(m + n); or

the three functions contain together 6 (m + n) constants, one of which divides out. The

quadriquadric equation, dividing out one constant, contains eight constants ; but reducing

by linear transformations on u, v respectively, the number of constants is 8 — 6, = 2.

Hence, in the system of equations, the whole number of constants is 6 (m + n) — 1 + 2,

= 6 (m + n) + 1 ; viz. this is greater by unity than the number of constants in the

curve (D = 1) of the order 2 (m + n). The explanation of the excess is that the same

curve of the order 2 (m + n) may be derived from the different quartic curves

(1, u)2 (1, v)2=0; this will be further examined.

The transition from the one form to the other is not immediately obvious ; in

fact, if from the quadriquadric equation (1, u)2 (1, v)2 = 0 (say this is A + 2Bv -f- Gv2 = 0,

where A, B, Care quadric functions of u) we determine v; this gives Gv = —B + V.B2 — AG,
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= —B + *JQ, suppose; and then substituting in the equations (#, y, z) = (l, u)m(l, v)n,

we find

0, y, s) = (l, u)m(C, -B + ^n)n;

viz. we have (x, y, z) proportional to functions of u, involving the quartic radical \/fl ;

but these functions are of the order (not m + n, but) m + 2n.

In particular, if n = m, then, instead of functions of the order 2n9 we have functions

of the order Sn. The reduction in this last case to the form where the order is 2n

can be effected without difficulty, but in the general case where m and n are unequal,

I do not know how it is to be effected except by the general process explained in

Clebsch's Memoir.

We may, in fact, by linear transformations on u, v, reduce the quadriquadric

relation to

1 + u2

+ 2buv

+ v2 + cu2v2 = 0,

that is

l + u2+ 2buv + v2 + cu2v2 = 0 ;

or putting herein u + v —p, uv = q, the relation is

1 + p2 - 2q + 2bq + cq2 = 0,

that is

p2 = - 1 + ( 2 - 26) q - cq2,

p*-4<q=:-l + (-2-2b)q-cq2]

viz. extracting the square roots,

u + v = tJQ, u — v — *JQ\

if for shortness

Q = - 1 + ( 2-2b)q- cq2,

Q =-l+(-2-2b)q-cq2;

we may then rationalise one of the radicals, for instance, Q] viz. writing

- c {- 1 + (2 - 26) q - cq2} = {cq - (1 - 6)}2 + c - (1 - 6)2,

then, if

cq-(l-b) = ^c^(l^Vf .±(e -~^ ,

this becomes

-cQ = \c-(l-b)Ui(d-l)* + l

= i0-(i-by\.i[e + l
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that is

and the corresponding value of \JQf is

where q stands for its value

We may write these in the form

1 : | JQ : 4 s/Q' = MO : 1 + 02 : V®,

where ilf is a constant, and © is a quartic function of 6, such that (1 4- 02)2 — © is

a quadric function only of 0.

The equations

(x, y, s) = (l, w)«(l, v)»

thus assume the form

(a?, y, js)=(M0, l + 02 + */®)m(M0, l + 0»_V©)w;

and on the right-hand side the term of the highest order in 6 is

viz. if n=or>m, then this is

{(1 + <92)2 - ©}m (1 + 02 - V©)71"-™.

This is

= (1, 0)2m (1 + 02 - V©)n_m,

which is of the order 2m -f 2 (w — m), = 2ft (which, in virtue of n = or > m, is = or > m + n).

In particular, if n = m, then the highest order is = 2n ; or the curve of the order 2n,

as represented by the equations

O, 2/, *) = (1, u)»(l, v)n,

where (u, v) are connected by a quadriquadric equation, is also represented by the

equations

(x, y, s) = (l, 0)»+(l, 6)<"</®,

which is the required transformation of the original equations.

It is to be noticed that the foregoing form,

1 + u2

+ 2buv

+ v2 + cu2v2 = 0,
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is the most special form to which the quadriquadric relation can be reduced by the

linear transformations of u, v; in fact, by mere division, the equation is made to have

the constant term 1 ; the number of the coefficients of transformation is then 3 + 3, = 6 ;

and to reduce the relation to the foregoing form, we have the six conditions,

coeff. u = 0, coeff. v = 0, coeff. vu2 = 0, coeff. v2u = 0, coefT. u2 = 1, coeff. v2 = 1 ; but in this

form, expressing v in terms of u> the radical is ^£1, where

n = (1 + u2) (1 + cu2) - b2u2y

which is not more general than if we had

n = (i + u2) (i + cu%

viz. there is a superfluous constant b. And we thus see how it is that the system

of equations

(x, y, *)=(1, m)*(1, v)n,

(u, v) connected by a quadriquadric relation, contains, not 6n, but 6^+1 constants, one

of these being superfluous.

Clebsch's transformation, above referred to, is as follows:

Starting with the equations

0, y, *) = (i, ey+h+(i, oy+^j®,

if the function © is not originally of the standard form, we may, by a linear sub

stitution, reduce it to this form, viz. we may write

<d = 0(l-6)(l-k26);

and then writing 6 = sn2 u, (sin2 am u), we have

V© = sn u en u dn u

= 8iiu sn' u ;

so that the formula become

(#, y, *) = (1, sn2u)n+Jc + (l, sn2 u)n+k-2 sn u sn' u.

Hermite's theorem, used in the demonstration, is that any such function of sn u

is expressible in the form

G E (u - a-,) H (u - g2) . . . H(u - am+2jc)

(H, © denoting here the two Jacobian functions), where

ai + aa... + a2n+2fc=0.

{Observe, in passing, that the equation

0=(1, sn2uy+k + (l, Bn^^snttsn'w

c. viii. 24
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gives, when rationalised, an equation in sn2 u of the order 2n + 2k ; the roots of this

equation are sn2 aly sn2 a2 ••• sn2 a2n+2jc. Considering the functions (1, sn2 u)n+k and

(1, sn2 u)n+h~2 as indeterminate, the coefficients can be found so that all but one of

the roots of the equation in sn2% shall have any given values whatever, sn2^,

sn2 a2 , . . . sn2 otm+2k-i ] the theorem then shows that the remaining root is sn2 a2n+2jc, where

— #2?l+2& = «i + 0t2 . . . + a2n+2k—ly

which is, in fact, Abel's theorem.}

Now, supposing that the three functions of 6 all vanish for 2k common values

of 6, each of the functions of u will contain the same 2k H functions, say these are

H (u — a2n+1) ... H (u — am+2jc). Omitting these and also the denominator factor &2k (u),

we have the set of equations

_ n H (u- gj) H(u-a2) ... H(u - am)

where, however,

a1+a2... + a2?l=J=0,

{the values ot1> a2...am are of course different for the three coordinates x> a, z respec

tively} ; viz. we have

^1 + ^2 • • • + a2n = "" (a2ft+l + • • . + 0C2n^2Jc)

= 2ns suppose.

Writing then

u = u' + s, a1 = a1' + 8, a2 = a2'-M, ... a'm = a'm + s,

and consequently

al' + a2' + ... +a,2n = 0,

we have

or, changing the common denominator,

_ pH(u' - Ox7) ... ff (V - tt^)

where

«/ + a2' . . . + a'm = 0 ;

or, what is the same thing,

(x, y, z) = (1, sn2 u')n + (1, sn2 u')n~2 sn v! sn' . u' ;

viz. writing sn v! = 0', and 0' = ff (1 - <9') (1 - &26>'), this is

O, 3/, *) = (1, ^)» + (l, ffy^sjw,

a normal representation of the curve of the order 2n.
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The relation between the parameters 0, 0' is given by 0' — sn2 (u — s), sn2 n = 0,

that is, we have

yflcnsdns-snW(l - 0) (1 - k20)

V l-&2sn2s.6>

or, writing sn2s = <7, this is

_ a/0 V(T^V) (1 - fa) - yq- V(i - fl) (1 - &26>)

1 - Ifiad '

and, conversely, we have

_ yy V(T^~o-) (i - &V) + yv \/(T^07j(L^¥0/)

1-&V0'

and the theorem, in fact, shows that, substituting this value of 0 in the functions

of 0 which serve to express x, y, z, these become proportional to the functions of & ;

viz. they become equal to these functions, each multiplied by an irrational function

A' + Bl/&9 {A', F rational functions of ff).

24—2
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511.

ADDITION TO THE MEMOIR ON GEODESIC LINES, IN

PARTICULAR THOSE OP A QUADRIC SURFACE (509). (*)

[From the Proceedings of the London Mathematical Society, vol. IV. (1871—1873),

pp. 368—380. Eead June 12, 1873.]

38. In the Memoir above referred to, speaking of the geodesic lines on the skew

hyperboloid, I say (No. 35), "The geodesic of initial direction Ml touches at M the

oval curve of curvature Ml, and lies wholly above this curve ; it makes an infinity

of convolutions round the upper part of the hyperboloid, cutting all the oval curves of

curvature for which p has a positive value greater than p± (if px is the value of p

corresponding to the oval curve through M), and ascending to infinity." The statement

as to the infinity of convolutions is incorrect; I was led to it by the assumption that

the geodesic could not touch any hyperbolic curve of curvature. The fact is, that it

touches at infinity (has for asymptotes) in general two hyperbolic curves of curvature ;

viz. the geodesic descending from infinity in the direction of a hyperbolic curve of

curvature, so as to touch the oval curve through M, again ascends to infinity in the

direction of a hyperbolic curve of curvature (the same as the first-mentioned one, or

a different curve), making in its whole course say k convolutions, where m is a positive

finite number ; if k < 1, there is no complete convolution, and when k = 1 or any

integer number, then the two hyperbolic curves are one and the same curve ; k is

infinite only in the special case afterwards referred to in the same No. 35, where

the oval curve of curvature is the ellipse which is a principal section of the hyper

boloid, and does not even attain to the value 1 except for an oval curve exceedingly

close to this ellipse. The error was on consideration obvious enough, though I was

in fact led to perceive it by the numerical calculations about to be referred to, which

gave me geodesies not making a complete convolution.

1 The articles are numbered consecutively with those of the Memoir, (509).
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39. I have effected, for a particular skew hyperboloid and oval curve of curvature

thereof, the numerical calculations for laying down the geodesic lines which touch this

curve of curvature. Taking in general the equation of the hyperboloid to be

x2 y2 z2

- + \ + - =1,

and the #-curve of curvature to be the intersection by the confocal surface

x2 y2 z21—* 1 = l

a-e ' b-e * c-

then the selected values for the hyperboloid, and oval curve of curvature touched by

the geodesies, are

a= 900,

b = 400,

c = -c' =-1600,

0 = -#' = -1650;

so that a, b, c', 0' are the positive values 900, 400, 1600, and 1650 respectively. I

recall that p = c' to p = oo gives the oval curves of curvature, viz. p = c', the elliptic

principal section ; p = 0', the given oval curve : and that we are in the sequel concerned

only with the oval curves above this, for which p extends from 0' to oo . Moreover,

q = — b to — a gives the hyperbolic curves of curvature, viz. q = — b the ^-principal

section ; and q= — a the ^-principal section of the hyperboloid. We have, in fact, to

deal with the integrals

n^)=J0,^ V (p + a)(p + b) (p-c')(p-0') '

and

*(?)=L*V(_B * V (q + a) {q + b)(q - c) (q - &) '

or if p = & + u, u extending from 0 towards oo , then

TI(P) = J0 du/sj-
u + 6'

(u+a + 0')(u + b + 6') (u + 6' — c') u

and so if q = — b — v, v extending from 0 towards (a — b), which is its limit,

VM-fdVy/^
V + 6

(a - b - v) v (v + b + c') (v + b + 0') '

the relation for any particular geodesic of the series being

±U(p)±^(q) = 0.

40. To avoid discontinuity as to sign, it is convenient to take the integral M* (q)

in a particular manner. The hyperboloid is by the xz- and ^-principal planes divided

into four quadrants ; or since we attend only to the upper half of the hyperboloid,

say this upper half is thus divided into four quadrants, x to y, y to of, x' to y\ and

y' to x ; or call them the first, second, third, and fourth quadrants. But we may

consider the quadrants as forming an infinite succession, first, second, third, fourth, fifth,
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and so on ; or we may take them in the reverse order, — 1, — 2, — 3, &c. For a hyper

bolic curve q=—b—v in the first quadrant the integral is to be taken v = 0 to v = v,

for a curve in the second quadrant v = 0 to a — b, and thence positively a — b to v;

for a curve in the third quadrant v = 0 to a—b, thence a — b to 0, and thence 0 to v ;

and so on : and so for a point in the quadrant — 1, the integral is from 0 to v,

taken negatively, &c. ; that is, as the hyperbolic curve travels from the ^-position in

the positive direction, the integral M* (q) continually increases from zero; and if the

curve travels from the ^-position in the negative direction, then the integral M* (q)

continually decreases from zero; that is, it increases negatively. It is to be remarked

that the integral v = 0 to a — b is finite, say it is = K' ; and of course it is only thus

far that the integral requires to be calculated, the subsequent values differing from

the preceding ones only by multiples of this complete integral.

The integral II (p) requires no explanation ; it is taken from u = 0, giving a certain

oval curve, up to any positive value of u, giving the oval curves above this one ;

and, in particular, taking the integral to u = oo (or, what is the same thing, to p = oo )

its value is finite, =K, suppose.

41. Consider the geodesic which touches the given oval curve at a point for which

*$? (q) has a given value Q ; at this point p = #', or II (p) = 0 ; so that, taking for the

equation of the geodesic ^ (q) ± II (p) = C, we have Q = G, and consequently

V(q) = Q + n(p).

Taking the positive sign, then as p increases from 6\ W (q) increases, or the

describing point of the geodesic moves upwards from the point of contact in the

direction of positive rotation ; and taking the negative sign, then 'SP (q) decreases, or

the describing point of the geodesic moves upwards from the point of contact in

the direction of negative rotation ; and, in particular, p becoming infinite, then the first-

mentioned branch touches at infinity the hyperbolic curve, for which q is such that

*vj> (g) = Q + K, and the second branch that for which q is such that ty(q) = Q — K.

42. The graphical process is as follows : we describe, on the hyperboloid, a series

of hyperbolic curves of curvature, numbering them according to the values of ^ (q) ;

viz. considering the hyperbolic branches which form the %z, yzy x'z and y'z sections

respectively, these are 0, K ', 2K', 3K', and on going round a second time they would

be 4jST', 5-fiT', §K', 1K\ and so on respectively. We similarly describe, say on the

upper half of the hyperboloid, the oval curves of curvature, numbering them according

to the values of II (p), viz. beginning with that for which p = 0\ which is 0, we go

successively up to the oval curve at infinity, which is K.

In the example, and drawing belonging thereto (O, where, for convenience, the values

of the integrals have been multiplied by 100,000, we have, as will appear, K— 12490,

K' = 34726 : the two sets of curves are drawn at intervals of 2000 ; viz. we have the

hyperbolic curves 0, 2000, 4000, ... 34000, 34726; and the oval curves 0, 2000, 4000,

6000, 8000, 10000 ; the distance of the successive oval curves increases very rapidly,

since the curve at infinity would be K, =12490, and the curve J5T= 10000 is the last

which comes into the limits of the figure.

1 This drawing was exhibited at the meeting of the Society.
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43. The two sets of curves of curvature being thus drawn at equal intervals of

II (p) and M* (q) respectively, dividing the hyperboloid into quadrilateral spaces (which

of course should theoretically be indefinitely small), the diagonals of these quadrilateral

spaces are the elements of the geodesic lines ; and by a series of such elements we

have a particular geodesic line. The general character comes out in the drawing very

distinctly; viz. the geodesic is a hyperbola-like curve descending from infinity to touch

the oval curve, and again ascending to infinity ; by reason of the small value of K

in comparison of K\ there is nothing like a complete convolution, but the whole curve

is included within a quadrant of the hyperboloid.

44. I remark that the calculations were performed roughly. I made no attempt

to estimate or allow for errors arising from the intervals being too great ; and there

are very probably accidental errors of calculation. But starting with the value 10411

of II (p) for £)= 10000, I found, with some care, superior and inferior limits of the

remainder of the integral, p = 10000 to p = oo ; and the process is, I think, an interesting

one. Consider in general the integral

/ p

' (p + a)(p + b) (p --o'){p-ff)

1 P

I = I dp ,

-ll+),dp\ {p + a){p + b){p-c'){p-ey

where I1 is the integral calculated up to a somewhat large value p=px.

Writing

a = 1 (a + b ),

7 = \ (a + b ) - m,

8 =£(<,' + fl^ + n,

where m and n are as yet undetermined, we have

(p + a ) (p + b ) = (p + a y - I (a - b )2, > (p + a )2,

(p-c)(p-d') = (p-/3y-i(d'-cy, >(^~/3)2;

and the integral is thus

>Il+JPldp(p + «Hp-l3)-

But we may determine m and n, so that for p = or >ply

(p + a)(p + b)<(p + ry)2,

and the integral is then

(p-c')(p-8')<(p-8f;

<Il+!ldp(P+vHp-*y

The determination thus depends on the last-mentioned integrals, the values of which

are at once obtainable by writing therein sjp = x\ viz. we have

[ 7 Vp _q [ oc2doc n | 2 j x- V/3) 2V« , _x so
J P(P + «)(P~13)- A](xz + a)(a;*-/3)- ° + oT^ (^ ^ ^ ^TV^j + ^8 V^
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and hence, substituting in the formula, for h.l.x its value 1 fe , the superior limit is

1 (7 + 8 log e ° Vpi — V^ 7 + S VyJ '

-and the inferior limit is

45, The numerical values are ^ = 10,000; a, 6, c', 0' = 900, 400, 1600, 1650; and

thence determining by trial values of m and n,

a = 650, 7 = 650 - 4 = 646,

/3 = 1625, 8 = 1625 + 160 = 1785,

I obtained for the logarithmic and circular terms of the two limits respectively

Superior Inferior

Logarithmic '015668 '015144

Circular '005202 '005593

•020870 -020737

The value of I± was 10411 -r- 100,000 = '104110, and the two limits thus are 124980

and '124850; or restoring the factor 100,000, they are 12498 and 12485; the mean of

these, say 12490, wras taken for the value II (p), p = oc ; that is K— 12490.

46. As regards the calculation of the integrals II (p) and "SP (q), introducing the

numerical values, and multiplying by the before-mentioned factor 100,000, we have

(g= -400-^),

which for any small value of v is

°100,000^/goo^2060(/^,=2Vt>);

viz. this is

= 883-45 (log = 2-9461830) *Jv,

which was used for the values v = l, 2, ...10, that is, to q~ — 410; after which the

calculation was continued by quadratures giving to v the values 10, 20, 30,... up to

v = 490, or g=- 890. For the remainder of the integral, writing 500 — v = w (that is,

q = — 900 + w), we have

¥ (q) - ¥ (- 890) = 100,000 I dwJ
900 -w

w (500 - w) (2500 - w) (2550 - w) '

= 100'000 V^OO. 2500 .2550 [\t > = 2^- V«)

= 1062-7 (log = 3-0264261) (VI 0 - V«0,
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which was used for the values w = 9, 8, 7, ... 1, 0, to complete the calculation up to

q = _ 900.

47. We have in like manner, p = 1650 + %

u(P)= iooooo fuduJ7 M+165°

J o V ('(u + 2550) (u + 2050) (u + 50) u '

which for small values of u is

1("")'"'\/255oS.5o(/^'-^^
viz. this is

502-5 (log = 2-7011399) </u,

used for u = l, 2, ... 10, that is to _p = 1660. The calculation was afterwards continued

by quadratures, by giving to u a succession of values, at intervals at first of 10, and

afterwards of 20, 50, 100, 200, and 500, up to p = 10,000, giving for the integral the

value 10411; and thence, as appearing above, the value for p — oo was found to be

= 12490.

48. After the calculation of the values of II (p) and M* (q), it was easy by inter

polation to revert these tables, so as to obtain a table which, for II or M* as argument,

gives the values of p and q. The arguments are taken at intervals of 500; up to

10000 as regards p, since the original table was only calculated thus far; and up to

34726 as regards q. I had thus calculated the annexed Table III., when it occurred

to me that there was a convenience in taking the arguments to be submultiples of

the complete integral 34726 ; say we divide this into 90 parts, or, as it were, graduate

the quadrant of the hyperboloid by means of hyperbolic curves of curvature adapted

for the geodesies in question. Taking every fifth part, or in fact dividing the quadrant

into 18 parts, we have the Table IV.

49. It will be remembered that the foregoing results apply only to the geodesies

which touch the oval curve of curvature jp = + 1650; for the geodesies touching any

other oval curve of curvature, the values of the integrals, and the mutual distances

of the curves of curvature used for tracing the geodesies, would be completely altered.

But it is possible to derive some general conclusions as to the geodesies that touch

a given oval curve of curvature.

Observe that the integral K' (= 34726 in the case considered) measures the

quadrant of the hyperboloid ; viz. M* (q) = 0, M* (q) = K' determine two hyperbolic curves

of curvature (principal sections), the mutual distance whereof is a quadrant. Each

geodesic touches the given oval curve of curvature, and it touches at infinity the two

hyperbolic curves ^ (q) = Q ± K (K = 12490 in the case considered); viz. the distance

of these in regard to the circuit of four quadrants, or say the amplitude of the

geodesic, is measured by the ratio ^—f .

50. Now it is easy to see that as the oval curve of curvature approaches the

principal elliptic section, that is, as ff approaches c' (or writing & = c' + m, as m

c. viii. 25
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diminishes towards zero), the integral K' alters its value only slowly, increasing towards

a certain constant limit ; but, contrariwise, K increases without limit, its value for any

small value of m being of the form A — B log m, = oo in the limit ; wherefore, as m

diminishes, the value of ^7, the amplitude of the geodesic, continually increases. If

this is =1, the geodesic touching at infinity a certain hyperbolic curve of curvature,

in descending to touch the oval curve, makes round the hyperboloid a half-convolution,

and then again ascends through another half-convolution to touch at infinity the same

hyperbolic curve of curvature; viz. it makes in all one entire convolution, or say in

descending it makes a half-convolution. But if K ~ 2Kf = 2, then the curve makes in

descending a complete convolution ; and so, if K -r- 2K' = 2s, then the geodesic makes

in descending s convolutions ; and, as already mentioned, ultimately when m = 0 the

geodesic makes an infinity of convolutions; that is, it never actually reaches the elliptic

principal section, but has this line for an asymptote.

51. To sustain the foregoing statements, I write ff (=c' + m) = 1600 + m, and I

consider the integral

) du\/7——
Jo V (u + [

K' =100000' -'■- ' M + 1600 + m

(u + 2500 + m) (u + 2000 + m) (u + m)u'

say for a moment this is

TOO

K'm = Um du.

J 0

Supposing m to be small, we divide the integral into two parts, say from 0 to a

[where a, = for example 50 or 100, is large in comparison with m, but small in

comparison with the numbers (c', &c), 1600, &c], and from a to 00 . In the second

part, the expression under the integral sign and the value of the integral varies slowly

with m, and we may, as an approximation, write m = 0. We have thus

Km = I Um du + I UQ du,

JO J <*■

and the first part hereof is

-100000 /( 160° )(a du -■

viz. the integral is here

7 7 r 1 /—? vi 7 7 a + im + Va(a-f m) 7 7 4a . .
h.l [u + \ m + Vu (u -i- m)} = h.l. -— j = h.l. — approximately ;

2" 771 Tyt

or say this is

1 , 4a
= i I02: — •

log e ° m

The first term is thus

= 100000 ygBA;"7ftnn ,-^ log ^ ,

which is

= 4119 log 4a

1600 1 4a

2500 . 2000 log e g m

m '
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or we have

Aid f°°

Z'm = 4119 log — + / U0du.

We ought to have the same value of the integral, whatever, within proper limits,

the assumed value of a may be. Taking, for instance, a = 50 and a = 100, we ought to

have

400 r°°

K'm = 4119 log— + Ufa

= 4119 log—-+ U0du;

l'1' J 50

that is,

rioo

4119 log 2= U0du.

J 50

In verification, I calculated the second side by quadratures ; viz. for the values

50, 60, 70, 80, 90, 100, the values of U0 are 35*532, 29*570, 25*311, 22*373, 19*632,

17*645 ; whence, adding the half sum of the extreme terms to the sum of the mean

terms, and multiplying by 10, the value of the integral is = 1234*74. The value of

the left-hand side is = 1239*94, which is a sufficient agreement.

52. Returning to the formula for K'm, this may be written

iTm = (4119 log 400 + P U0du)~ 4119 log m.

\ J 100 /

I did not calculate the value of the integral in this formula, but determined the

term in ( ) in such wise that the formula should be correct for the foregoing

value m = 50 ; viz. the term thus is

= 12490 + 4119 log 50 = 12490+6998, =19488, or say 19500;

we thus have

Km = 19500 -4119 log m;

and we may roughly assume that, for any small value of m, K'm has the same value

as for m = 50 ; viz. we may write

#^ = 34726, or say =35000.

We thus see how to give to m such a value that the quantity 9W7, which is

the number of convolutions of the geodesic, may have any given value; and, in

particular, we see how exceedingly small m must be for any moderately large number of

convolutions ; for instance, wi — onoono or 1°S m = — 8, K~ 19500 + 32952, = say 52500,

or the number is = fff , about five-sevenths of a convolution.

Correction. Instead of speaking, as above, of a geodesic as touching at infinity

a hyperbolic curve of curvature, the accurate expression is that the geodesic at infinity

is parallel to a certain hyperbolic curve of curvature. The geodesic has, in fact, for

asymptote the right line on the surface parallel at infinity to such curve of curvature.

Added Dec. 1873.

25—2
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Table I. Table II.

p U(p) q *(q)

1650 000

1 502

2 711

3 870

4 1005

5 1124

6 1231

7 1329

8 1421

9 1507

1660 1589

70 2188

80 2605

90 2933

1700 3205

10 3438

20 3642

30 3824

40 3989

50 4130

60 4287

70 4414

80 4532

90 4642

1800 4745

20 4945

40 5106

60 5261

80 5403

1900 5533

20 5654

40 5766

60 5871

80 5970

2000 6063

50 6275

100 6462

150 6629

200 6779

250 6916

300 7041

350 7156

400 7262

450 7362

-400 000

1 883

2 1249

3 1530

4 1767

5 1975

6 2164

7 2337

8 2499

9 2650

410 2794

20 4016

30 4952

40 5752

50 6467

60 7124

70 7739

80 8321

90 8877

500 9413

10 9931

20 10436

30 10923

40 11406

50 11880

60 12347

70 12809

80 13266

90 13720

600 14171

10 14619

20 15067

30 15513

40 15960

50 16408

60 16857

70 17308

80 17762

90 18220

700 18682

10 19149

20 19623

30 20101

- 40 20588



511] 197IN PARTICULAR THOSE OF A QUADRIC SURFACE.

Table I. {continued).

P n (p)

Table II. (continued).

q *(q)

2500 7454

600 7625

700 7777

800 7913

900 8037

3000 8151

200 8352

400 8526

600 8679

800 8815

4000 8936

500 9216

5000 9423

500 9593

6000 9737

500 9861

7000 9970

500 10066

8000 10152

500 10229

9000 10299

500 10363

10000 10411

12490

II or*

-750 21086

60 21595

70 22117

80 22653

90 23206

800 23778

10 24374

20 24998

30 25655

40 26355

50 27105

60 27928

70 28861

80 29936

890 31365

1 31538

2 31720

3 31914

4 32123

5 32350

6 32600

7 32886

8 33224

9 33663

-900 34726

Table III

p Diff. Diff.

0 1650-0 -400-0
1 .3

500 1651-0 400-3
3 1-0

1000 1654-0 401-3
5 1*6

1500 1659-0 402-9
7-8 2-2

2000 1666-8 405-1
10-7 2-9

2500 1677-5 408-0
14-9 3-7

3000 1692-4 411-7
20-6 4-0

3500 1713-0 415-7
27-8 4-3

4000 1740-8 420-0
36-6 5-2

4500 1777-4 425-2
49-4 5-4

5000 1826-8 430-6
68-1 6-2

5500 1894-9 436-8
91-5 6-6

6000 1986-4 - 443-4
124-6 7-1
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II or ^

Table III. (continued).

o Diff. q Diff.

124-6 7-1
6500 2111 -450-5

172 7-6
7000 2283 458-1

244 8-0
7500 2527 466-1

353 8-4
8000 2870 474-5

415 8-7
8500 3285 483-2

829 9-1
9000 4114 492-3

1112 9-4
9500 5226 501-7

1930 9-6.
10000 7156 511-3

9-8
500 521-1

10-1
11000 531-5

10-5
500 542-0

10-8
12000 552-5

10-8
500 00 563-3

10-9
13000 574-2

10-9
500 585-1

11-1
14000 596-2

11-1
500 607-3

11-2
15000 618-5

11-2
500 629-7

11-3
16000 641-0

11-1
500 652-1

11-1
17000 663-2

11-0
500 674-2

11-0
18000 685-2

10-9
500 696-1

10-7
19000 706-8

10-6
500 717-4

10-6
20000 728-0

10-4
500 738-4

9-9
21000 748-3

9-8
500 758-1

9-6
22000 767«7

9-4
500 777-4

9-0
23000 786-4

8-7
500 795-1

8-6
24000 803-7

8-3
500 812-0

8*0
25000 820-0

7-6
500 827-6

7*3
26000 834-9

7-0

6-7

500 -841-9
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II or ^

Table III. (continued),

p Diff. q

n or #

Table IV.

P Diff.

Diff.

6-7
27000 -848-6

6-2
500 854-8

6-0

5-3

28000

500

860-8

866-1

5-2
29000 871-3

4-7
500 876-0

4-6

3-4

30000

500

880-6

884-0

3-5
31000 887-5

3-3
500 890-8

3-6
32000 893-4

2*2
500 895-6

1-7
33000 897-5

1-1
500 898-6

0-7
34000 899-3

0-5
500 899-8

0-2
34726 -900

Diff.

0 0 1650 -400

15-7 4-8
1 1929 1665-7 404-8

66-4 13-9

2 3858 17321 418-7

212-1 21-8

3 5788 1944-2 440-5

713-5 29-1

4 7717 2657-7 469-6

3040-0 34-9

5 9646 5697-7 504-5

39-1

41-6

6 11575 543-6

7 13504 585-2

42-8

8 15434 628-0

43-2

9 17363 671-2

41-8

39-7

36-3

32-2

27-4

10 19292 713-0

11 21221 752-7

12 23150 789-0

13 25079 821-2

14 27008 848-6

221
15 28938 870-7

15-8

16 30868 886-5

10-2

17 32797 896-7

3-3
18 34726 -900
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512.

ON A COEEESPONDENCE OF POINTS IN EELATION TO TWO

TETEAHEDEA.

[From the Proceedings of the London Mathematical Society, vol. iv. (1871—1873),

pp. 396—404. Bead June 12, 1873.]

The following question has been considered by R. Sturm in an interesting paper,

" Das Problem der Projectivitat und seine Anwendung auf die Flachen zweiten

Grades/' Math. Ann., t. I. (1870), pp. 533—574 : Given in piano two groups of the

same number (5, 6, or 7) of points, to find points P, P' homographically related to

these two groups respectively; viz. the lines from P to the points of the first group

and those from Pf to the points of the second group are to be nomographic pencils.

In the present paper I require only a particular form of these results ; viz. in each

group two of the points are the circular points at infinity; or, disregarding these, we

have two groups of 3, 4, or 5 points such that the points of the first group at P,

and those of the second group at P', subtend equal angles. I give for this particular

case an independent analytical investigation; but I will first state the results included

in the more general ones obtained by Sturm.

If the points A, B, G at P and the points A', B\ C at P' subtend equal angles,

then to any given position of the one point corresponds a single position of the other

point; viz. the two points have a (1, 1) correspondence; the nature of this being, that

to any line in the one figure corresponds in the other figure a quintic curve, having

6 dps. ; viz. the three points, the two circular points at infinity /, Jy and one other

fixed point of that figure {say for the first figure this fixed point is (ABC)}.

If the points A, B, G, D at P and the points A', B', G\ D' at P' subtend equal

angles, then the locus of each point is a cubic curve; viz. the locus of P passes

through A, B, C, D, I, J and the four fixed points (ABG), (ABD), (AGD), (PCD);

and the like for the locus of P'.
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Finally (although this is a theorem which I do not require), if the points

A, B, G, D, E at P and the points A', B', Gf, D', E' at P' subtend equal angles,

then there are three positions of each point.

The problem I propose to consider is : Given the tetrahedra ABGD and A'B'G'D',

it is required in the planes ABG and A'B'G' respectively to find the points P, P'

such that A, B, C, D at P, and A', B', C, D' at P', subtend equal angles. I was

led to this by the more general problem, which I do not at present discuss: Given

the two tetrahedra, it is required to find the loci of the points P, P' such that

A, B. G, D at P, and A', B', G\ B' at P\ subtend equal angles.

Here, drawing from D, D' the perpendiculars DK, D'K' on the planes ABG and

A!B'G' respectively, we have A, B, G, K at P, and A', B', C, K' at P', subtending

equal angles, and such that the distances PK and P'K' are proportional to the heights

of the tetrahedra (for the triangles PDK and P'D'K' are obviously similar). The

required points P, P' are each the intersection of two loci, viz. :

1. P is such that A, B, G, K at P, and A', B\ C, K' at P', subtend equal

angles; locus is a cubic through A, B, G, K, I, J, (ABG), (ABK), (AGK),

(BGK).

2. P is such that A, B, K at P, and A\ B\ K' at P', subtend equal angles,

and that PK and P'K' are in a given ratio; locus is a certain octic

curve II ;

and the required positions of P are obtained as the intersections of the two loci.

I proceed to the analytical investigation.

Preliminary Formula?.

1. Consider a triangle ABG, and let the position of a point P be determined

by means of its coordinates x, y, z, which are equal to the perpendicular distances of

P from the sides, each divided by the perpendicular distance of the opposite vertex

(as usual, x, y, z are positive for a point within the triangle) ; or what is the same

thing, x, y, z — PBC, PGA, PAB, divided each by ABG, whence identically x + y + z = l.

Suppose for a moment the rectangular coordinates of A, B, G are (aly &), (a2, /32),

(a3, /33) respectively; and that those of P are X, Y. Also let the sides BG, CA, AB

be =a, b, c respectively.

We have

X = aYx + a2 y + a3z,

Y = fax + /32y + fa,

1 = x+ y + z\

C. VIII. 26
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and if we consider a second point P\ the coordinates of which are x, y , z' and

X\ Y', we have the like relations between these quantities. Calling 8 the distance

of the two points P, P\ we may write

S2 = K (x - x') + a2(y- y') + «3 (z - /)}*

+ {ft (x - xf) + ft (y - y') + ft (* - *')}2

- {(tf + A2) (* - *0 + (a22 + A2) (y - y') + («b2 + A2) (* - *')}

x{(x~x')+ (y-y') + (*-*)}>

the last term being in fact = 0 ; viz. this is

82 = - \(a2 - a3y + (ft - ft)2} (y - y') (z-z')

- {(a. - «i)2 + (ft - ft)2} (z - /) (a? - xf)

- {(«i - «2)2 + (A - A)2} (* - «0 (2/ - y) ;

or what is the same thing, the expression for the distance S2 of the two points P, P' is

82 = - a* (y - y')(z-z) -b2(z- z) (x-af) - c2 (x - x') (y - y'\

which expression may be modified by means of the identical equations

1 = x + y+ z, 1 = x + yf + z ;

viz. writing

we have

and consequently

yz - y'z, zx - zx, xy' - x'y = £, rj, £

x — x' = x (x' + y + z') — x' (x + y + z) = f — 7},

y-y = £-£

2. Treating a?', 3/', #' as constants and x, y, z as current coordinates, the formula

for 82 is of course the equation of a circle, centre x, y\ z' and radius 8. It thus

also appears that the general equation of a circle is

- a2yz - b2zx - c2xy + (Lx + My + Nz) (x + y + z) = 0 ;

viz. writing — &2?/£ — b2zx — c2xy = U, and x + y + z = £1, this is

where Z7=0 is the circle circumscribed about the triangle ABC, and H = 0 is the

line infinity. Of course the general equation of a circle passing through the points
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(P, G) is ?7 + Z#O = 0, and similarly those of circles through (0, A) and through

(A, P) are U+ My O = 0 and Cr + i\^Xl = 0 respectively. But we require the interpre

tation of the coefficients L, M, N which enter into these equations.

3. Considering the triangle ABG, if through B, G we have a circle, this is by

the side BG divided into two segments, and I consider that lying on the same side

with A as the positive segment, and define the angle of the circle to be the angle

in this positive segment. It is clear that if we have within the triangle a point P,

and, through this point and (P, 0), (0, A), (A, B) respectively, three circles, then if

a, ft y be the angles of these circles, we have a + ft + y = 27r ; and conversely, if the

circles through (P, 0), (G, A), (A, B) are such that their angles a, ft y satisfy the

relation a + ft + y = 27r, then the three circles meet in a point. But it is further to

be noticed, that if, producing the sides of the triangle so as to divide the plane into

seven spaces, the triangle, three trilaterals, and three bilaterals, we take the point P

within one of the bilaterals, we still have a + ft + 7 = 2ir ; but taking it within one

of the trilaterals, we have a + ft + 7 = it. And the converse theorem is, that if the

three circles (P, (7), (C, A), (A, B) are such that a + ft + y=7r or 27r, then the circles

meet in a point; viz. if the sum is 2tt, then this point lies in the triangle or one

of the bilaterals ; but if the sum is = tt, then this point lies in a trilateral.

4. I seek for the equation of a circle through the points P, C, and containing

the angle L. The equation in rectangular coordinates is easily seen to be

(X-a2)(X-a3) + (F-ft)(F-ft)-cotZ{^

In fact this is the equation of a circle through (P, 0) ; and taking for a moment the

origin at P, and axis of X to coincide with BG, or writing a2, A = 0, 0; a3, ft3 = a, 0,

the equation is

X (X - a) + 72 - aY cot L = 0,

viz. the equation of the tangent at P is — aX — aY cot L = 0, that is, F= — X tan L,

or the angle in the positive segment is = L.

If for a moment \ /m, v are the inclinations of the sides of the triangle ABG

to the axis of X, then A, B, G being the angles, we may write

fjb — v = it — A,

V — X = IT — P,

\ — /JL = — 7T — C,

and

whence

X — a2 = {olxx + a2y + a3 z) — a2 (% + y + z) = c cos v . x — a cos \ . z,

X — a3 = (<*!# + a2^/ + a3 z) — aB (x 4- y -f 5) = — b cos /z, . a? + a cos X . y,

Y - ft2= ftxx-\- ft2y + ftsz - ft2 (x + y + s) = c sin z; . a? - a sin \ . #,

Y - ft3 = I3& + ft2y + fts? - fts (x + y + z) = - b sin v . x + a smX . z ;

(X - «a) (X - «3) + (F- ft) (F - ft)

= — o?yz - b2zx — c2xy + &c cos 4 . x2 + (62 — ab cos (7) £# 4- (c2 — ac cos P) xy ;

26—2
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viz. this is

= — a2yz — b2zx — e2xy + be cos A . x (x + y + z).

Moreover, if A = twice the area of the triangle, then

(/92 -/3S)X - (a2 - a3) Y+ a2/33 - ct3(32 = Ax(x + y + z) = bcsmA.x(x-\-y + z);

so that the equation becomes

— a2yz — b2zx — e2xy 4- be sin A (cot A — cot L) x (x + y + z) — 0,

or, what is the same thing,

— a2yz — b2zx — c2xy + A (cot A — cot P) # (x + 2/ + £) = 0,

or, if we please,

— a2yz — b2zx — c2xy + A (cot A — cot L) x = 0.

Writing as before,

— a2^ — &2£# — c2xy = U, x + 3/ + z — X2,

the equation is

P + A (cot J. - cot L) £lx = 0 ;

or forming the like equations of two other similar circles, we have the circles (P, C),

(0, A), (A, B) containing the angles L, M, JST respectively; and the equations are

U + A (cot A - cot L ) nx = 0,

U+ A (cot 5 - cot M) % = 0,

P + A (cot (7 - cot J\T) O* = 0.

Correspondence, A, B, G at P, and A\ P', Gf at P\ subtending equal angles.

5. Consider now the two figures A', P', C, subtending at P' the same angles

L, M, N which A, B, G subtend at P; then we have

U TJ'
+ cot A - cot L = 0, n, , , + cot J/ - cot X = 0,

X2A#? ' 12'AV

r/ J7'
-f COtP -COtilf=0, ^TT-ry-, + cot B' - cot Jf = 0,

XlAy ' Xl'Ay

+ cotO-coti\^ = 0, -rn-rr, + cot C- cot N=0;

and thence

HA* ' ' Xl'AV

oL + C0t^ = a^v + C0t^

P P'
■ + cot 5 = tvxt-/ + cot P',

IlAy O'Ay

oA, + cotC==xyAV+cotC;
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and consequently

1 1 1 U
~, : — : - = ^-r- + cot A - cot A'
x y z llAx

U

or, what is the same thing,

x' : y' : z =

nAy

u

nAz

+ cot B - cot B

+ cot C - cot C",

?7+A(cot^--cot A')«#

y

U+A(cotB-- cot j?'
)%

z

' £7+ A (cot 0 -cot (7)0^

where observe that the equations

U+A (cot A - cot J.') Six = 0,

?7+ A (cot 5 - cot J3') % = 0,

U+ A (cot G - cot C") Os = 0,

represent circles (B, C), (0, A), (A, B) containing the angles A\ B\ C"; and since

A' + B' + C" = 7r, these meet in a point 0. We may for convenience write

x : y : * BGO : GAO : ABO '

where BC=0 denotes (x=0) the line BG ; BGO = 0 the circle through 5, (7, 0. And of

course, in like manner,

B'G' G'A' A'B'
oo : y : *- ggtQ, : G'A'0' '' A'B'Of '

so that the points P, P' have a rational, or (1, 1), correspondence.

Writing

x1 : y' : z' = BO.CAO . ABO : GA. ABO. BGO : AB.BGO.CAO

X : 7 : Z

suppose, X, Y, Z are quintic functions of x, y, z, and the curve in the first figure

corresponding to the line ax' + fty' + yz' = 0 of the second figure is

aX + /3Y+yZ = 0]

viz. this is a quintic curve having dps. at each of the points A, B, (7, 0, /, J. In

fact, if for BGO we write BCOIJ, and so for the other two circles respectively, we have

in an algorithm which will be at once understood X = BG .CAOIJ.ABOIJ, =(ABG0IJ)\

and similarly Y=Z, =(ABG0IJf, or the curve is (ABCOIJ)2 = 0.
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Correspondence, A, B, 0, D at P and A', B\ C, D' at P' subtending equal angles.

6. Consider now in piano the points A, B, C, D which at P, and the points

A', B', C, D' which at P', subtend equal angles. Let a, 6, c, /, g, h denote the

perpendicular distances of P from the lines BO, OA, AB, AD, BD, OD respectively;

and the like as to a!, V, c', f, gf, h'. Observe that, neglecting constant factors, a, b, c

are what were before represented by x, y, z\ we may consider the coordinates of P

in regard to the triangles ABO, BCD, GAD, ABD to be (a, b, c), (a, h, g), (b, f, h),

(c, g, f) respectively. We have in regard to ABO the point 0 as before, and in

regard to BOD, GAD, ABD the points 01} 02, 03 respectively. Then A, B, 0 at P

and A\ B', G' at P' subtending equal angles, we may write

' y /_ a & o
a : o : c - BGQ ' GAQ : ABQ,

viz. BC0 = 0 is here the circle through B, G, 0, and the like for GAO and ABO,

the expressions being multiplied into the proper constant factors to take account of

the constant factors whereby a, b, c and a', V, d differ from x, y, z and x', y', zf

respectively.

We have in like manner

a h g

a! :h' :g' =

V :f':h' = 7T

BGO, ■ GDO, ■ BDO, '

* . / . h

GAO, ' ADO, ' GDO, '

o' :g':f = -
9 . f

AB0S • BD0S " AD03'

From the ratios of (/', g', h'), (b't c', /'), (c', a', g'), {a', b', h!) respectively we deduce

GDO, . ADO, . BDOs - BD01 . GDO, . AD0S = 0,

GAO .ABO,. ADO,- ABO . AD0S. GAO,=0,

ABO . BGO, . BD0S - BGO . BDO, . AB0S = 0,

BGO . GAO, . GDO, - GAO . GDO, . BGO, = 0,

each of which equations represents a sextic curve; and admitting that it can be shown

that these pass through 0, 0lt 0„ 03 respectively, the forms are

D*ABCOO,0,OJSJS = 0,

D A*B 00 0,0,0'3iV3 = 0,

D A B*0 0 0,0,0J*J* = 0,

DA BC*0 0,0,0JsJ* = 0.
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7. Now the locus of P is evidently a curve, and this can only happen by reason

that the four left-hand functions contain a common factor, and the form of them

suggests that this common factor is ABCDOOY02QJ.J, the four extraneous factors being

D2I2J2y A2I2J2, B2I2J2, G2I2J2; viz. ABGDOO1O2OJJ=0 is a cubic curve passing through

the ten points ; and D2I2J2 = 0 a cubic curve through each of the points D, I, J

twice; viz. it is the triad of lines IJ, DI, DJ \ and the like as to the other

extraneous factors A2I2J2, B2I2J2, and C2I2J2. I have not worked out the analysis to

verify this a posteriori] but, the conclusion agreeing with Sturm, I accept it without

further investigation, viz. the result is that A, B, G, D at P and A\ B', C\ D' at P'

subtending equal angles, the locus of P is a cubic curve ABGDOO1O2OsO4iIJ=0

through the ten points thus represented ; and of course the locus of Pf is in like

manner a cubic curve A/B'CfD'O/O1/O2Os/O4/IJ=0 through the ten points thus represented.

Gorrespondence, A, B, C> D, E at P and A', B\ G;, D', E at P' subtending equal angles.

8. We may go a step further, and consider A, B, G, D, E at P and A\ B\ G\ D\ E'

at P' subtending equal angles. Attending only to the points A, P, (7, D and A\ B\ O, D',

the locus of P is a cubic curve

ABGDOO1O2O3OJJ = 0,

and similarly attending to the points A, B, C, E and A\ B\ C', E', the locus of P

is a cubic curve

ABGEOQ1Q*QJ[J=Q.

(Observe that 0, as depending only on A, B, G, is the same point as before ; but

that Ql9 Q2, Q3y as depending on E instead of Dy are not the same as 0lt 02> 03.)

The two cubic curves have in common the points A, B, G, I, J, 0, and they con

sequently intersect in three other points ; that is, there are three positions of the

point P, and of course three corresponding positions of P'.

Correspondence, A, B, G at P and A\ B\ G' at P' subtending equal angles, and AP, A'P'

in a given ratio.

9. Consider, as before, A, B, G at P and A', B\ G' at P' subtending equal angles,

and the points P, P' being moreover such that the distances AP, A/P/ are in a given

ratio. I write for shortness

/ / /_ # y %
x : y : Z ~~L : M : N>

where X, M, JSf denote

U+ A (cot A - cot A') Qai9 U+A (cot B - cot F) %, U+ A (cot G - cot C') £lz,

respectively. We have

(AP)2 = - a2yz - b2z (x - 1) - c2 (x - 1) y,

= — a2yz — b2zx — c2xy + (b2z + c2y) (x + y + z\

= &y2 + b2z2 + (b2 + c2- a2) yz ;
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or, what is the same thing,

(A P )2 = c2y2 + 6V + 26c cos A . yz;

and similarly

(A'PJ = c'2y'2 +^+ 26V cos A' . y'z'.

The required relation therefore is

cy + y*z>i + 26V cos J.7 . y'z _ ^ c2y2 + 62^2 + 26c cos J. . yz m

(x' + y' + zj " •" (x + y + z)2 '

viz. substituting for x', y', z' their values, this is

L2 (x + y + ^)2 (6Vikf2 + c'2y2N2 + Ib'c'yzMN cos J.)

= <92 (6V -t- c2y2 + 2bcyz cos J.) (xMN+ yNL + ^Zif)2,

which is an equation of the 12th order. I say that the points A, B, C, 0, I, J are

each quadruple. In fact, according to the foregoing algorithm, we may write

x + y + z = IJ, zM=AB.CAOIJ, &c,

xL = yM = zN = A2BG0IJ,

y = z = A, xMN = BG.GAOIJ.ABOIJ, &c,

xMN= yNL = zLM = (ABCOIJ)2 ;

and the equation is

(BCOIJ)2 (IJ)2 (A2BGOIJ)2 = 82 . JL2 (ABGOIJy,

that is

(J/)2 (ABCOIJy = 62.A2 (ABCOIJ'/ ;

so that the points are each quadruple.

2%e two Tetrahedra; A, B, G, D at P in ABG and A', B', C', D' at P' in A'B'G'

subtending equal angles.

10. I consider now the before-mentioned problem of the two tetrahedra ; viz. on the

two bases ABG and A'B'G' respectively, letting fall the perpendiculars DK and D'K\

then first A, B, G, K at P and A\ B', C', K' at P' subtend equal angles; the locus

of P is a cubic curve ABGKOO1O2O3IJ=0 through these ten points. (0 = ABG is

derived, from the points A, B, G\ and in like manner 01 = BGK, 02=:GAK, 03 = ABK.)

Next, B, G, K at P and B', G', K' at P' subtend equal angles, and moreover the

distances KP and K'P' are in a given ratio ; the locus of P is a 12-thic curve

(BCKOJJY^O,

having each of these six points as a quadruple point. Hence among the 36 inter

sections of the two curves we have the points B, G, K, 0lf I, J each 4 times, and

there remain 36 — 24, =12 intersections.

The conclusion is that A, B, G, D at a point P of ABG, and A', B\ G'', D' at

a point P' of A'B'G', subtending equal angles, there are 12 positions of P, and of

course 12 corresponding positions of P'.
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513.

ON A BICYCLIC CHUCK.

[From the Philosophical Magazine, vol. xliii. (1872), pp. 365—367.]

The apparatus, although I have called it a chuck, is constructed not for turning,

but for drawing; viz. it rotates horizontally on a table (being moved, not from the

inside by the axle of the lathe, but from the outside by a handle-frame), carrying a

drawing-board which works under a fixed pencil supported by a bridge. Two points

of the drawing-board describe circles ; and the curve traced out on the drawing-board

is consequently that described by a fixed point upon a moving plane two points of

which describe circles; or, what is really the same thing, it is the curve described

on a fixed plane by a point rigidly connected with two points each of which describes

a circle. The apparatus is at once convertible into an oval chuck of nearly the ordinary

construction ; viz. it may be arranged so that the curve described on the drawing-

board shall be an ellipse.

Bottom plane is a rectangular board (1) (see figure) about 30 inches by 24 inches,

having in the middle a sliding-piece (2) carrying a block (3).

Second plane contains two circular segments (4) fixed to the bottom plane, serving

as an axle for the moving piece (5) next referred to, and allowing the block (3) to

move between them. And in the same plane we have a moving piece (5) in the form

of a rectangle with a circle cut out thereof, rotating about the segments (4), and

having upon it a groove in which works a sliding-piece (6) carrying a block (7) ; there

is in this block a circular hole, D. The second plane includes also two sides (8) of

a handle-frame, which two sides slide along two of the sides of the piece (5).

Third plane consists of a rectangular piece (9) rotating about an axle fixed to

the block (3), and having a sliding-piece (10) in which is a circular hole, G. The

third plane includes also the before-mentioned block (7), having upon it the hole D ;

c. viii. 27
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and it includes also the remaining two sides (11) of the handle-frame, and, let into

the same so as to be flush therewith on the upper surface, two slips (12) completing,

in this plane, the handle-frame.

We have thus on a level the sides (11), (12) of the handle-frame and the holes

0, D, where G rotates about the point B, which is the centre of the block (3) ; and

D rotates about the point A, which is the centre of the segments (4), each hole being

capable of describing a complete circle; and the distances AB, BC, CD, and DA are

(within limits) adjustable to any given values: the distance of the holes C, D is made

equal to that of the two pegs next referred to.

Connected herewith by means of cylindrical pegs working in the holes C, D

respectively, we have a carrying-frame; viz. the fourth plane contains two sides (13)

of this carrying-frame, and two moveable bars (14), attached to the remaining two

sides (15) of the carrying-frame, and having on their lower surfaces the pegs which

work in the holes C and D respectively—each bar being free to rotate about one

extremity, and being clampable at the other extremity so as to allow the two pegs

to be adjusted at a given distance from each other. And then in the fifth plane we

have the remaining two sides (15) of the carrying-frame.

Rigidly connected with the carrying-frame we have the drawing-board ; or, to make

the whole more complete, this should be adjustable to any given position in regard

to the carrying-frame by giving it two sliding motions crosswise, and a rotating motion,

in the manner of an eccentric chuck.

To convert the apparatus into an oval chuck, we remove altogether the carrying-

frame; and in the third plane we fix to the sides (8) of the handle-frame two bars

at right angles to these sides, by means of pegs on the lower surfaces of these bars

fitting tightly into holes on the sides (8) (which holes and the ends of the bars are

shown in the figure), in such wise that these bars include between them the piece

(9), which is thereby kept in a direction at right angles to the sides (8), and thus

slides between the two bars. There are thus in the handle-frame two lines at right

angles to each other, which pass through the fixed points A and B respectively ; so

that, now connecting the drawing-board directly with the handle-frame, the apparatus

has become an oval chuck, viz. the curve traced out on the drawing-board will be

an ellipse. The drawing-board should be adjustable to any given position in regard to

the handle-frame, in like manner as it was to any given position in regard to the

•carrying-frame ; it is easy to arrange as to this.

It is hardly necessary to remark that the pencil should have two sliding motions

crosswise, so as to allow it to be adjusted to any given position ; and a small

up-and-down motion, so that it may be loaded to press with the proper force upon

the drawing-board.

The variety of forms, even with a fixed adjustment of the chuck, only the position

of the pencil being altered, is very considerable : among them we have bent ovals and

pear-shapes, passing through cuspidal forms into bent figures-of-eight.
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Third plane.

Second plane.

Bottom.
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514.

ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED

TRIANGLE.

[From the Philosophical Transactions of the Royal Society of London, vol. clxi. (for the

year 1871), pp. 369—412. Received December 30, 1870,—Eead February 9, 1871.]

The problem of the In-and-Circumscribed Triangle is a particular case of that of

the In-and-Circumscribed Polygon: the last-mentioned problem may be thus stated—to

find a polygon such that the angles are situate in and the sides touch a given curve

or curves. And we may in the first instance inquire as to the number of such

polygons. In the case where the curves containing the angles and touched by the

sides respectively are all of them distinct curves, the number of polygons is obtained

very easily and has a simple expression: it is equal to twice the product of the

orders of the curves containing the several angles respectively into the product of the

classes of the curves touched by the several sides respectively ; or, say, it is equal to

twice the product of the orders of the angle-curves into the product of the classes of

the side-curves. But when several of the curves become one and the same curve,

and in particular when the angles are all of them situate in and the sides all touch

one and the same curve, it is a much more difficult problem to find the number of

polygons. The solution of this problem when the polygon is a triangle, and for all

the different relations of identity between the different curves, is the object of the

present memoir, which is accordingly entitled "On the Problem of the In-and-Circum

scribed Triangle ; " the methods and principles, however, are applicable to the case of

a polygon of any number of sides, the method chiefly made use of being that furnished

by the theory of correspondence, as will be explained. The results (for the triangle)

are given in the following Table ; for the explanation of which I remark that the

triangle is taken to be aBcDeF ; viz. a, c, e are the angles, B, D, F the sides; that

is, B, D, F are the sides ac} ce} ea respectively, and a, c, e are the angles FB} BDy DF
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respectively. And I use the same letters a, c, e, B, D, F to denote the curves con

taining the angles and touched by the sides respectively; viz. the angle a is situate

in the curve a, the side B touches the curve B, and so for the other angles and

sides respectively. An equation such as a = c or a — B denotes that the curves a, c or,

as the case may be, the curves a, B are one and the same curve: it is in general

convenient to use a new letter for denoting these identical curves ; viz. I write, for

instance, a — o—x or a = B — x, to denote that the curves a, c or, as the case may be,

the curves a, B are one and the same curve x; the new letters thus introduced are

x, y, z, there being in regard to them no distinction of small letters and capitals.

The expression " no identities " denotes that the curves are all distinct. But I use

also the letters a, c, e, b, d, f, x, y, z, and J., 0, E, B} D, F, X, F, Z quantitatively,

to denote the orders and classes of the curves a, c, et B, D, F, x, y, z respectively;

thus, in the Table, for the case 1 " no identities " the number of triangles is given

as = 2aceBDF, which agrees with the before-mentioned result for the polygon : for the

case 2 the several separate identities a=c, a — e, c = e are of course equivalent to each

other ; and selecting one of them, a = c — x, the number of triangles is given as

= 2x (x — 1) eBDF. There is a convenience in thus writing down the several forms

a = ct a = e, c — e of the identity or identities which constitute the 52 distinct cases

of the Table ; and I have accordingly done so throughout the Table, the expression

for the number of triangles being however in each case given under one form only.

It only remains to mention that for the curve x the Greek letter f denotes what

may be termed the " stativity " of the curve, viz. this is = number of cusps + 3 times

the class, or, what is the same thing, = number of inflections + 3 times the order ;

the curve being determined by its order x, class X, and £; and similarly for rj and f,

Observe that, in the column " Specification," each line is to be read separately from

the others, and, where the word "or" occurs, the two parts of the line are to be read

separately ; thus case 5, the six forms are a = B, a = F, c = D, c = B, e = F, e — D : the

letter x (or, as the case may be, x, y, or x, y, z) accompanies the first of the given

forms ; in the present instance a = B = x, and it is to this first form that the number

of triangles, here 2 (Xx — X — x) ceDF, applies.

I remark that what is primarily determined is the number of positions of a

particular angle of the triangle, and that in some cases, on account of the symmetry

of the figure, the number of triangles is a submultiple of this number; viz. the

number of positions of the angle is to be divided by 2 or 6 ; this is expressly shown,

by means of a separate column, in the Table.
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The foregoing results are chiefly obtained by means of the theory of correspondence ;

viz. if instead of the triangle aBcBeF we consider the unclosed trilateral aBcDeFg,

where the points a and g are situate on one and the same curve, say the curve

a=g, then the points a and g have a certain correspondence, say a (%, tf) corre

spondence with each other ; and when a, g are a " united point " of the correspondence,

the trilateral in question becomes an in-and-circumscribed triangle aBcDeF; that is,

the number of triangles is equal to that of the united points of the correspondence,

subject however (in many of the cases) to a reduction on account of special solutions.

It may be remarked that by the theory of correspondence the number of the united

points is, in several of the cases, but not in all of them, = % + %'. But in some

instances I employ a functional method, by assuming that the identical curves are each

of them the aggregate of the two curves x, a/: we here obtain for the number <j>x

of the triangles belonging to the curve x a functional equation <j>(x + a/) — (f>x — §x' =

given function; viz. the expression on the right-hand side depends on the solution of

the preceding cases, wherein the number of identities between the several curves is

less than in the case under consideration; and taking it to be known, the functional

equation gives <j>x — particular solution + linear function of (x, X, £). The particular

solution is always easily obtainable, and the constants of the linear function can be

determined by means of particular forms of the curve x.

Article Nos. 1 to 6. The Principle of Correspondence as applied to the present Problem.

1. Consider the unclosed trilateral aBcDeFg, where the points a and g are on

one and the same curve, a=g. Starting from an arbitrary point a on the curve a,

we have aBc any one of the tangents from a to the curve B, touching this curve,

say at the point B, and intersecting the curve c in a point c; viz. c is any one of

the intersections of aBc with the curve c; we have then similarly cDe any one of

Fig. l.

 

the tangents from c to the curve D, touching it, say at D, and intersecting the curve e

in a point e ; viz. the point e is any one of the intersections in question ; and then

in like manner we have eFg any one of the tangents from e to the curve F, touching

it, say at F, and intersecting the curve g (= a) in a point g ; viz. g is any one of

the intersections in question. Suppose that to a given position of a there correspond

X positions of g\ it is easy to find the value of %; viz. if (as above tacitly supposed)
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the curves ay B, c, D, e, F are all of them distinct curves, then the number of the

tangents aBc is = B ; there are on each of them c points c ; through each of these

we have D tangents cDe\ on each of these e points e; through each of these F

tangents cFg ; and on each of these a points g ; that is, x ~ BcDeFa. But if some

of the curves become one and the same curve—if, for instance, a= B = c,—the line

aBc is here a tangent from a point a on the curve, we exclude the tangent at the

point a, and the number of the remaining tangents is = (A — 2) ; each tangent meets

the curve in the point a counting once, the point B counting twice, and in (a — 3)

other points ; that is, the number of the points c is = (A — 2) (a — 3), and so in other

cases ; the calculation is always immediate, and the only difference is that, instead of

a factor a or A, we have such factor in its original form or diminished by 1, 2,

or 3, as the case may be. Similarly starting from g, considered as a given point on

the curve g {—a), we find % the number of the corresponding points a; thus in the

case where the curves are all distinct curves, we have %' = FeDcBa (= %) ; and so in

other cases we find the value of %'. The points (a, g) have thus a (^, %') corre

spondence, where the values of ^, %' are found as above.

2. There will be occasion to consider the case where in the triangle aBcDeF (or

say the triangle aBcDeFa) the point a is not subjected to any condition whatever,

but is a free point. There is in this case a "locus of a," which is at once con

structed as follows : viz. starting with an arbitrary tangent aBc of the curve B,

touching it at B and intersecting the curve c in a point c; through c we draw to

the curve D the tangent cDe, touching it at D and intersecting the curve e in a

point e; and finally from e to the curve F the tangent eFa, touching it at F and

intersecting the original arbitrary tangent aBc in a point a, which is a point on the

locus in question. We can, it is clear, at once determine how many points of the

locus lie on an arbitrary tangent of the curve B (or of the curve F).

3. The general form of the equation of correspondence is

i9(a_a_^) + g(b-/3-yS,) + ...=M(1);

viz. if on a curve for which twice the deficiency is = A we have a point P corre

sponding to certain other points P\ Q', ... in such wise that P, P' have an (a, a!)

correspondence, P, Qf a (j3, /3') correspondence, &c. ; and if (a) be the number of the

united points (P, P'), (b) the number of the united points (P, (T), &c. ; and if more

over for a given position of P on the curve the points P', Qf, ... are obtained as the

intersections of the curve with a curve © (depending on the point P) which meets

the curve h times at P, p times at each of the points P', q times at each of the

1 To avoid confusion with the notation of the present memoir, I abstain in the text from the use of D

as denoting the deficiency, and there is a convenience in the use of a single symbol for twice the deficiency ;

but writing for the moment D to denote the deficiency, I remark, in passing, that perhaps the true theoretical

form of the equation is

k{0-D-D)+p(a-a-cL') + q(b-p-(3') + ...=0;

viz. the point P is here considered as having with itself a (D, D) correspondence, the number of the united

points therein being =0.
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points Q', &c. ; then the relation between the several quantities is as stated above :

see my "Second Memoir on the Curves which satisfy given conditions," Philosophical

Transactions, vol. 159 (1868), pp. 145—172, [407]. I omit for the present purpose the

term " Supp.," treating it as included in the other terms.

4. In the present case we consider, as already mentioned, the unclosed trilateral

aBcDeFg, where the angles a, g are on one and the same curve a (= g) (the curve

in the general theorem); and the curve © is the system of lines eFg which by their

intersection with the curve a determine the points g. Considering these as the points

(P, P') of the general theorem we have p = 1 : I change the notation, and instead of

a — a — a' write g — % — %' ; viz. I take (g) for the number of the united points (a, g),

and suppose that the points (a, g) have a (^, %) correspondence. The most simple

case is when the curve a is distinct from each of the curves e, F; here all the

intersections of the line-system eFg with the curve a are points g, that is we have

only the correspondence (a, g); and since the line-system eFg does not pass through

the point a, we have simply

5. But suppose that the curves a, e, F are one and the same curve, say that

a = e=P; understanding by the point F the point of contact of a line eFg with the

curve a, then the intersections of the line-system eFg with the curve a are the points

g each once, the points F each twice, and the points e each as many times as there

are lines eFg through the point e, say each M times. (In the present case, where the

curves e, F are identical, we have M=F—2 or F— 3 according as the curve D is

or is not distinct from the curve F; in the cases afterwards referred to, the values

may be F or P-l; that is, we have always M=F, F-l, F—% P-3, as the case

may be.) We have to consider the several correspondences {a, g), (a, F), (a, e); h is

as before = 0 ; and the form of the theorem is

(g-X-x')+2(f-<£-f)+M(e-e-e') = 0,

where the symbols denote as follows, viz.

{a, g ) have a (%, tf) correspondence, and No. of united points = g,

(a, F) „ (<£, (j>) „ „ „ =f,

(a, e ) „ (e , e ) „ „ „ = e,

so that the determination of g here depends upon that of f — <j> — <// and e — e — e.

6. The curve a might however have been identical with only one of the curves

e> F; viz. if a = P, but e is a distinct curve, then the equation will contain the term

2(f— <£ — $'), but not the term M (e — e - e') ; and so if a=e, but F is a distinct

curve, then the equation will not contain 2 (f — <£ — <£'), but will contain M (e — e — e') :

it is to be noticed that in this last case we have M—F or M = F— 1, according as

the curve D is not, or is, one and the same curve with F. The determination of (g)

here depends upon that of f— 0 — <ft or e — e — e', as the case may be. These sub
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sidiary values f —</>-- </>' and e — e — e are obtained by means of a more simple

application of the principle of correspondence, as will appear in the sequel (*), but for

the moment I do not pursue the question.

Article Nos. 7 to 14. Locus of a free angle (a).

7. I consider the case where a is a distinct curve =^ e, =/= F, and where, as was

seen, the equation is simply

I suppose further that a is distinct from all the other curves, or say, simpliciter, that

a is a distinct curve. The values of ^, %' will here each of them contain the factor a,

say we have % = aco, x — a(D' > and therefore the equation gives g = a (co + to'). It is

obvious that co, co are the values assumed by ^, %' respectively in the particular case

where the curve a is an arbitrary line (a — 1) ; and co + co is the number of the

united points on this line.

8. Suppose now that in the triangle aBcDeFa the point a is a free point, we

have, as above-mentioned, a locus of a, and the united points on the arbitrary line

are the intersections of the line with this locus ; that is, the locus meets the arbitrary

line in co + co' points ; or, what is the same thing, the order of the locus is = co -f co'.

9. I stop for a moment to remark that in the particular case where the curve

B is a point (i?=l), then in the construction of the locus of a the arbitrary tangent

aBc is an arbitrary line through B, and the construction gives on this line co positions

of the point a. But drawing from B a tangent to the curve F, and thus constructing

in order the points F, e, D, c, a, the construction shows that B is an co'-tuple point

on the locus ; and (by what precedes) an arbitrary line through B meets the locus in

co other points; that is, in the particular case where the curve B is a point, the

order of the locus of a is = co + co\ which agrees with the foregoing result.

10. The construction for the locus of a may be presented in the following form:

viz. drawing to the curve D a tangent cDe, meeting the curves c, e in the points

c, e respectively ; then if from any point c we draw to the curve B a tangent cBa,

and from any point e to the curve F a tangent eFa, the tangents cBa, eFa intersect

in a point on the required locus. Hence if in any particular case (that is for any

particular position of the tangent cDe) the lines cBa, eFa become one and the same

line, the point a will be an indeterminate point on this line ; that is, the line in

question will be part of the locus of a.

11. The case cannot in general arise so long as the curves B, F are distinct

from each other ; but when these are one and the same curve, say when B = F, it

will arise, and that in two distinct ways. To show how this is, suppose, to fix the

ideas, that the curves c, D, e are distinct from each other and from the curve B — F.

Then the first mode is that shown in the annexed " first-mode figure," viz. we have

1 See post, Nos. 24 et seq.

c. viii. 29
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here a tangent at D passing through a point ce of the intersection of the curves

c, e, and from this point a tangent drawn to the curve B — F, For the position in

question of the tangent of D, the points c, e coincide with each other, and we have

thus the coincident tangents cBa and eFa to the identical curves B — F. It is further

Fig. 2. First-mode figure.

 

to be remarked that the number of the points of intersection is = ce ; from each of

these there are B tangents to the curve B = F (in all ce . B tangents), and each of

these counts once in respect of each of the JD tangents to the curve D, that is, it

counts D times. We have thus, as part of the locus of a, ce . B lines each D times,

or, say, first-mode reduction — ce.B.D.

12. The second mode is that shown in the annexed "second-mode figure." The

tangent from D is here a common tangent of the curves D, and B — F. This meets

the curve c in c points, and the curve erne points; and attending to any pair of

points c, e, these give the tangents cBa, eFa, coinciding with the common tangent in

Fig. 3. Second-mode figure.

BF

question, and forming part of the locus of a. The number of the common tangents

is —BT>\ but each of these counts once in respect of each combination of the points

c, e, that is in all ce times. And we have thus as part of the locus BB lines each

c . e times, or, say, second-mode reduction = BD .ce. This is (as it happens) the

same number as for the first mode; but to distinguish the different origins I have

written as above ce .B . D and BB . c . e respectively.

13. It is important to remark that each of the two modes arises whatever

relations of identity subsist between the curves c, e, JD, and B — F, but with consider

able modification of form. Thus if the curves c, e are identical (c = e) but distinct

from D, then in the first-mode figure ce may be a node or a cusp of the curve c = e,

or it may be a point of contact of a common tangent of the curves D, and c = e.

As regards the node, remark that if we consider a tangent of D meeting the curve

c = e in the neighbourhood of the node, then of the two points of intersection each
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in succession may be taken for the point c, and the other of them will be the

point e ; so that the node counts twice. It requires more consideration to perceive,

but it will be readily accepted that the cusp counts three times. Hence if for the

curve c — e the number of nodes be = S and that of cusps = /e, the value of the

first-mode reduction is = (28 + 3tc + G) BD, or, what is the same thing, it is = (c2 — c) BD.

As regards the second-mode figure, the only difference is that c, e will be here

any pair of intersections (each pair twice) of the tangent with the curve c = e ; the

value is thus =^{c2 — c)BD.

It would be by no means uninteresting to enumerate the different cases, and indeed

there might be a propriety in doing so here; but I have (instead of this) considered

the several cases, when and as they arise in connexion with any of the cases of the

in-and-circumscribed triangle.

14. Observe that the general result is, that in the case B=F of the identity

of the curves B and F, but not otherwise, the locus of a includes as part of itself

a system of lines; or, say, that it is made up of these lines, and of a residual curve

of the order co + &>' — Red., which is the proper locus.

Article Nos. 15 to 17. Application of the foregoing Theory as to the locus of (a).

15. Reverting now to the case where the angle a is not a free angle but is

situate on a given curve a, then if the curve a is distinct from the curves e, F,

the number of positions of a is, as was seen, g = % + %'. But the points in question

are the intersections of the curve a with the locus of a considered as a free angle;

and hence in the case B = F, but not otherwise, they are made up of the intersections

of the curve a with the system of lines, and of its intersections with the proper

locus of a. But the intersections with the system of lines are improper solutions of

the problem (or, to use a locution which may be convenient, they are "heterotypic"

solutions) : the true solutions are the intersections with the proper locus of a ; and

the number of these is not x + X> ~ a (w "*" ^'X kut *^ *s = & (a> + &>' — Red.) ; say it is

= % + %' — Red., where the symbol " Red/' is now used to signify a times the number

of lines, or reduction in the expression co + co — Red. of the order of the proper

locus of a.

16. It is however to be noticed that if the curve a, being as is assumed distinct

from the curves e} and F—B, is identical with one or both of the remaining curves

c, D, the foregoing expression % + %' — Red. may include positions which are not true

solutions of the problem, viz. the curve a may pass through special points on the

proper locus of a, giving intersections which are a new kind of heterotypic solutions^).

1 More generally, if the curve a be a curve identical with any of the other curves, then if treating in

the first instance the angle a as free we find in any manner the locus of a, the required positions of the

angle a are the intersections of this locus and of the curve a ; but these intersections will in general

include intersections which give heterotypic solutions. The determination of these is a matter of some

delicacy, and I have in general treated the problems in such manner that the question does not arise ; but

as an example see post, Case 43.

29—2
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17. But this cannot happen if the curve a is distinct also from the curves c, D;

or, say, simply when a is a distinct curve. The conclusion is, that in the case where

a is a distinct curve we have

g^X + X-^d"

where the term " Red." vanishes except in the case of the identity B — Foi the

curves B, F; and that when this identity subsists it is = a times the reduction in

the order of the locus of a considered as a free angle ; viz. this consists of a first-

mode and a second-mode reduction as above explained.

Article Nos. 18 to 21. Remarks in regard to the Solutions for the 52 Gases.

18. Before going further I remark that the principle of correspondence applies to

corresponding and united tangents in like manner as to corresponding and united

points, and that all the investigations in regard to the in-and-circumscribed triangle

might thus be presented in the reciprocal form, where, instead of points and lines,

we have lines and points respectively. But there is no occasion to employ any such

reciprocal process; the result to which it would lead is the reciprocal of a result

given by the original process, and as such it can always be obtained by reciprocation

of the original result, without any performance of the reciprocal process.

19. It is hardly necessary to remark that although reciprocal results would, by

the employment of the two processes respectively, be obtained in a precisely similar

manner, yet that this is not so when only one of the reciprocal processes is made

use of; so that, using one process only, it may be and in general is easier and more

convenient to obtain directly one than the other of two reciprocal results; for instance,

to consider the case B = D — F rather than a = c = e, or vice versa ; and that it is

sufficient to do this, and having obtained the one result, directly to deduce from it

the other by reciprocity; but that it may nevertheless be interesting to obtain each

of the two results directly.

20. It is moreover obvious that although the several forms of the same case, for

instance Case 2, a = c, a = e, or c — e, are absolutely equivalent to each other, yet that,

when as above we select a vertex a, and seek for the number of the united points

(a, g), the process of obtaining the result will be altogether different according to the

different form which we employ. For instance, in the case just referred to, if the

form is taken to be a = c or c = e} then the equation g = ^ + % is applicable to it ;

but not so if the form is taken to be a=e. It would be by no means uninteresting

in every case to consider the several forms successively and get out the result from

each of them ; I shall not, however, do this, but only consider two or more forms of

the same case when for comparison, illustration, verification, or otherwise it appears

proper so to do. The translation of a result, for instance, of a form a = e or c = e

into that for the form a = c = x is so easy and obvious, that it is not even necessary

formally to make it.
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21. I do not at present further consider the general theory, but proceed to con

sider in order the 52 cases, interpolating in regard to the general theory such further

discussion or explanation as may appear necessary. In the several instances in which

the equation g = % + %' is applicable, it is sufficient to write down the values of x> x,

the mode of obtaining these being already explained.

The 52 Gases for the in-and-circumscribed triangles.

Case 1. No identities.

x = BcDeFa, %' = FeDcBa (= %),

g = 2aceBDF.

Case 2. a = c = x.

x = B(x-l) BeFx, x' = FeBxB (x - 1) (= x)>

g = 2x(x-l)eBBF.

Second process, for form a — e = x. The equation of correspondence is here

but the points e being given as all the intersections of the curve a(=e) by the line-

system cDe which does not pass through a, we have e — e — e' = 0 ; so that g = % + %' ;

and then

X = BcBxF(x-l), x==F(£°-1)JDcBa)>

giving the former result^).

Case 3. B=F=x. Reciprocation from 2; or else, second process,

x = BcXe(X-l)a, tf = Xe (X - 1) cBa,

g = 2X(X-l)Bace.

Third process : form F=B=x. We have here g = % + %' — Red.

x = XcDeXa, %' = XeDcXa (= x)>

% + %'=2X2Daee;

and the reductions are those of the first and second mode, as explained ante, Nos.

11, 12, viz. each of these is = XBace, and together they are = 2XJDace ; whence the

foregoing result.

Case 4. a — B — x.

X = BcXeFx, x' = FeXBx(=x)>

g = 2XxceBF.

1 Of course, the result is obtained in the form belonging to the new form of specification, viz. here it

is = 2x {x - 1) cBDF ; and so in other instances ; but it is unnecessary to refer to this change.
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Observe this is what the result for Case 1 becomes on writing therein a — B=xy

viz. the opposite curves a, D may become one and the same curve without any

alteration in the form of the result.

Case 5. a = B = x.

x = (X-2) cBeFx, x' = FeBcX (x - 2),

where

(X-2)x + X(x-2) = 2(Xx-X-x);

therefore

g = 2(Xx-X-x)ceDF.

Case 6. a = c — e — x\ perhaps most easily by reciprocation of Case 7 ; or

Second process, functionally by taking the curve a = c = e to be the aggregate curve

x + oc'. The triangle aBcBeF is here in succession each of the eight triangles :

x Bx BxF

X „ X ,y X „

X „ X „ x „

X „ X ,, X ,,

x'Bx'Dx'F

X „ X „ X „

X „ X „ X ,,

X „ X „ X „

where the two top triangles give (j>x and <f>a/ respectively; the remaining triangles all

belong to Case 2, and those of the first column give each 2 (x2 — x) x'BBF, and those

of the second column each 2 (V2 — a/) xBBF. We have thus

<£ 0 + x) - §x - <f>x' = {6 (x2xf + xx'2) - \2xx') BBF.

Hence obtaining a particular solution and adding the constants, we have

<j>x = (2xs - 6x2 + ax + /3Z + 7£) BBF;

it is easy to see that a, /3, 7 are independent of the curves B, D, F; and taking

each of these to be a point, and the curve a = c — e to be a conic, then it is known

that (f>x = 2 ; we have therefore 2 = 16 - 24 + 2a + 2/3 + 67, that is a + fi + 37 = 5.

The case where the curve a = c = e is a line gives 0=2 — 6 + a + 37, that is a + 37 = 4 ;

but it is not easy to find another condition ; assuming however 7 = 0, we have a = 4,

/3 = 1, and thence

4>x = (2xs - 6x2 + 4tf + X) BDF,

or say

g = {2tf (aj- 1) (x - 2) + .X} jmF:

this is a good easy example of the functional process, the use of which begins to

exhibit itself; and I have therefore given it, notwithstanding the difficulty as to the

complete determination of the constants.



514] ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE. 231

Third process. The equation of correspondence is

but for the correspondence (a, e) we have

e-e-e'+D(c-y-- y') = 0,

and for the correspondence (a, c) we have

c _ y _ y' = SA,

whence

g=x+x'+£&?,.A;

and then

x = B(x-l)D(x-l)F(x-l), tf = F(x-l)D(x-l)B{<e-l)(=x)\

that is

x + %' = BDF.2(x-l)\

Moreover

A-X-&B + 2 + *

(if /e be the number of cusps of the curve a = c = e), and the resulting value is

g = {2(x-iy + X-2x + 2 + fc}BDF;

that is

= {2x (x - 1) (x - 2) + X + *} #0^,

where, however, the term tcBDF is to be rejected. I cannot quite explain this ; I

should rather have expected a rejection = 2kBDF, introducing the term — k. For

consider a tangent from the curve D from a cusp of the curve a~c~e\ there are

D such tangents ; each gives in the neighbourhood of the cusp two points, say c, e ;

and from these we draw B tangents cBa to the curve B, and F tangents eFa to the

curve F; we have thus in respect of the given tangent of D, BF positions of a, or

in all BDF positions of a which will ultimately coincide with the cusp ; that is, BDF

infinitesimal triangles of which the angles a, c, e coincide together at the cusp ; and

for all the cusps together tcBDF such triangles : this would be what is wanted ; the

difficulty is that as (of the two intersections at the cusp) each in succession might

be taken for c, and the other of them for e, it would seem that the foregoing number

kBDF should be multiplied by 2.

Case 7. B~D = F=oc. Here g = % + %' — Red. and

x = Xc(X-l)e(X-l)a, x' = Xe(X- 1) c(X- l)a(=%) ;

that is,

% + %/ = 2Z(X-l)^ac6.

The reductions of the two modes are as above, with only the variation that in the

present case D is the same curve with the two curves B—F. That of the first mode is

= X(X— l)ace, and that of the second mode is (2t + 3^) ace, which is ={X(X—1)—w}ace;

together they are = {2X (X — 1) — x) ace, or subtracting, we have

g = {2X(X-l)(X-2) + tf}ace.
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Case 8. a = c = B = x.

X = (X-2)(x~3)DeFx, X' = FeDx (X - 2) (x - 3) (= x)>

g = 2x(x-3)(X-2)eDF.

Case 9. D=F=e = x. By reciprocation of 8.

No. = 2X (X - 3) (x - 2) acB.

Case 10. a — G = D — x.

x = B(x-l)(X-2)eFx, ^ = FeX(x- 2)B(x-l\

g=2(x-l)(Xx-X-x) eBF.

Case 11. D — F — a~x. By reciprocation of 10.

No. = 2(X-l)(Xx-X-x)ceB.

Second process : form a = B = D — x.

x = (X - 2) o {X - 1) *Jfc, %' = jfaXc (X - 1) (x - 2),

giving the former result.

Case 12. c = e = xi a~D = y.

x = BxY(a>-l)Fy, tf = FxY(x- 1) %(= x\

g=2x(x-l)yYBF.

Case 13. F = B = x, a = D = y. By reciprocation of 12.

No. =2X(X-l)Yyce.

Case 14. c = e — x, a — B — y.

x = (Y-2)xD(x-l)Fy, x'=FxD (x - 1) Y(y- 2),

g=2x(x-l)(Yy-Y~y)DF.

Case 15. F=B = x, D = e = y. By reciprocation of 14.

No. =2Z(X-l)(Fy-r-y)ac.

Case 16. c — e — x, D — F—y.

x = BxY{x-l)(Y-\)a, x' = Yx(7- 1) (*- 1) 2?a(= %),

g = 2*0 -1) 7(7-1) a£.

Case 17. c = e = «, B = F-y.

x = D{x-l)Ya(Y-l)x, x'=Ya(Y-l)xD(x-l)(=X\

g=2x(a-l)7(7-l)aD.

But we have here aD as an axis of symmetry, so that each triangle is counted

twice, or the number of distinct triangles is =-|g.
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Case 18. a — I) = #, c = B = y.

x=Y{y-2)XeFx, x' = FeXy(Y- 2)*(=%),

g = 2xX(Yy- Y-y)eF.

Case 19. c = F= x, e = B = y.

x =. FdfyXa, %' = X^Fa (= x),

g=2xyXYaD.

Case 20. c = D = x,e = F=y.

x=Bx(X-2)y(Y-2)a, %'= Y{y-2)X(x - 2)Ba,

g = {my (X - 2) (F- 2) + XY(x - 2) (y- 2)} a£

= 2 {ffl/I7- «y (X+ F)-IF(b + y) + 2ay + 2XF} aB.

Case 21. c = £ = «, e = F = y.

x = X(x-2)Dy(Y-2)a, ^ = T(y-2)Dx(X-2)a,

g = [X (Y-2)y (x -2)+ Y(X - 2) x(y-2)}aD

= 2 [xyXY- xy(X+Y)-XY(x+y) + 2xY + 2yX) aD.

Case 22. a=D =x, c — F=y, e= B = z.

X = ZyXzYx, X' = YzXyZx (= x),

g = 2xyzXYZ.

Case 23. a = B = x, c = D = y, e = F=z.

x = (X-2)y(Y-2)z(Z-2)x, x' = 2(*-2) 7(y- 2)X(*-2),

g=xyz(X-2)(Y~2)(Z-2) + XYZ(x-2)(y-2)(z-2)

= 2 {a^XFZ' - xyz (YZ + ZX + XY) - XYZ(yz + zx + xy)

+ 2xyz (X +Y+Z)+ 2XYZ(x + y + z)- 4>xyz - 4<XYZ}.

Case 24 a — D = xlc = B = y, e = F=z.

x=Y(y-2)Xz{Z-2)x, x' = Z (z-2)Xy(Y-2)x,

g = xX{Y(Z-2)z(y-2) + Z(Y-2)y(z-2)}

= 2xX {yzYZ- yz (Y + Z)- YZ(y + z)+ 2yZ+ 2zY\.

Case 25. a = c = x, D = F —y, e = B = z.

X = Z(*-l)Yz(7-l)w, yi=Yz(Y-\)xZ(x-Y)^x\

g = 2x(a)-l)Y(Y-l)zZ.

But we have here eB as an axis of symmetry, so that each triangle is counted

twice, or the number of distinct triangles is =|g.

c. vin. 30
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Case 26. a = c = x, B = D = y, e = F=z.

X=Y(x~l)(Y-l)z(Z-2)x, x' = Z(z-2)Yx(Y~l)(x-l),

g=x(x-l) Y(Y-l){z(Z-2) + Z(z-2)}

= 2x(x-l)Y(Y-I)(zZ-z-Z).

Case 27. a = c = e = x, B = F—y. By reciprocation of 28.

No. = {2x(x-l)(x-2) + X}Y(Y-l)D,

where each triangle is counted twice, so that the number is really one half of this.

Case 28. B=D=F= x, c = e = y.

Here

g = % + %' - Eed-

x = Xy(X-l)(y-l)(X-l)a, tf = Xy(X - l)(y- 1)(X- l)a(=%),

X + %' = ^(y-l).2X(X-l)l

The reductions are those of the first and second mode as explained above, with

the variation that the curves c and e are here identical, c = ey and that the curve D

is identical with the curves B = F.

First-mode reduction is

a(0 + 28 + 3K)B(B-l)

(where S, k refer to the curve c = e), which is

= ac(c-l)JB(B-l);

that is, the reduction is = a y (y — 1) X (X — 1).

Second-mode reduction is

a (2t + 3*) c (c - 1)

(where t, 6 refer to the curve B = D = F)} which is

= a{B(B-l)-b}c(c-l);

that is, the reduction is = a y (y — 1) {X (X — 1) — x).

Hence the two together are = a y (y — 1) {2X (X — 1) — x) ; and subtracting from

% + %' we have

g = ay(y-l).{2X(X-l)(X-2) + *};

but on account of the symmetry each triangle is reckoned twice, and the number of

triangles is =Jg.

Case 29. a = c=B=x, D = F=y.

x = (X-2)(x-3)Ye(Y-l)x, %'= Ye (Y- l)*(X-2)(X-3) (=x),

g = Ste (a? - 3) (X - 2) F(F- 1) e.
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Second process. Taking the form

C = D = e = x, B = F = y,

here

No. = % + %'-Red.,

X=Yx(X-2)(x-3)Ya, = 7',

and

X + X' = 2F2 « (« - 3) (X - 2) a.

There is a first-mode reduction,

aY {2t + 28 (X - 4) + 3« (X - 3)},

viz. this is

«F{ X2-X + 8«-3f

+ (X-4)(a;2-a: + 8X-3£)

+ (X-3)( -9X + 3£)},

which is

= aY {X O2- a? - 6) - to2 + 12#} ;

and a second-mode reduction

= aFX(0-2)(0-3).

Hence the two together are

= aY{X(2x2-6x)-4<x2+12%}

= 270(0-3) (X-2) a,

whence the result is

= 2(Y*~Y)cc(a;-3)(X-2)a,

which agrees with that obtained above.

On account of the symmetry we must divide by 2.

Case 30. e = D = F=x, a = c = y. By reciprocation of 29.

No. = 2X (X - 3) 0 - 2) 2/ (2/ - 1) 5.

On account of the symmetry we must divide by 2.

Case 31. c — e = D — xia = B — y.

x = {Y-2)x(X-2)(x-S)Fy, x' = Fx(X -2)(x-3) Y(y-2),

g=x(x-S)(X-2)F{(Y-2)y+Y(y-2)}

= 2x(x-3)(X-2)(yY-y-Y)F.

Case 32. F—B-=a = x, D = e = y. By reciprocation of 31.

No. = 2X(X- 3) (x - 2) (3/7 -y- Y) c.

30—2
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Case 33. B — F— y)a = e = D = x. By reciprocation of 34.

Case 34. c — e = y, B = D = a = x.

x = (X-2)y(X-l)(y-l)Fx, X' = ^Z(y- 1) (X- l)(x- 2),

g=y(y-l)(X-l){(Z-2)* + X(X-2)}.F

= 2(X-l)(*X-<B-X)y(y-l)tf

Case 35. a = 2) = y, c = e = B — x.

X = X(x-2)Y{x-l)Fy, x' = FxY(x-l)(X-2)y,

g = yT(x - 1 ) (X (x - 2) + (X - 2) x} F

= 2(x-l)(xX-x-X)yYF.

Case 36. a = D=y, B = F = e = x. By reciprocation of 35.

No. = 2(X-l)(X*-a;-X)yFc.

Case 37. a — e = D = as, c = B = y. By reciprocation of 38.

No. = 2 (« - 1) {xyXY -Xy(X+Y)- XY{x+y) + 2xy + 2XF) F.

Case 38. B = D = a=x, F=e = y.

X = (X-2)c(X-l)y(Y-2)x, X' = Y(y- 2)Xc(X~l)(x- 2),

g=(X-l)c{xy(X-2)(Y-2) + XY(x-2)(y-2)}

= 2 (X - 1) {xyXY - xy(X+Y)-XY(x + y) + 2xy + 2XY} c.

Case 39. a — c = e = B = x.

Functional process; the curve is assumed to be the aggregate of two curves, say

a = c = e = B = x + x'. Forming the enumeration

Case

x X x DxF x'X'oc'Dx'F 39

x'X x . x . &c. 10

x X'x . x . . 6

x'X'x . x . . 14

x X x' . x . 10

x'X x' . x . . 12

t// ./\. X % X % . 14

x'X'x' .x. 8

(where the second column is derived from the first by a mere interchange of the

accented and unaccented letters), I annex to each line the number of the case to
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which it belongs ; thus x'XxDxF is B = c = e = x, which is Case 10, and so in the

other instances. Observing that cases 10 and 14 occur each twice, we have thus

<f> (x -\- x') — <j)x — <fcx' = DF multiplied into

4 (x - 1) (Xx -X-x)x' + . . (10) x 2

+ {2x (x - l)(x- 2) + X} X' + . . (6)

+ kx (x - 1) (XV - X7 - O + . . (14) x 2

+ 2x(x-l)x'X' + .. (12)

+ 2x(x-3)(X -2)x' + . . (8)

where the (. .)'s refer to the like functions with the two sets of letters interchanged.

Developing and collecting, this is

<j>(a) + x) — <f>x — <p%' = DF multiplied into

2XX'

+ 2X (3x2x' + 3^3 + xs - 10W - 5#'2 + 6a/)

+ 2X (x3 + Sx2x + 3W2 - hx1 - 10W + 6x)

- 12 (#V + #a/2) + 40xx',

and thence

<£#= Di^7 multiplied into

X2

+ X (2^3 - 10^ + 12#) - XX

-4#3+20#2 -fe-\£,

where the constants Z, I, A, have to be determined. Now for a cubic curve the

number of triangles vanishes ; that is, we have (j>x=0 in each of the three cases,

a? = 3, X = 6, £=18,

„ * = 4, £=12,

„ * = 3, £ = 10,

and we thus obtain the three equations

0 = 108 - 6i - SI - 18X,

0= 88 - 4Z - 3£ - 12A,,

0= 81 - 3i - 31 - 10X,

giving Z = l, 1 = 16, \=3. Whence, finally,

(fix = {X2 + X (2tf3 — lOa? + 12a? - 1) - 4tf3 + 20^2 - 16a> - 3£} D.F.

Second process, by correspondence. We have

e - € - € + D (c - 7 - r/) = 0,
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and thence

Moreover

g ~X-X' = JDF(C -7 -</)•

X = (X -2)(x - 3) D (x- 1) F(x-l),

x' = F(x-l)D(x-l)(X-2)(x-l), =x,

x + x^I)F(X-2)2(x-d){x-l)\

and

c-7-7'==2t + (X-3)*--2(X--2)(>--3),

as is easily obtained, but see also post, No. 29 ; hence

g = DF multiplied into

(Z~2).2(^-3)(^-l)2

+ (X-2).-2(a?-3)

+ 2t + (X~3)k;

but I reject the term DF.(X — 3)/c as in fact giving a heterotypic solution; I do

not go into the explanation of this. And then substituting for 2t its value, we have

g = DF multiplied into

(X-2).2fl?(«?-l)(0-2)

+ X2-X + 8^-3£,

where the second factor is

= X2 + X (2%* - 10a3 + 12a? - 1) - 4c8 + 20#2 - 16# - 3£

which is the foregoing result.

Case 40. B = D = F=e = %. By reciprocation of 39.

No. = {%2 + x (2X3 - 10X2 + 12X - 1) - 4X3 + 20X2 - 16X - 3£} ac.

Case 41. c = e=D = F=x.

x = Bx(X-2)(a> -3)(X-3)a,

%' = X (x -2)(X-3)0 -3) 5a,

g = («, -3)(X-3)a£{^(X-2)-fX(>--2)},

= 2 (^-3)(X~3)(^X~^~X)aJ5.

Case 42. a=c = D = F = x.

Functional Process ; the curve is supposed to be the aggregate of two curves, say

a = c = D = F=x + x'.
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The enumeration is

whence

Case

x Bx X e X x'Bx'X' sX ', (42)

x' . x X . X &o. (11)

x . x' X . X (11)

x' .x'X.X (17)

x .xX'.X (10)

x . x X' . X (19)

x .x'X'.X (21)

x' .x'X .X (10)

<p(x + x') — <j)X— (pec' = eB multip ied into

4>(X-l)(Xx-X-x)x' + . . (11) x 2

+ 2x(x-l)X'(X'-l) + . (17)

+ 4>(x-l)(Xx-x-x)X' + . . (10) x 2

+ 2xXx'X' + .. (19)

+ 2xx'XX' -2(x + x') XX' --2(X + X') XX + i(Xx' + X'x)+.. (21)

where the (. .)'s refer to the like functions with the two sets of letters interchanged.

Developing and collecting, we have

<j£> (oc + oc) — <j>at — $x' = eB multiplied into

X2 (W+2tf'2-6<)

+ XT (4z>2 + 8xx' + 4^2 - \2x - \2x' + 8)

+ X'2 (2x2 +W - Qx)

+ X (-1W- 6x2 +18aT)

+ X' (- 6^-12^ + 18a?)

+ 8xx\

and consequently

(j>os= eB multiplied into

X2(2x2-6x + 4<)

+ X (-6x2+l8x + L)

+ 4<x2 + lx + \£,

where the constants Z, ly \ have to be determined. The number of triangles vanishes

when the curve is a line or a conic, that is <f)X = 0 for x=l, X = 0, £ = 0, and for

x=X=2, £ = 6 ; we thus have

0= 4+Z,

0 = 40 + 2L + 21 -f 6\.
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Moreover, the data being sibireciprocal, the result must be so likewise ; we must

therefore have L = I. We thus obtain L=l = \ = — 4 ; so that finally

<£a? = {X2 (2a?2 - <ox + 4) + X (- 6^2 + 18a? - 4) + 4a?2- 4a? - 4£} eJB.

Second process, by correspondence : form a = c = D = F=x. We have

c-X-%'+2(f-<£-f) = 0;

also from the special consideration that the points D, F are given as the intersections

of the curve a?, by the first polar of the point e, which first polar does not pass

through a, we have

and by the consideration that c, D are given as intersections, c a double intersection,

of the curve with the first polar of the point c, which first polar does not pass

through a,

d - S - S' + 2 (c - 7 - y') = 0,

whence

and

so that this is

Also

C - 7 - y = 5A,

g-X-x'=-4.geA

= -4>Be(-2X-2x+2+%).

% = 5(*-l)(X-2)*(X-l)(*-2),

tf = (X-2)e(X-l)(ff-2)5(*-l), =x,

so that

g = Be multiplied into

2(X-l)(X-2)(^-l)(tf~2)~4(-2X-2tf+2+a

viz. this is

Be {X2 (2a?2 - 6a? + 4) + X (- 6x2 + 18a? - 4) + 4a?2 - 4a? - 4f}.

2%ir<i process : form c = e = F=B = x.

g =% + %,~:Red->

% = X(a?-2)D(a.-l)(X-2)a,

%' = X(a?-2)I)(a?-l)(X--2)a, = x,

% + %' = ai).2X(X-2)(a?-l)(a?-2).

The first-mode reduction is here

aI)[(X-2)X + (X-4)2S + (X-3)3tf + /c];
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where the last term clDk arises from the tangents cBa and eFa, each coinciding with

a cuspidal tangent, as shown in the figure.

Fig. 4.

 

The second-mode reduction is

= aD.X(a?-2)(a?--3),

so that the two reductions together are

= aD {(X -2) X 4- (X - 4) 2S + (X - 3)3* + * + X (a? -2) (a - 3)},

viz. this is

= aD{(X-2)Z+(X-4)(2S + 3/c) + 4/C + Z(^~2)(^-.3)};

or substituting for 2S -f 3/e and /e the values x2 — x — X and — 3X + £ respectively, and

reducing, it is

aD {X (2a?2 - 6x - 4) - 4a?2 + 4a; + 4£}.

Hence subtracting from % + %', written in the form

aD {X2 (2a?2 - <ox + 4) + X (- 4a?2 + 12a? - 8)},

the result is

= aD {X2 (2a?2 - 6x + 4) + X (- 6a?2 + 18a? - 4) -f 4a?2- 4a? - 4£}.

On account of the symmetry we must divide by 2.

Case 43. a = c = e = x, B = D = F= y.

Suppose for a moment that the angle a is a free point ; the locus of a is a curve

the order of which is obtained from Case 28, by writing c = e = x, B — D — F= y\ the

locus in question meets a curve order a in {2F(F — 1) (F— 2) + y) x (a? — l)a points;

wherefore the order of the locus is

= {2F(F-l)(F-2) + y}a> (*-l),

and this locus meets the curve a = c = e~x in a number of points

= {2F(F-l)(F-2) + 2/}a?2(^-l),

viz. this is the number of positions of the angle a ; but several of these belong to

special forms of the triangle aBcDeF, giving heterotypic solutions, which are to be

rejected ; the required number is thus

{2F(F-l)(F-2) + 2/}a?2(a?-l)- Red.

c. vni. 31
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The reduction is due first and secondly to triangles wherein the angle a coincides

with an angle c or e, and thirdly to triangles wherein the angles a, c, e all coincide.

1°. Take for the side cDe a double tangent of the curve B = D = F, this meets

the curve a= c = e in x points, and selecting any one of them for e and any other for c,

Fig. 5.

D

 

we have from the last-mentioned point F— 2 tangents to the curve B = D = F; and

in respect of each of these a position of a coincident with c. The reduction on this

account is 2tx(x — 1) (F — 2) ; but since we may in the figure interchange c and e,

B and F, we have the same number belonging to the coincidence of the angles a, e,

or together the reduction is =4t#(# — 1)(F— 2).

Fig. 6.

 

But instead of a double tangent we may have cBe a stationary tangent ; we have

thus reductions 3ta)(x — l)(Y- 2) and Slx(x- l)(F-2), together 6ix{x - 1)(F— 2) ;

and for the double and stationary tangents together we have

that is

(4T+6£)0(a?-l)(F-2),

= 2{7(r-l)-y}*(*-l)(F-2),

= 2x(x-l)Y(Y-l)(Y-2)-2x(x-l)y(Y-2).

2°. The side cBe may be taken to be a tangent to the curve B = D = F at any

one of its intersections with the curve a = c = e. Taking then the point e at the

intersection in question, and the point c at any other of the intersections of the

tangent with the curve a = c = e, and from c drawing any other tangent to the curve

B — D = F, there is in respect of each of these tangents a position of a at c; and
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the reduction on this account is = xy (x — 1) (F— 1). But interchanging in the figure

the letters c, e, B, F, there is an equal reduction belonging to the coincidence of a, e ;

and the whole reduction in this manner is = 2x(x — 1) y (F— 1).

 

3°. If the side cBe intersects the curve a = c = e in two coincident points, then

taking these in either order for the points c, e, and from the two points respectively

drawing two other tangents to the curve D = B = F, we have a triangle wherein the

angles a, c, e all coincide. The side cBe may be a proper tangent to the curve

a = c = e, or it may pass through a node or a cusp of this curve, viz. it is either a

common tangent of *the curves B = B = F and a — c = e (as in the figure, except that for

greater distinctness the points c and e are there drawn nearly instead of actually

coincident), or it may be a tangent to the curve B — B = F from a node or a cusp of

the curve a = c = e ; we have thus the numbers

Common tangent X Y ( F - 1) ( F - 2),

Tangent from node 2SF(F - 1) (F - 2),

Tangent from cusp 2kF(F- 1) (F - 2) ;

but (as we are counting intersections with the curve a = c = e) the second of these, as

being at a node of this curve, is to be taken 2 times; and the third, as being at a

cusp, 3 times; and the three together are thus

(X + 4S + 6* )F(F-l)(F-2),

= {2x{x-l)-X} F(F-l)(F-2).

The reductions 1°, 2°, 3° altogether are

2x(x-l)Y(Y-l)(Y-2)

-2x(x-l)y(Y-2)

+ 2x(x-I)y(Y-l)

a-2x(x-1) F(F-l)(F-2)

-XF(F-l)(F-2),

which is

= 40(tf-l)F(F-l)(F-2)

+ 2x(x — l)y

-XF(F-l)(F-2);

31—2
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and subtracting from the before-mentioned number

2#2<>-l)F(F-l)(F-2)

■+■ x2 (x — 1) y,

the required number of positions of the angle a is

= 20(0-l)(a>-2)F(F-l)(F-2)

+ ya?(a?-l)(a?-2)y + ZF(F-l)(F-2).

The number of triangles is on account of the symmetry equal to one-sixth of this

number.

Case 44. e—D — F= x, a-^c — B — y.

x=(F-2)(y-3)X(*-2)(Z-3)y,

g =2(*-2)X(X-3)(r-2)y(y-3):

there is a division by 2 on account of the symmetry.

Case 45. a = D = B = x, c = e = F=y.

x=(Z-2)y(Z-l)(y-l)(F-2)«,

tf=F(y-2)Z<y-l)(Z-l)(*-2),

g-(I-l)(y-l)^(I-2)(F-2) + IF(«-2)(y-2)}

= 2(X-l)(y-l){ZFary-ZF(«+y)-a?y(Z + F)+aiy+2ZF}.

Case 46. a — c = yfB = D = F=e = xt By reciprocation of 47,

No. =y(y~l){^ + ^(2Z3-10Z2 + 12Z~l)-4Z3 + 20Z2-16Z-3^}:

there is a division by 2 on account of the symmetry.

Case 47. D = F=y, a= c = e = B = cc.

The functional process is exactly the same as for No. 39 {a — c = e = B — x), with

only F(F— 1) written instead of DF: hence

No.= Y{Y- 1) {X* + X (2x* - 10a;2 + 12a? - 1)- 4a;3 + 20a?2 - 16a?- 3£} :

there is a division by 2 on account of the symmetry.

Case 48. a — c = D = F=x, e = B = y.

The functional process, writing a = c = D = F= x + x', would be precisely the same

as for Case 42, with only the factor yY written instead of eB; and we have thus

the like result, viz.

No. = {Z2 (2a;2 - 6x + 4) + Z (- 6a?2 + 18a? - 4) + 4a?2 - 4a? - 4£) y F,

which on account of the symmetry must be divided by 2.
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Case 49. a = B = y, c = e = D = F=%.

x = (Y-2)x(X-2)(x-3)(X-S)y,

x' = X(x-2)(X-8)(x-3)Y(y-2),

g = (x-3)(X-3){xy(X-2)(Y-2) + XY(x-2)(y-2)}

= 2(x-3)(X-3){xyXY-(x + y)XY-(X + Y)xy+ 2xy + 2XY].

Case 50. e = e = B = B = F=x.

Functional process ; by taking the curve c=e=B=D — F as the aggregate of two

curves, say = x + w'. The cases are

aX'x'X'xX'

&c.

Case

50aX x X xX

. X'x X x .

.Xx'Xx .

. X'xX x .

. X x X'x .

.X'x X'x .

.Xx'X'x .

. X'x'X'x .

. XxX x' .

.X'xXx' .

.Xx'Xx' .

.X'x'Xx' .

.XxX'x' .

. X'x X'x' .

.Xx'X'x' .

. X'xX'x'X

and we thus have

<j>(x + x') — $>x — <f>x' = a multiplied into

= 4<(x-3)(X-3)(xX-x-X)X + . .

+ 2x' [x2 + x (2XS - 10X2 + 12X - 1) - 4X3 + 20X2 - 16X - 3£j +

+ 4>X(X-3)(x-2)(x'X'-X'-x') +

+ [X2(2«2- 6*'+ 4) + X(- 6*2 + 18a- 4) + 4«2- 4<x - 4£]X' +

+ 4<(x-l)(xX-x-X)(X'*-X') +

+ 4 (X - 1) [XX'xx' - XX' (x + x') - xx' (X + X') + 2XX' + 2xx'] +-

+ 4*X (X' - 1) (XV - X' - x') +

+ («2-«)(2X'3-6X'2 + 4X/ + 0 +

+ 2x(x-3)(X-2)(X'*-X') +

41

40

32

42

33

38

32

40

36

28

33

38

36

29

41

2(41)

2(40)

2(32)

(42)

2(33)

2(38)

2(36)

(28)

(29)
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where as before the (. .)'s refer to the like functions with the two sets of letters

interchanged. Developing and collecting, this is

<f> (x+x) — <f>x — (pas' = a multiplied into

&cV + Sxx'2

+ ^.6X2X' + 6XX'2 + 2X'3

- 28XX' - 14X'2

+ 28X'

+ osx' . 4X3 + 12X2X' -f 12XX'2 + 4X'3

-28X2-56XX'-28X'2

+ 56X + mx'

-22

+ a/2.2Xs+6X2X' + 6XX'2

- 14X2 - 28XX'

+ 28X

+ x . - 3<)X2X' - 30XX'2 - 10X'3

+ 140XX' + 70X'2

- 116X' - 6f

+ x'.- 10XS - 30X2X' - 30XX'2

+ 70X2 + 140XX'

-116X-6?

+ 36X2X' + 36XX'2

- 152XX'

-4(Xr + X'^);

whence

<f>w= a multiplied into

x3 ( + 1)

+ oa( 2X3-14X2 + 28X-11)

+ x (- 10X3 + 70X2 - 116X + 0

+ 12X3-76X2 +LX

+ £ (- 6^ - 4X + X),

where the constants I, L, X have to be determined. We should have 0# = 0 for a

cubic curve; viz. # = 3: X=6, £ = 18; X=4; £=12; or X = 3, £=10. Writing first

x = 3, the equation is

8X2-96X-72-£(18 + 4X) + 3Z + XZ-f£\==0,
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giving in the three cases respectively

3Z + 6Z+18A,= 1116,

3Z + 4Z + 12\ = 736,

3Z + 3Z + 10X = 588;

and we have then I = — 8, L = 64, X = 42, so that the required number is

= x*{ + 1)

+ ^2( 2X3-14X2 + 28X-11)

+ ^(-10X3-}-70X2-116X- 8)

■+ 12X3-76X2 + 64X

+ £ (- 6a? - 4X +42 ).

As a verification, observe that for a conic, # = X = 2, £ = 6, this is = 0.

Second process, by correspondence : form c = e = B = D = F= a).

We have

s =%+%'- Red->

x =X(0-2)(X-3)(0-3)(X-3)a,

tf =X(a-2)(X-3)(*-3)(X-3)a, =%,

% + X = a into

2<>-2)<>-3)X(X-3)2.

Fig. 8.

 

There is a first-mode reduction, which is

= a {28 (X - 4) (X - 5) + 3* (X - 3) (X - 4) + * (X - 3) + 2r (X - 3)},
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where the term a . 2t (X — 3) arises, as shown in the figure, and a second-mode reduction,

which is

= a {2t (x - 4) (a? - 5) + St (x - 3) (x - 4)} ;

and the two together are =a into

(X - 4) (X - 5) O2 - a? + 8X - 3?)

+ (X-3)(X-4)( 9X +3£)

+ (-ST-3)/ -3X + f

l-fl2- X + 8a; - 3£

+ (a;-4)(a?-5)(X2-X+8a? -3f)

+ (a;-3)(a?-4)( - 9a;+3f);

that is, = a into

— x3

+ a?2.2X2-10X + ll

+ x . - 10X2 + 26X + 8

+ 4Z2 + 44X

+ £(6a; + 4X-42);

and subtracting this from the foregoing value of ^ + %', which is = a into

a?2( 2X3-12X2 + 18X)

+ x (- 10X3 + 60X2 - 90X)

+ 12X3 - 72X2 + 108X,

the result is as before.

There is a division by 2 on account of the symmetry.

Case 51. a = c = e = B = D = x. By reciprocation of 50,

No. is = X3( +1)

+ X2( 2a;3- 14a?2 + 28a?- 11)

+ X (-10a;3 + 70a;2 -116a?- 8)

+ 12a;3- 76a?2 + 64a;

+ £<-6X-4a; + 42).

There is a division by 2 on account of the symmetry.
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Case 52. a = c = e = B = D = F=x.

Functional process, by taking the curve to be the aggregate of two curves, say

= #+#'. The enumeration of the cases is conveniently made in a somewhat different

manner from that heretofore employed, viz. we may write

X or x

II

all

a

B

a, c

B} D

a, D

a, B

a, c , e

a, B, F

a, B} D

x or x (Jase time

II

none (52) 1

residue (50) 3

» (51) 3

a (46) 3

>) (47) 3

a (48) 3

)> (49) 6

By D, F (43) 1

c , e y D (44) 3

o , e , F (45) 6

32";

and the functional equation then is

<p(x + x) — <$>x — <$>x'

= Sx' /«3(

-3X'

+ 3(x'*-x')

+ 1)\ +

x*( 2XS-14X2 + 28X-11)

{ x (-10X3 + 70X2-116X- 8) y

+ 12X3-76X2 + 64X

+ £(-6a-4X + 42) |

^3( + 1)\

X2( 2«3-14«2 + 28» -11)

■{ X (- 10a3 + 70*2 - 116a - 8) >

+ 12a3 - 76a2 + 64a

+ f(-6X-4a +42)

a2 \ +

+ x (2XS - 10X2 + 12X - 1)

- 4X3+20X2-16X-3|:

(50) x 3

(51) x 3

c. VIII.

(46) x 3

32
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+ 3(X'2-X') ( X2 \ +.. (47)x3

+ 1 (2a?3- 10a;2 + 12a?- 1) h

- 4a?3 + 20a;2 - 16a?- 3f

+ 3a?X' f X2( 2^-6^ + 4)^ +.. (48) x 3

+ X (- 6a?2 + 18a? - 4) -

+ 4a;2 - 4a; - 4£

+ 12 (a/ - 3) (X' - 3) [xoc'XX' - xx' (X + X') - XX' (x + x) + 2a?a?' + 2XX} + . . (49) x 6

+ {2a?' (a?' - l)(a?'-2) X(X - 1)(X - 2) + xaf (x' - l)(x' - 2) + XX (X - 1)(X - 2)} + . . (43)

+ 6(^/-2)X/(X/-3)(X-2)(^-3) +.. (44) x 3

+ 12 (X' - 1) (x - 1) {a?a?'XX' - xx' (X + X') - XX' (x + a;') + 2xx' + 2XX'} + . . (45) x 6

where as before the (. .)'s refer to the like functions with the two sets of letters

interchanged. Developing and collecting, this is found to be

4X3X' -f 6X2X2 + 4XX'3

+ X3 ( 6x2x + 6xx'2 + 2a;'3 ^

- S6xx - 18a?'2

+ 52a?'

+ (X2X' + XX/2) / 6x* + 18a;V + 18a?a?'2 + 6a?'3 \

- 54a?2 - 108a?a;' - 54a?'2

+ 156a? -f 156a?'

- 138

+ X/3 ( 2x* + 6x2x' + 6xx'2 ^

- 18a;2 — SQxx

+ 52a?

+ &c. &c.

I abstain from writing down the remaining terms, as they can at once be obtained

backwards from the value of <£a?; they were in fact found directly, and the integration

of the functional equation then gives

c£a? = X4( +1)

+ X3( 2a?3- 18a?2 + 52a? - 46)

+ X2 ( - 18a;3 + 162a?2 - 420a? + 221)

+ X ( 52a;3 - 420a;2 + 704a? 4- 1

+ a?4 - 46a;3 + 221a?2 + Ix

)

+ f X2( - 9)^

+ X ( - \2x + 135)

- 9a?2 + 135a? + X
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where the constants I, \ have to be determined ; I have in the first instance written

I (X + x) + X%, instead of LX + lx + \%, thus introducing two constants only, since it is

clear from the symmetry in regard to x, X that we must have I = L. We must have

$x = 0, when the curve is a conic or cubic. Writing oc=2, we have

$x = X4 + 2X3 - 115X2 + 144X + 532 + f (- 9X2 + 111X + 234) + I (2 + X) + f\,

and then for the conic, X=2, £=6.

Writing x = 3, we have

</>a; = X4 + 2X3-67X2- 264X + 828 + f (- 9X2 + 99X + 324) + Z(3 + X) + \£

and then for the three cases of the cubic X = 6, £ = 18 ; X=4, £ = 12; and X=3, £=10.

We have thus the four equations

2912 + 4Z + 6\=0,

9252 + 9/+18\ = 0,

5796 + 11 + 12\ = 0,

4968 + 61 + 10X = 0,

all satisfied by J = + 172, \ = - 600. Hence finally

00= X4( + 1)

+ X3( 2a;3- 18a;2 + 52a;- 46)

+ X2 ( - 18a;3 + 162a;2 - 420a; + 221 )

+ X ( 52a;3 - 420a;2 + 704a? + 172)

+ x4 - 46a;3 + 221a;2 + 172a;

J + X ( - 12a;+135)

- 9a;2 + 135a;- 600

but on account of the symmetry the number of triangles is = one-sixth of this expression.

Article Nos. 22 to 36. The Case 52, as belonging to a different series of Problems.

22. In the foregoing Case 52, where all the curves are one and the same curve,

we have the unclosed trilateral aBcDeFg, and we seek for the number of the united

points (a, g). But we may consider this as belonging to a series of questions, viz. we

may seek for the number of the united points (a, B), {a, c), (a, D), (a, e), (a, F), (the

last four of these giving by reciprocity the numbers of the united points (B, D), (B, e),

(B, F), (B, g)\ and finally the number of the united points (a, g). It is very instructive

to consider this series of questions, and the more so that in those which precede

(a, F) there are only special solutions having reference to the singular points and

tangents of the curve, and that the solutions thus explain themselves.

32—2
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23. Thus the first case is that of the united points (a, B), viz. we have here a

point a on the curve, and from it we draw to the curve a tangent aB touching it

at B; the points a and B are to coincide together. Observe that from a point in

general a of the curve we have X — 2 tangents (X the class as heretofore), viz. we

disregard altogether the tangent at the point, counting as 2 of the X tangents from

a point not on the curve, and attend exclusively to the X — 2 tangents from the point.

Now if the point a is an inflection, or if it is a cusp, there are only X — 3 tangents,

or, to speak more accurately, one of the X — 2 tangents has come to coincide with

the tangent at the point; such tangent is a tangent of three-pointic intersection, viz.

we have the point a and the point B (counting, as a point of contact, twice) all three

coinciding ; that is, we have a position of the united point (a, B) ; and the number

of these united points is = i + k.

24. It is important to notice that neither a point of contact of a double tangent,

nor a double point, is a united point. In the case of the point of contact of a double

tangent, one of the tangents from the point coincides with the double tangent ; but

the point B is here the other point of contact of this tangent, so that the points

■a, B are not coincident. In the case of a double point, regarding the assumed

position of a at the double point as belonging to one of the two branches, then of

the X — 2 tangents there are two, each coinciding with the tangent to the other

branch; hence, attending to either of these, the point B belongs to the other branch,

and thus, though a and B are each of them at the double point, the two do not

constitute a united point. (In illustration remark that for a unicursal curve, the

position of a answers to a value = X, and that of B to a value = fju of the parameter 6,

viz. X, fjb are the two values of 6 at the double point ; contrariwise in the foregoing

case of a cusp, where there is a single value X = fM. Hence the whole number of the

united points (a, B) is = i + k, and this is in fact the value given, as will presently

appear, by the theory of correspondence.)

I recall that I use A, = 2D, to denote twice the deficiency of the curve, viz. that

we have A = X- 2# + 2 + *;, = -2#-2X+2 + £.

25. The several cases are

United points.

(a, B) b-/3-/3'=2A,

(a,e) c -7 -7' +2(b-/3-/3')=(X-2)A,

(B, D) c0 - 70 - 7»' by reciprocity,

(a, D) d -S -B' +2(c0-70-70') + (X-3)(b-/3-/3') = 0,

(a, e) e -e -e' + 2 (d - S - S' ) + (Z- 3)(e - 7 -7') = 0,

(B, F) e0 - e0 - et' by reciprocity,

(a , F) f - <j> - <f>' + 2 (e, - e0 - e0') + (X- 3) (d - S - 8') = 0,

(a, 9) g-X-%' +2(f -4>-4>')+(X-3)(e-e-e') = 0,

(B, H) g0 - x« ~ Xo' hJ reciprocity,

and so on.



514] ON THE PROBLEM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE. 253

26. The mode of obtaining these equations appears ante, Nos. 5 and 6, but for

greater clearness I will explain it in regard to a pair of the equations, say those for

(a, e), (a, D). Regarding a as given, we draw from a the tangents aBc, touching at

B and besides intersecting at c (viz. the number of tangents is = X — 2, and the

number of the points c is = (X — 2) (x — 3)) ; from each of the positions of o we draw

to the curve the (X — 3) tangents cDe touching at D and intersecting at e ; the

whole number of these tangents is = (X — 2) (x — 3) (X — 3) ; and this is also the number

of the points D, but the number of the points e is = (X — 2)(x — 3)(X— 3) (x — 3).

Now this system of the (X — 2) (x — 3) (X — 3) tangents is the curve ® of the general

theory (ante, Nos. 3, 4), viz. the curve © (which does not pass through a) intersects

the given curve in the three classes of points c, D, e, the number of intersections at

a point e being =1, at a point D being = 2, and at a point c being =X — 3. And

we have thus the equation

where e, d, c are the numbers of united points and (e, e'), (S, S'), (7, 7') the corre

spondences in the three cases respectively.

27. Observe that we cannot, starting from a, obtain in this manner the equation

for the number of the united points (a, D); for we introduce per force the points e,

and thus obtain the foregoing equation for (a, e). But starting from D, the tangent

at this point besides intersects the curve in (x — 2) points, each of which is a position

of c ; and from each of these drawing a tangent cBa to the curve, we have the

curve © consisting of these (x — 2)(X — 3) tangents, not passing through D, but inter

secting the given curve in the three classes of points c, B, a, viz. the number of

intersections at each point c is —X — 3, at each point B it is =2, and at each point

a it is = 1 ; and we have thus the equation

(d-S-8/) + 2(c0-7o-ryo/) + (^-3)(b-/8-i8/) = 0,

where the numbers (d, S, S;), (c0, 70, 7o0> Q>, ft, ft') refer to the correspondences (D, a),

(D, B\ and (D, c) (or what is the same thing (a, B)) respectively.

28. Correspondence (a, B).

We have

£ = X-2, /3' = #-2,

and thence

b = # + X-4+2A

= -3#-3X+2£

which is the solution : the value obtained above was b = 1 + /c, and we in fact have

identically

fc-ftf = .-3tf-3X+2£.

It was in this manner that I originally applied the principle of correspondence to

investigating the number of inflections of a curve, regarding, however, the term k as

a special solution; it is better to put the cusp and inflection on the same footing

as above.
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29. Correspondence (a, c).

Since b — j3 — /3' = 2A, we have here

C _ ry __ y — (X — 6) A,

and

whence

7 = 7' = (X-2)(a?-3),

c = 2 (X - 2) (a? - 3) + (X - 6) (- 2x - 2X + 2 + f)

= _ 2X2 + 8X + &e + (X- 6) f ;

this is in fact = 2r + (X — 3) k, viz. we have

2T = X2~X + 8,^-3f

(X-3)* = (X-3)(--3X+f) = -3X2 + 9X + (X-3)£,

and therefore

2t + (X — 3) k = as above,

viz. the united points (a, c) are the 2t points of contact of the double tangents, and

the tc cusps each (X — 3) times in respect of the (X — 3) tangents from it to the

curve. This is the way in which I originally applied the principle to finding the

number of double tangents of a curve.

30. Correspondence (B, D). By reciprocation

c0 ~ 7o - Yo' = (a? - 6) A,

c0 = - 2x2 + Sx + 8X + (x - 6) £

= 28 + (x - 3) i.

31. It may be remarked, as regards the cases which follow, that although the

result in terms of (S, k, t, r) when once known can be explained and verified easily

enough, there is great risk of oversight if we endeavour to find it in the first

instance ; while on the other hand the transformation from the form in terms of

(x, X, £), as given by the principle of correspondence, to the required form in terms

of (8, /e, l, t) is by no means easy. I in fact first obtained the expression in (x, X, £),

and then, knowing in some measure the form of the other expression, was able to

find it by the actual transformation of the expression in (x, X, f).

32. Correspondence (a, D).

From the values of c0 — y0 — y0' and b — 0 — ft' we have

d - 8 - S' = - (2X + 2x - 18) A,

and then

8 = (X-2)(^-3)(X-3), 8' = (x-2)(X-3)(x-3),

whence

= (*-3)(X-3)(X + fl?-4)

+ (- 2X - 2x + 18) (- 2X - 2x + 2 + f)
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which is

= X2( x+ 1)

+ X <>2- 2* -19)

+ a;2 — 19«

+ £(-2X-2a:+18).

And then, by means of the equations

O -4)2t = (« -4)(X2-X+8# -3f),

(X - 4) 28 = (X - 4) O3 - a + 8X - 3D,

(a> - 3) t = («> - 3) ( - a» + f),

(X-3)* = (X-3)( -3X + a

we verify that

d = (^-4)2r + (X-4)2S + (.£--3)* + (X-3)/e.

33. Correspondence (a, e).

From the values of d — 8 — 8', c — y — y' we have

e - €- e' = (-X2 + 13X + 4a? - 54) A,

and then

6 = 6' = (X-2)(tf-3)(X-3)(tf--3);

that is

e = 2<>-3)2(X-2)(X-3)

+ (- X2 + 13X + 4<x - 54) (- 2X - 2x + 2 + f),

which is

= X3( 2)

+ X2( 2a>8-lO0 -10)

+ X (- 10#2 + 26^ + 44)

+ 4a?2 + 44#

+ | (- Xa + 13X + 4» - 54),

and then

(a- -4) (^ - 5) 2t = (a? - 4) (a?- 5) (X2 - X + 8a? - 3£),

{(X-4)(X-5) + ^-3}28 = {(X-4)(X-5) + ^-3}(^2--^ + 8X-3^

{3<>--3)0-4) + tf-3}* = (0-3)(3ff-ll)(--3a> + f),

2(X-3)(X-4)* = 2(X-3)(X-4)(-3X+£);

and summing these values and comparing,

c = (a-4)(tf-5)2r + 2(X-3)(X-4)*

+ [(Z-4)(Z-5) + a?-"3]2S+[3(«-3)(a?-4) + a?-3]6.

The united points (a, 0) are in fact, 1°, each of the cc — 4< intersections of a double

tangent with the curve, in respect of the two contacts and of the remaining x — 5

intersections; 2°, each double point in respect of the two branches and of the pairs

of tangents from it to the curve ; 3°, each of the oc—3 intersections of each of the
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tangents at a double point with the curve ; 4°, each of the x — 3 intersections of a

tangent at an inflection (stationary tangent) with the curve, in respect of the (x — 4)

remaining intersections ; 5°, each inflection in respect of the x — 3 intersections of the

Fig. 9.

 

tangent with the curve; and 6°, each cusp in respect of the pairs of tangents from

it to the curve. Thus (2°), the double point in respect of the branch which contains c,

and of the two tangents from it to the curve, is a position of the united point

{a, e), as appearing in the figure.

34. Correspondence (B, F). By reciprocation of (a, e)

e0 ~ e0 - e0' = (- a?2 + 1 3a? + 4X - 54) A,

e0 = (X - 4) (X- 5) 28 + 2(x - 3) (a? -4) i

+ [(^-4)(^-5) + X^3]2t + [3(Z~3)(Z-4) + (Z-3)]/c.

35. Correspondence (a, F). By means of the values of e0 — e — e and d — 8 — 8\

we have

f-0-<£/ = (2X2 + 2Xa; + 2a?2-32X--32a? + 162)A,

and then

</> = (X-2)(a?-3)(X-3)(a?-3)(X-3),

$ = (x - 2) (X - 3) (a?-3)(X - 3) (a>-3),

whence

which is

f = (X + a?-4)(a?-3)2(X-3)2

+ (2X2 + 2Xa? + 2a?2 - 32X- 32a? + 162) (- 2X - 2x + 2 + f)

= X3( a?2- 6x+ 5)

+ X2( ar3-16a?2 + 61a? -22)

+ X (- 6a;3 + 61a?2 - 120a; - 91)

+ 5a?3 -22a?2- 91a?

+ f ( Z2( 2))

+ X ( 2a? - 32)

+ 2x2 - 32a? + 132
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This result includes proper solutions of the problem of finding the number of

the triangles aBcDeF, which are such that the side ea touches the curve at a; and

also heterotypic solutions having reference to the singular points of the curve ; but

I have not determined the number of solutions of each kind.

36. Correspondence (a, g) : from the values of f — (f> — <£' and e — e — e', we have

g - x - %' = (Xs - 20Z2 - 8Za? - 4a?2 + 125Z + 44a? - 486) A,

and then

wherefore

viz. this is

x = ^ = (Z-2)(«-3)(Z-3)(«-3)(Z-3)(o?-S)>

g=2(Z-2)(Z-3)2(a?-3)3

+ (Xs - 20Z2 - 8Za? + 125Z + 44* - 486) (- 2Z - 2a? + 2 + £),

g= X<( - 2)

+ I3( 2a?3- 18a?2 + 52a? - 12)

+ Z2 (- 16a?3 + 144a?2 - 376a? + 142)

+ Z ( 42a?3 - 362a,-2 + 780a? + 88)

- 36a?3 + 236a?2 + 88%

+ Z2( - 20) ^

+ Z ( - 8a? +125) '

+ 44a? -486. /

Comparing with the expression of <f*x, Case 52, we have

g-^= X<( - 3)

+ Z3( +34)

+ Z2 ( 2a?3 - 18a;2 + 44a? - 79)

+ Z ( - 10a?3 + 58a?2 + 76a? - 84)

- a?4 + 10a?3 + 15a?2 - 84a?

+ Z2( - 11)

+ Z ( 4a? - 10)

+ 9a?2 -91a? + 114, )

which difference must be the number of heterotypic solutions having relation to the

singularities of the curve; but I have not further considered this.

C. VIII. 33
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515.

SUE LES COUEBES APLATIES.

[From the Comptes Rendus de VAcademie des Sciences de Paris, torn, lxxiv. {Janvier—

Juin, 1872), pp. 708—712.]

En lisant la these de M. S. Maillard, Recherches des caracteristiques des systemes

elementaires des courhes planes du troisieme ordre (Paris, 1871), j'ai ete conduit a

quelques reflexions sur la theorie generale des courbes aplaties de M. Chasles^).

Je considere line courbe representee par une equation de l'ordre n, f(os} y, k) = 0,

laquelle pour k — 0 se reduit a la forme PaQP ... — 0. Pour k un infiniment petit, ou

disons pour k = 01, cette courbe sera ce que je nomme la penultieme de PaQP... = 0;

la courbe PaQ? . . . = 0 elle-meme sera la courbe finale ; et les courbes P = 0, Q = 0, . . . ,

les facteurs. Or en menant par un point donne quelconque les tangentes a la courbe

penultieme, ces tangentes approchent continuellement aux droites que voici : 1° les

tangentes aux courbes P = 0, Q = 0, . . . , respectivement ; 2° les droites par les points

singuliers de ces memes courbes respectivement; 3° les droites par les intersections de

deux quelconques de ces memes courbes P = 0, Q = 0, . . . , respectivement ; 4° les droites

par certains points situes sur Tune quelconque des memes courbes P = 0, Q = 0, . . . . En

ne faisant aucune supposition particuliere par rapport a la courbe pdnultieme, cette

courbe sera une courbe sans points singuliers, et ainsi de la classe n2 — n: le nombre

des droites 1°, 2°, 3°, 4° (en faisant attention a la multiplicite de quelques-unes de ces

droites) sera done egal a n2 — n. Les droites 3° sont comptees chacune un certain

nombre de fois ; en supposant que pour un point d'intersection P = 0, Q = 0 quelconque

ce nombre soit 0, nous dirons qu'il y a a ce point un nombre 6 de sommets fixes.

Les droites 4° sont comptees en general chacune une seule fois; les points par lesquels

passent ces droites (points sur Tune quelconque des courbes P = 0, Q = 0, ...) seront

1 Comptes Rendus, t. lxiv. p. 799—805 et 1079—1081 ; seances des 22 avril et 27 mai 1867.
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nommes sommets libres. Cela etant, on peut considerer la courbe penultieme comme

equivaiente a la courbe finale PaQ^...=0 plus les sommets: il s'agit, pour un cas

donne quelconque, de trouver le nombre et la distribution de ces sommets.

Je considere d'abord le cas le plus simple, celui dune conique aplatie, penultieme

de x2 = 0 ; l'equation d'une telle conique est

(a, b, c, /, g, h\x, y, zf = 0,

ou, en prenant a=l, tous les autres coefficients seront des infiniment petits, pas en

general du meme ordre. Les tangentes menees a la courbe par un point donne (a, /3, 7)

seront determinees par l'equation

{be —f2, ca — g2, ab — A2, gh — af hf— bg, fg — ch) x (yy — fiz, az — yx, fix — ay)2 = 0 ;

ou disons

(be -f\ c -g2, b- h\ gh - /, hf- bg, fg - ch) x (yy - /3z, az - yx, fix - ay)2 = 0.

En considerant pour un moment tous les coefficients comme etant des infiniment

petits du meme ordre, = 01, cette Equation se reduit a

(0, c, b, —/ 0, OQyy-fiz, az-yx, fix-ay)2 = 0,

ou, ce qui est la meme chose,

(c, -/, b^az-yx, fix-ay)2 = 0;

et ces tangentes coupent la droite x = 0 dans les deux points donnes par l'equation

(c, —/, b\az, — ay)2 = 0, e'est-a-dire by2 + 2fyz + cz2 = 0, points inde'pendants de la position

du point donne (a, fi, 7) ; ces points sont en effet les intersections de la penultieme par

la droite x = 0.

Mais il y a la une restriction qu'on eVite au moyen d'une supposition plus generale,

savoir : en prenant gt h du premier, b, c, f du second ordre, ou disons g, h = 01, b, c, f= 02,

l'equation des tangentes devient

(0, c-g\ b-h2, gh-f 0, OTfay-fiz, az-yx, fix- ay)2 ^0,

ou

(c — g2, gh —f b — h2][az — yx, fix — ay)2 = 0.

Or, en ecrivant x = 0, cette equation devient

(c - g2, gh -af b - h2Jaz, - ay)2 = 0,

e'est-a-dire

by2 + 2fyz + cz2 - (hy + gz)2 = 0 ;

nous avons ainsi, sur la droite x = 0, deux points inde'pendants de la position du point

donne (a, fi, 7), et qui ne sont plus les intersections de la conique par cette droite

(autrement dit, ces points ne sont pas situes sur la conique); ces points sont en effet

deux points quelconques sur cette droite. II y a ainsi pour la conique aplatie penultieme

de x2 — 0 deux sommets situes a volonte sur la droite x = 0 (et qui ainsi ne sont pas

situes sur la conique penultieme).

33—2
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Je passe a un cas nouveau, celui de la courbe quartique pe'nultieme de x2y2 = 0 ;

mais pour simplifier l'analyse, au lieu dun point qnelconque (a, ft, 7) je prends succes-

sivement les points (y = 0, z — 0) et (x = 0, y = 0). On concoit, en effet, que s'il y a

p sommets libres sur la droite x = 0, q sommets libres sur la droite y = 0, et r

sommets fixes au point (#=0, y = 0), alors les droites par le point donne (y = 0, z=Q)

seront les droites par les p points, plus la droite y = 0, q + r fois ; et de meme les

droites par le point donne (x — 0, z = 0) seront les droites par les q points, plus la

droite x = 0, p + r fois : de maniere que le procede donnera les nombres cherches p} q, r.

J'e'cris Tequation de la penultieme sous les deux formes

#4. a

+ 4x3(h, j$y, z)

+ 6x2 (1, p, m$y, z)2

+ 4>x (k, q, r, g$y, z)3

+ (b, f, I, i c$y, zy = 0,

f.b

+ fy3 (k, f\x, z)

+ 6f(i, q, r£x, zy

+ 4<y (k, p, r, l][x, z)s

+ (a, j, m, g, c$#, zj = 0,

ou le coefficient de x2y2 est = 6, et tous les autres coefficients sont des infiniment

petits, pas necessairement du meme ordre. Je represente ces deux equations par

(A, B, y2 + C, D, E%x, 1)4 = 0, (A', B\ x2 + C, D\ ETfo, 1)4=0

respectivement.

Cela etant, on obtient Fequation des tangentes par le point (y = 0, z — 0) en egalant

a zero le discriminant de la fonction quartique de x ; et de meme pour les tangentes

par le point (x = 0, z — 0) : les deux equations seront

0= (y* + Cy.81AE

+ (y2 + C)s (- UAD2 - UB2E)

+ (V2 + GT (~ ^A2E2 - 1S0ABDE + 36J32D2)

+ ... .

0= (x2+C'y. SIA'E'

+ ....

En prenant pour le moment tous les coefficients = 01, chaque equation contiendra un

seul terme de l'ordre le plus bas 02, et en negligeant les autres termes, les equations

deviendront simplement

y*.AE=0, a?.A'E' = 0'9

il y a ainsi sur la droite x = 0 quatre sommets libres donnes par Fequation E= 0 ;

et de meme sur la droite y = 0, quatre sommets libres donnes par l'equation E' — 0 ;

done quatre sommets fixes au point x = 0, y ~ 0. Les sommets libres sur les droites

x = 0 et y — 0 sont les intersections de la quartique par ces deux droites respectivement.
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Mais, au contraire, prenons b, /, Z, i, c = 02, les autres coefficients e^ant = 01. On a

d'abord A, B, D = 01, E=02', la premiere equation se re'duit a

27AyQ(3Ey2-2D2) = 0,

ce qui donne, sur la droite x — 0, six sommets libres determines par l'equation

3%2 - 2D2 = 0.

On a depuis A'=0*, B', D\ E^O1; la seconde equation est done

27E'x6(3A/x2-2B'2) = 0;

mais ici

E' = (a, j, m, g, c\x, z)\ = x (ax3 + 4gx2z + Qmxz2 + 4#23),

a cause de c = 02 ; et, de plus,

3A'x2 - IB'2 = Sbx2 - 2 (kx +fz)\ = (36 - 2&2) #2,

a cause de/=02; done l'equation se reduit a

x9 (ax3 + 4<jx2z + 6mxz2 + 4<gz3) = 0,

et il y a sur la droite y = 0, trois sommets libres determines par l'equation

ax3 + 4<jx2z + Qmxz2 + 4*gz3 = 0.

Remarquons que la droite y = 0 rencontre la quartique dans les quatre points

donnes par liquation E' = 0, e'est-a-dire un point infiniment pres de (x = 0, y = 0) et

trois autres points, lesquels sont precisement les trois sommets libres sur la droite y = 0.

II y a de plus trois sommets fixes au point (x = 0, y = 0).

Conclusion. II y a ainsi une courbe quartique penultieme de x2y2 = 0, avec neuf

sommets libres, trois sur Tune des deux droites (disons la droite y = 0) et qui sont

trois des intersections de la quartique par cette meme droite (la quatrieme intersection

etant infiniment pres du point x = 0, y = 0), six situes a volonte sur Fautre droite

x = 0, et trois sommets fixes a l'intersection des deux droites.

On peut se figurer une telle courbe quartique : elle peut consister en trois ovales

aplaties plus une trigonoide (savoir, figure fermee avec trois angles saillants et trois

angles reentrants) retrecie ; Tune des ovales coincide a peu pres avec la droite y — 0,

les deux autres a peu pres avec la droite x = 0 ; la trigonoide entoure le point

x = 0, y = 0, de maniere que les angles reentrants, tres-approche's de ce point, soient

les trois sommets fixes : mais il nest pas facile d'en faire un dessin.

Je considere le systeme des courbes quartiques, qui satisfont chacune aux (14 — 1=)13

conditions que voici : toucher deux droites donnees 1, 2 en des points donnes A, B ;

passer par deux points donnas (7, D ; toucher sept droites donnees 3, 4, . . . , 9. Prenons

y—0 pour la droite AjB, et x=0 pour la droite CD: il y aura dans le systeme

une courbe quartique penultieme de x2y2 = 0, laquelle compte sept fois au moins ; cette

courbe penultieme est censee toucher les droites 1, 2 dans les points donnes A, B, et

Tune quelconque des sept droites a son intersection avec la droite y = 0 (AB) ; les

autres six droites a leurs intersections avec la droite x = 0 (CD). Cette courbe penul

tieme entre done dans la theorie des caracteristiques d'un tel systeme de courbes

quartiques.
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516.

SUR UNE SURFACE QUARTIQUE APLATIK

[From the Gomptes Rendus de VAcademie des Sciences de Paris, torn, lxxiv. {Janvier—

Juin, 1872), pp. 1393—1395.]

Il y a evidemment pour les surfaces une the'orie analogue a celle des courbes

aplaties: la penultieme d'une surface PaQ^... = 0 est, pour ainsi dire, composee des

surfaces P = 0, Q = 0, &c, plus des lignes courbes ou aretes, lesquelles correspondent

aux sommets d'une courbe aplatie (*) ; par exemple une surface quadrique peat se

reduire a P2 = 0, un plan deux fois, plus une conique qui est Tarete de la surface

aplatie. Pour les surfaces quartiques, un exemple assez inte'ressant se rencontre dans

le beau Memoire de M. Casey, " On cyclides and spheroquartics," (Phil. Trans., vol. clxi.

pp. 585—721, 1871). L'auteur, d'apres M. Darboux, nomme cyclide la surface quartique

generale qui a pour ligne double le cercle a Finfini {surface quartique anallagmatique

de M. Moutard), et spheroquartic la courbe dmtersection d'une sphere par une surface

quadrique quelconque ; et il est conduit a considerer la spheroquartique comme cas

particulier de la cyclide. J'aime mieux dire qu'il y a une cyclide aplatie ayant pour

arete une courbe spheroquartique.

Voici comment on y arrive : la cyclide est l'enveloppe des spheres dont chacune

a son centre sur une surface quadrique nommee focale, et coupe orthogonalement une

sphere fixe, nommee sphere d'inversion, disons la sphere S. Cela etant, en envisageant

la focale comme une surface r^glee, chaque droite sur la surface donne lieu a une

infinite de spheres, qui passent toutes par un meme cercle. En supposant que la

droite coupe la sphere S aux points 0, 0', ce cercle est ce que j'appelle Yanticircle

des points 0, 0', savoir, le plan du cercle est perpendiculaire a la corde 00; au

point central M, et le rayon en est egal a i OM (= i O'M), de maniere que le cercle

est reel ou imaginaire, selon que les points 0, 0' sont imaginaires ou reels : toute

1 Voir Gomptes Rendus, t. lxxiv. p. 708, [515].
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sphere ayant son centre sur la droite 00', et coupant orthogonalement la sphere 8,

passe par le cercle dont il s'agit, disons le cercle L. On voit sans peine que chaque

point du cercle L est situe sur la cyclide. II y a done sur la cyclide une serie infinie

single de cercles L qui correspondent un a une aux directrices de la surface focale; il

y a de meme une seVie infinie single de cercles LI qui correspondent un a une aux

generatrices de la surface focale. La cyclide est le lieu des cercles de Tune ou l'autre

serie; chaque cercle de la premiere serie coupe en deux points opposes chaque cercle

de l'autre serie, mais deux cercles de la meme serie ne se rencontrent pas, &c.

Or, en supposant avec M. Casey que la surface focale se reduise a un cone, les

deux series de cercles se reduisent a une seule serie de cercles L, dont chacun est

situe sur la sphere, centre le sommet du cone, qui coupe orthogonalement la sphere

8, disons la sphere T. On a sur la sphere T la serie des cercles Z, lesquels ont pour

enveloppe une courbe spherique, la spheroquartique de M. Casey. Les points des

difTerents cercles L ne remplissent pas la surface spherique entiere, mais seulement une

partie de cette surface, limitee par la courbe spheroquartique. Cela etant, on pourrait

dire que la surface cyclide se reduit a la sphere T deux fois, mais il vaut mieux

la considerer comme une cyclide aplatie ayant pour arete la courbe spheroquartique.

La spheroquartique, considered comme courbe sur une sphere T, est donnee (comme

le remarque M. Casey) par une construction tout a fait analogue a celle pour la cyclide

comme surface dans l'espace, savoir (en conside'rant toujours les courbes spheriques sur

une meme sphere), la spheroquartique est Tenveloppe des cercles qui ont leurs centres

sur une sphero-conique et qui coupent orthogonalement un cercle fixe. Le cdne, sommet

le centre de la sphere, qui passe par la spheroquartique, est de l'ordre 4, avec deux

droites doubles (la classe est done = 8) ; j'ajoute qu'il touche quatre fois la sphere-cone

x2 + y2 + z2 = 0, ayant le meme sommet Q-).

M. Casey dit que le cone quartique a 16 droites focales: cela a besoin d'expli-

cation. Le cone quartique et le sphere-cone ont en commun 8 x 2 = 16 plans tangents,

y compris les plans tangents selon les 4 droites de contact, chacun deux fois; hormis

ceux-ci, il y a done 8 plans tangents communs. L'intersection de deux quelconques

de ces 8 plans est droite focale du cone quartique : done \ (8 x 7), = 28 droites focales.

Mais je trouve que les 8 plans tangents forment deux systemes de 4 plans chacun :

les 4 points de Fun de ces systemes coupent les 4 plans de l'autre systeme dans

16 droites, lesquelles sont les droites focales de M. Casey ; il y a de plus 6 + 6

droites, dont chacune est Fintersection de deux plans du meme systeme. Je nai pas

cherche les distinctions qui. doivent exister entre ces difTerents systemes de droites

focales.

1 En general, en consid6rant une courbe quelconque sur une surface S, et un point 0 quelconque, les

deux cones, sommet 0, dont Fun passe par la courbe et l'autre est circonscrit a la surface, se touchent

partout oit ils se rencontrent: autrement dit, ils n'ont que des droites d'intersection doubles ou de contact.
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517.

SUE LES SURFACES DIVISIBLES EN CARRES PAR LEURS

COURBES DE COURBURE ET SUR LA THEORIE DE DUPIN.

[From the Comptes Rendus de VAcademie des Sciences de Paris, torn, lxxiv. (Janvier-

Juin, 1872), pp. 1445—1449.]

Soient © une fonction arbitraire de h, k ; x, y, z des fonetions de h, k telles que

2©

2©

2©

cZ© dx

dk dh '

d?x d% dx

dhdk dh dk

d2y __d® (fy_d® ^ _ 0

dhdk dh dk dk dh '

et que, de plus,

d2z

dhdk

c?© dz

dh dk

d® dz^

dk dh

■o,

dx dx dy dy dz dz _

dh dk dh dk dh dk~ '

en eliminant h, k} on a, entre x, y, z} Fequation V = 0 d'une surface. Je dis que les

equations h = const., k = const, determinent les deux systemes des courbes de courbure

de cette surface, et, de plus, que cette surface est divisible en carres par ses courbes

de courbure.

En effet, les Equations doiment

_. d
© —

'(dxV fdyV /dz\>-

\dh) + \dh) \dh) _

d®

dk dk

ce qui implique

dx^2

dh, + {dh) +[dh)
o,

Afey fdyV /,

\dh) + \dh) + [<
®H,
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ou H est fonction de h seulement ; et Ton trouve de meme

ou K est fonction de k seulement; done en ecrivant, comme a l'ordinaire,

da2 + dy2 + dz2 = Edh2 + 2F dh dk+ Gdk2,

cette expression se reduit a

dx2 + dy2 + dz2 = <& (H dh2 + K dk2),

ce qui fait voir que la surface est divisible en carres par les courbes

h = const., k = const.

Les equations donnent aussi

= 0;

265

dx dy dz

dhdh ' dh '

dx

dk '

dy dz

dkdk '

d2x d2y d2z

dhdk' dh dk ' dhdk

et, cela dtant, Tequation diffe'rentielle des courbes de courbure se reduit, comme je vais

le montrer, a dhdk=0; on a done h = const., k = const., pour les equations des courbes

de courbure de la surface.

Pour cela, en considerant x, y, z comme des fonctions donnees de h, k, j'ecris,

comme a l'ordinaire,

dx dx , d2x d2x , d2x ,,

dh
= a,

dk
= a,

dh2 dhdk dk2

et de m&me b, V, ft, ft', ft", et c, c', y, y, y" pour les coefficients differentiels de y et z

respectivement. J'ecris aussi

A = be' — b'ct B = ca' — c'a, G—aV — a'b,

E=a2 + a'2 + a"2, F=aa' + W + cc', G = a'2 + b'2 + c'\

Liquation dififerentielle des courbes de courbure est

dx , dy , <iz = 0.

J. , B , (7

A4, dB, dC

Le premier terme de ce determinant est dx (B dC — G dB), savoir :

(adh + a'dk) { B [{aft' - bo! + b'a - a'ft) dh + (aft" - &a" + b'a' - o^) efflfe]

- G [(cat - ay' + a'y - c'a) dh + (col" - ay" + a'y' - c'a' ) dk]},

a viii. 34
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ce qui se reduit tout de suite a

(adh + a'dk) { [a (Aa' + B& +. Cy' ) - a (Aa + Bfi + Cy )] dh

- [a (Aa" + 50" + Cy") - a' (4a' + B& + Or/)] dk] ;

en formant les expressions analogues du second et du troisieme terme, et en prenant

la somme, Fequation devient

[E(Aaf + 5/3' + Cy')-F(Aa + 5/3 +Cy)]dh*

+ [#(4a" + 5/3" + <7y") - 0 (4a + 5/3 + Cy )] rfA ^

+ [F(Aa" + 5/3" + Cy") - © (4a' + 5/3' + cy)] d*8 = 0,

ou, ce qui est la meme chose,

dk2, -dhdk, dh2 = 0:

E, F, G

Aa + 5/3 + C7, Aot + Bff + Oy', Aa" + 5/3" + C7"

celle-ci est l'equation differentielle des courbes de courbure d'une surface quand les

coordonnees x, y, z d'un point de la surface sont donnees comme fonctions de deux para-

metres h, h

En supposant F=0, l'equation se reduit a

(Aa' + B/3' + Cy' ) (Edh* - Gdk*)

+ [(Aa" +BP' + Cr/')E-(Aa + BP + Cy)ff]dhdk = Q;

et en supposant de plus Aa' + Bj3' + Cy = 0, l'equation se reduit simplement a dhdk = 0;

mais cette equation 4a' + 5/3' + Cy = 0, savoir

ou

a , 6, c = 0

a', &', c'

^ /3', 7

dx

dh dh 5a

dx dy dz

dk : dk Jk

d2x d}y <fe

= o,

dh dk ' eft c?& ' dh dk

et aussi F= 0, subsistent dans le cas actuel ; et nous avons ainsi dkdh — 0 pour

equation differentielle des courbes de courbure.
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On veriiie sans peine les equations fondamentales, en prenant © = h — &,

- (c — a) (a — b) x2 = a (a + h) (a + k),

- (a- &)(& - c)2/2 = b (b + A) (6 + A?),

- (6 - c) (c - a) £2 = c (c + h) (c + &) ;

/V>2 ^y2 £<2

ce qui donne les courbes de courbure de l'ellipsoide '— + K- H— = 1 ; Fellipsoide etant,

Ct 0 c

comme on sait, une surface divisible en carres par des courbes de courbure ; mais je

n'ai pas encore cherehe d'autres solutions.

Je remarque que l'equation pour x peut s'ecrire sous la forme

d /'I dx\ d (\ dx

dh V© dk) + dk

1^ = 0-
Qdh) J

done, en posant

on trouve

ce qui donne

"dh

dx

1 dx\ __ d 1 1

®dk)~dk [®

d2n

dh) dh dk '

_ (fi)

dh dh '

dx ^ dQ.
— = — ©
dk dk ?

dk\ dh)^dh\ dk) u>

equation pour £1 de la meme forme que celle pour x.

On deduit une demonstration tres-simple du theoreme de Dupin. En considerant

comme auparavant (x, y, z) comme des fonctions donnees de (A, k)y le point (x, y, z)

sera situe sur une surface, et les conditions pour que les courbes de courbure soient

h — const., k = const, seront

dx dx dy dy dz dz

dh dk dh dk dh dk '

dx dy dz

dhdh ' dh '

dx dy

dk '

dz

dkdk '

d2x d2y

dhdk J

d2z

dhdkdh dk '

= 0.

Cela etant, en introduisant un troisieme parametre I, soient h, k, I des fonctions

donnees de (x, y, z), ou reciproquement (x, y, z) des fonctions donnees de (h, k, I). On

34—2
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a ici les trois systemes de surfaces h — const., k — const., 1= const., et les conditions

pour que ces surfaces se coupent orthogonalement peuvent s'ecrire sons la forme

dx dec dy dy dz dz __ -

dk dl dk dl dk dl '

dx dx dy dy dz dz __ ft

dl dh+dl dh^dl dh~ '

dx dx dy dy dz dz _

dh dk dh dk dh dk

On a done

dx dy t dz _ dy dz dz dy # dz dx dx dy t dx dy dy dz

dl ' dl dl dh dk dh dk ' dh dk dh dk ' dh dk dh ' dh'

Pour abreger, j'ecris

et de meme

dx dx dy dy dz dz _ f, , ..

dh dk +dh dk +dh dk -lA-«J>->

dx d2x dy d2y dz d?z _ r, , n

dh dkdl dh dkdl dh dkdl

Les conditions donnees sont ainsi

[k.l] = 0, [l.h]=0, [h.k] = Q;

en differentiant ces equations par rapport a h, k, I respectivement, on obtient

[k.lh] + [l.hk] = 0,

[l.kh] + [h.kl] = 0,

[h.M] + [k.lh] = Q;

done

[h.M]=:0, [£.//i]=0, [l.kh~] = 0.

Mais l'equation [h . k] = 0 et Tequation [I . hk] = 0, en substituant dans eelle-ci les valeurs

de ~tj , -7T , -rj , sont precisement les conditions pour que la surface I = const, soit

coupee par les autres surfaces selon ses courbes de courbure : done le theoreme.
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518.

SUE LA CONDITION POUR QU'UNE FAMILLE DE SURFACES

DONNEES PUISSE FAIRE PARTIE D'UN SYSTEME ORTHOGONAL.

[From the Gomptes Rendus de VAcademie des Sciences de Paris, torn. lxxv. (Juillet—•

Dtcembre, 1872), pp. 177—185, 246—250, 324—330, 381—385, 1800—1803.]

[Pp. 177—185.]

1. SoiT p=f(oc, y, z) l'e'quation d'une famille de surfaces qui fait partie d'un

systeme orthogonal. On sait que p satisfait a une equation a differences partielles du

troisieme ordre, et en suivant la route tracee par M. Levy, dans son excellent "Memoire

sur les coordonnees curvilignes orthogonales " (Journal de VEcole Polytechnique, t. xxvi.,

pp. 157—200, 1870), je suis parvenu a trouver cette equation.

2. Je remarque que le theoreme fondamental de M. Levy est, en effet, assez

evident. Considerons une surface de la famille p : soit P un point quelconque de cette

surface, et PT, PTlf PT2 la normale et les tangentes aux deux courbes de courbure par

le point P. Passons, suivant la normale au point P' de la surface consecutive p -f dp, et

soient P'T', P'T-[, P'T2 la normale et les tangentes aux deux courbes de courbure par

le point P'. Or, si les surfaces p forment partie d'un systeme orthogonal, evidemment

PP; sera Element d'une courbe de courbure d'une surface px et aussi dune surface p2

des deux autres families du systeme orthogonal, et PT1, PfT( seront les normales a

deux points consecutifs de cette courbe de courbure de la surface px: et de meme

PT2 et P'T2' seront les normales a deux points consecutifs de cette courbe de courbure

de la surface p2. Done P2\ et PT/ se rencontrent; et de meme PT2 et P'T2 se

rencontrent. En se souvenant que PTly PT2 sont perpendiculaires Tune a Tautre, et

de meme P'T^, P'T2, on voit sans peine que les deux conditions se reduisent a une

seule. Eeciproquement, si PTly P'T^ se rencontrent (ou, ce qui est la meme chose,

PT2 et P'T2), la famille p fera partie dun systeme orthogonal; ce qui est le theoreme

de M. Levy.
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3. Soient (X, F, Z) les fonctions derive'es de p du premier ordre ; (a, b, c, f, g, h)

celles du second ordre ; {a, b, c, f, g, K h j> k, I) celles du troisieme ordre, savoir :

(X, 7, Z) = (da, dy,dz)P,

(a, b, c, f, g, h) = (3iC2, dy2, dz\ dydz, dzdx> dxdy) p,

(a, 6, C, /, g, h, i, j, k, Z) = (V, dy*, dZ\ dy%, dZ*dX, djdy, dydZ\ dZdX\ dXdy\ dXdydZ)P]

soient de plus

A = 2(Zh-Yg), P=X(c -h) + Fh-^g,

B = 2 (Xf -Zh ), ff = F(a - c) + Zf - Xh,

0 = 2(Fg-Xf), ff=£(h-a) + Xg- Ff,

valeurs qui satisfont aux equations

^ + JB + C = 0 et (A, B, C9 F, G} H\X, F, Zy = 0.

Alors les tangentes PT1} PT2 sont donnees par les equations

(A, B, 0, P, (?, #$*, y, *)2 = 0,

X/r+F/ + ^= 0,

et en partant de ces equations, mais en supposant que pour le point P les valeurs

de X, F soient X = 0, F=0, M. Levy obtient comme condition de l'intersection dont

il s'agit

\dx dy J dxdy Z dx \dy2 dx1) Z '

■ou, ce qui est la meme chose

2fg(a-b) + 2h(f*-gO-i?[(/-j)h+Z(a-b)] = 0;

savoir: cette Equation est ce que devient l'equation cherchee du troisieme ordre en y

ecrivant X = 0, Y— 0.

4 Je passe a la recherche de Fequation g^n^rale ; pour cela (X, Y, Z) denotant

comme auparavant, nous pouvons considerer ces quantites comme les coordonnees

(mesurees du point P comme origine) d'un point sur la normale PT; soient de meme

X1? Y1} Zx les coordonnees d'un point sur la tangente PTX et X2, Y2, Z2 les

coordonnees d'un point sur la tangente PT2. II s'agit seulement des valeurs relatives

de ces coordonnees; et celles de X1} Y1} Z1 et X2, F2, Z2 sont les valeurs de (#, y, z)y

donnees par les equations

{A, B} C, F, G, H^x, y, zf=0,

Xx+Yy+Zz = Q.
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Ces equations impliquent X1X2-\-Y1Y2 + Z1Z2 — 0, et en se rappelant une equation,

deja mentionnee, on a le systeme

(A,...t£x, r,zy = o,

(^,...$Z1, Ylt ^)2 = 0,

(A,... ix,, 72, z,y = o,

X&+Y& + Z& = 0,

XX, + YYX + ZZ, = 0,

XX, +YY2+ZZ2 = 0.

L'origine etant quelconque, prenons (x, y, z) pour coordonne'es de P, et x + Bx, y + By, z + Bz

pour coordonnees de P' ; nous avons Bx : By : §z = X : Y : Z ; et comme il ne s'agit

que des valeurs relatives, nous pouvons omettre un faeteur infinitesimal commun, et

e"crire simplement Bx, By, Bz = X, Y, Z. De mtkne, en supposant qu'une fonction quel

conque u de (x, y, z) devient u + Bu, en passant du point P au point P', la valeur

du Ciii dm

de 8u sera X -=—hF-r+'^T-, ou, ce qui est la meme chose, nous aurons

clog ^y ^^

8 = X ~t- + Y-J- + Z t-. Dans tout ce qui suit, 8 aura cette signification.
firm (Li/ " ^dx dz°

5. Cela etant, si pour un moment nous prenons £, tj, £ pour coordonnees courantes,

et 0 pour un parametre arbitraire, les equations de PT seront

^ = x + 0Xl9 v = y + 0Yl9 £ = z + 0Zly

et si cette droite rencontre PT1} alors en prenant f, rj, f pour les coordonnees du

point d'interseetion, nous aurons 0 = 8oc + X,80 -f- 08Xlt ... : ou en eliminant 80 et 0>

0 = 8x, Xl9 8X,

8y, Flf 8Y,

8z, Z1 , 8Z1

X, Xlf 8X±

F, Flf ST,

Z , Zx, 8ZX

Mais nous avons X2 : Y2 : Z2 = YZ, - ZYX : ^Zx - XZ, : XFX - YX, : done cette

equation devient X28XX +Y2SY1 + Z28ZX = 0. Or nous avons 8 (XXX2 +Y1Y2 + ZLZ2) = 0 ;.

liquation trouvee peut done s'ecrire sous la forme plus symetrique

X28X, + Y28Y, + Z28Z, - (Z.8Z, + F.SF, + Z,8Z2) = 0,

equation qui exprime la condition pour Intersection des tangentes PT1} P'T-l (ou

PT2, FTj).

ou, ce qui est la meme chose,
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6. Dans la demonstration prece'dente, je me suis servi du theoreme de Dupin;

mais il convient de remarquer qu'en partant du systeme orthogonal, et denotant par

X, Y, Z\ Xlt Yl9 Z^. X2, F2, Z2 les derive'es de p, pl9 p2} respectivement, il] serait

possible de deduire cette meme Equation des seules equations

XX1+YY1 + ZZ1 = 09

XX2+YY2 + ZZ2=0,

X1X2+Y1Y2 + Z1Z2 = 0.

En effet, l'equation fat demontree de cette maniere par R. L. Ellis, dans une

demonstration du theoreme de Dupin, publiee dans l'ouvrage de Gregory {Examples of

the processes of the differential and integral calculus; Cambridge, 1841). Les premieres

deux equations donnent X : Y : Z=^YYZ2—Y2ZX : ZYX2 — Z2X1 : X{Y2 — X2Y1, on a done

Texpression

(YXZ2- Y2Z,)dx + (Z,X2 - Z2X,) dy + iXJT.-X.Y,) dzy

integrable par un facteur; ce qui donne

(Y& - Y&) \~ (X, 72 - x.ro -± (^X, - Z2X^ . . . = 0.

Le terme en { } est egal a

' dXx T7. dX1 „ dX-A fv dX2 v dX2 „ dX2\
X^dx^Y2~^ + Z2~di)^[Xl'dx + Yl~dy+A^z~)

_x fdX1 + dY1 + dZ}\x (dX2+dY2 + dZ2\

2\dx dy dz J 1\dw dy dz )

et la somme qui correspond a la deuxieme ligne de cette expression s'evanouit identi-

quement; la premiere ligne peut s'ecrire sous la forme B2X1--B1X2, done, en retablissant

X, Y, Z au lieu de YYZ2 — Y2Zl9...y la condition devient simplement

X (SaX1 -W+ Y (S2Y, - ^7,) + Z (KA - S,Z2) = 0.

Mais nous avons

jy y dX1 v dX1 y dX1 ~ dXx ^ dY1 „ dZ1

cs v -xr dX2 v dX2 v dX2 y dX2 v dY2 „ dZ2

et ainsi B2X1 + B^2 = -tj (lA +Y1Yi + ZXZ2) = 0 ; e'est-a-dire BZX2 = - S2Xlf et de meme

8^2 = — 82Yl9 h1Z2 — — h2Z1) et l'equation trouvee se reduit a

XS2X, + Y82Y1 + ZS2Z1=0> ou X8,X2 + YS,Y2 + ZB1Z2 = 0;

on a de meme

X1SX2 + Y1SYa + Z,SZ2 = 0, ou XAX + Y&Y+ Z&Z = 0,

et

XAX + Y&Y+ Z&Z = 0, ou X2BX, + Y2SY, + Z£ZX = 0,
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et ainsi l'equation dont il s'agit

X£Xi + Y2SY, + Z2BZ, - (XJX* + YM* + Z£ZJ = 0.

On ne savait pas auparavant la signification geometrique de cette equation.

7. Dans la question actuelle, partant de cette equation, je rappelle que les valeurs

de X, Y, Z, Xlt F1( Zx sont celles de (x, y, z) dormees par les Equations

(A, B, G, F, G, Hfx, y, zf=Q, Xx + Yy + Zz = 0.

En supposant que ces equations donnent

X1 : Y1 : Z, = U + U' : V+ V : W+ W,

X2: F2 : Z2=U-U' : V- V : W- W,

la condition devient

usu'+rBr+WhW-(U'8U+v'sr+W'BW)=o.

8. Pour effectuer la reduction de cette formule, nous avons besoin de plusieurs

formules subsidiaires. J'ecris

(BC-F\ GA-G\ AB-H\ GH-AF, HF-BG, FG-GHQX, Y, Zf

= (21, 35, <&, s, ®, £$x, Y, zy = -<f>,

et je denote par (a), (b), (c), (f), (g), (h) les coefficients de \2, . . . dans la fonction

(A, B, C, F, G, H^vY-pZ, XZ-vX, pX -XY)\

savoir, j'ecris

(a)= BZ* +CY* -2FYZ,

(b)= CX* + AZ* -2GZX,

(c) = AY' +BX* -2HXY,

(f)=-AYZ-FX* +GXY+HXZ,

(g) = -BZX + FXY-GY* +HYZ,

(h) = - CXY+ FYZ +GYZ - HZ*,

oii je remarque qu'en vertu des valeurs de A,... nous avons

(a) + (b) + (c) = 0,

Cela etant, nous avons les identites

[(a), (h), (g)](X, T,Z) = 0,

[(h), (b), (f)](X, Y, Z)=*0,

Kg), (f), (c)](X, r,Z) = 0,

[(b) (c) - (f)*, (c) (a) - (gf, (a) (b) - (hf, (g) (h) - (a) (f), (h) (f) - (b) (g), (f) (g) - (c) (h)]

= -{X\ Y\ Z\ YZ, ZX, XY)4>,

o. vin. 35
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savoir, (b) (c) - (f)2 = - X2<£, . . . . De plus

(A, H, (?)[(a), (h), (g)] = -X(2lX + ^F+®^)-^

(H, B, F) [(a), (h), (g)] = - F(21X + £F+ ©if),

(©, ^ 0)[(a), (h), (g)]=-S(SlX + £7+®£),

(4, ZT, G)[(h),(b), (f)] = -Z(^Z + 55F + gZ),

(#, B, F)[(h), (b), (f)] = -r(^Ii8F + ^)-f

(G, ^, 0 ) [(h), (b), (f)] = -Z(&X + %Y+%Z),

(A, H, Q)[(g), (f), (c)]=-X(($X + %Y + (SZ),

(H, B, F) [(g), (f ), (c) ] = - Y(®X + SF + SZ),

((?, JP, (7) [(g), (f ), (c)] = -Z(®X + $Y + ®Z)-cf>;

aussi

-d. (a) + B (b) + (7 (c) + 2F(i) + 2G (g) + 2E(h) + 2</> = 0.

Multipliant cette derniere equation par Tun quelconque des coefficients (a),..., et redui-

sant, on obtient six equations; mais je forme seulement celle qui se derive de (g),

savoir, nous avons

(g) [A (a) + B (b) + G (c) + 2F (f) + 2G (g) + 2H (h)]

+ 20 (- AZJT + FXY - GFa + HYZ) = 0.

Ici la seconde ligne est egale a

25 [(f) (h) - (b) (g)] - 2f[(f) (g) - (c) (h)] + 2G [(c) (a) - (g)*] - 2tf [(g) (h) - (a) (f)],

et lequation est

A (a) (g) + B [2 (h) (f) - (b) (g)] + (7(c) (g) + 2F(c) (h) + 2G (c) (a) + 2tf (a) (f) = 0.

Des equations (g) (h) — (a) (f) = — YZ<j>, (h) (f) — (b) (g) = — ZX<j>, multipliant par

-X, -Y et ajoutant, nous obtenons - (h) [(g) X + (f) F] + (a) (f) X + (b) (g) 7= 2XYZ,

(a) (f) X + (b) (g) F + (c) (f) Z=2XYZ

9. Je reviens a la question principale. A moins de se servir de quantites

arbitraires qui rendraient les formules plus complexes, il n'y a pas d'expression

symetrique pour les valeurs de X± : Y1 : Z± et X2 : F2 : Z2 : et ainsi j'ecris

X, : F : ^ = (a) : (h) + Z^ : (g)- FV£

X2 : F2 : Za = (a) : (h) - Z^ : (g)+ Fv^,

et la condition devient

[(h) 82 - ZB (h) - (g) 8 F+ FS (g)] V^ + [(h) £ - (g) F] 8 V^ = 0,

ou, puisque 8 V<£ =—— S<£, ceci est

2 [(h) SZ - £8 (h) - (g) SF+ F8 (g)] 0 + [(h) Z - (g) F] S</> = 0,

equation qui contient, • comme nous le verrons, le facteur (a) ; et, en omettant ce

facteur, lequation deviendra symetrique.
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J'ecris

S(g) = A(g) + S/(gX 8(h)=A(h) + 8'(h), ty = A0 + 8>,

en denotant par A les parties qui dependent de BX, BY, BZ, et par B/ celles qui

dependent de BA, La fonction a droite est ainsi la somme des deux parties

Q, = 2 [(h) BZ - Z& (h) - (g) BY + FA (g)] <f> + [(h) Z - (g) F] A</>,

fl, = 2 [ - ZB' (h) . + FS' (g)] £ + [(h) Z-(g)Y] B'<f>,

ou. cette seconde partie £12 est la seule qui contient les derivees de p du troisieme

ordre.

10. Je reduis l'expression de flj. Nous avons

A (h) = (- GY + FZ) BX + (-GX + GZ )BY + (FX + GY- 2HZ) BZ,

A(g) = (-BZ + FY)BX + (FX-2GY + HZ)8Y + (-BX + HY ) BZ,

et de la

ifi1== 0 {[(C- 5) FZ +.F(F2 - Z*)] BX+ [- 4X£ + G (F2 + £2)] SF+ [^Z^+ iT (F2 + £2)] 82}

+ U(VZ-(g)Y-\A<t>,

ou la derniere ligne est egale a

[(g) F- (h) Z] [(21Z + £ F+ @Z) BZ + (£X + SB 7 + gZ) S£ + (®Z + g F + ®Z) &£]..

Ici le coefficient de BX est egal a

(O - B) [(a) (f) - (g) (h)] + F(g)2 - (a) (c) - (h)2 + (a) (b)]

+ [(g) F- (h) Z] (SIX + £F+ ®Z),

o"u la seconde ligne est egale a

-(g) (#, B, if) [(a), .(b), (g)] + (h)(G, ^ 0)[(a), (h), .(g)],

et ainsi l'expression entiere se reduit a

(a) {_ (B - G) 6 + i^[(b) - (c)] - # (g) + G (h)}

c'est-a-dire le coefficient de BX contient le facteur (a).

Le coefficient de BY est

[-AXZ-F(Y* + Z>)]<l> + [(g)Y-(h)Z](§X + %Y+%Z)9

ou la seconde partie est

(g) {->-(#, B, F)[(h), (b), (f)]}+(h)(G, ^, C)[(h), (b), (f)];

on a done les termes

-4,[{g) + AZX+G(7' + Z%

c'est-a-dire

- <f> [(A - B) ZX + FXY+ GZ* + HYZ],

35—2
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■et 1'expression entiere est ainsi egale a

(A - B) [(h) (f) - (b) (g)] + F [(f) (g) - (c) (h)] + G [(a) (b) - (h)*]

+ tf [(g)(h)-(a)(f)]-(g)(#, B, F)[(h), (b), (f)]

+ (h)(G,F,0)[(h), (b), (f)],

c'est-a-dire a

A [(h) (f)] - (b) (g) - B (h) (f) + (7(h) (f) + F[(h) - (c)] (h) + G (a) (b) - #(a) (f),

ou enfin a

A-(h)(g) + B-2 (h) (f) + F [(b) (c)] (h) + G (a) (b) + tf - (a) (f).

J'ajoute la quantity nulle

A (a) (g) + B [2 (h) (f) - (b) (g)] + (7(c) (g)

+ Jf2(c)(h) + G2(c)(a) + .ff2(a)(f),

et, en re'duisant au moyen de (a) + (b) + (c) = 0 et A + B + (7=0, le coefficient de BY

devient

= (a) {- (G - A) (g) + ff (f) + 0 [(c) - (a)] - F (h)},

et, de meme, le coefficient de BZ est

= (a) {- (A - B) (h) - G (f) + F (g) + H [(a) - (b)]},

ce qui acheve le calcul de ft1#

[Pp. 246—250.]

11. Pour trouver il3, nous avons

8' (g) = - ZX8B + YX8F- Y*8G + YZ8H,

8' (h) = - XY80 + XZ8F+ YZ8G - Z*8H,

8'<f> = - [(a) 8A + (b) 8B - (c) 8(7 + 2 (f) 8F+ 2(g) 8G + 2 (h) &H],

et de la

ns = 24>[-XYZ(8B-8C) + X(Ys-Z>)8F-Y(Ys + Z*)SG + Z(Ys + Z*)8H]

+ Kg) T - (h) £] [(a) 8A + (b) 85 + (c) SO + 2 (f) 8F+ 2 (g) 80 + 2 (h) Sfl],

ce qui se reduit tout de suite a

- [X (a) (f) + Y (b) (g) + i? (c) (h)] (SB - 8(7)

+ [(g) F- (h) ^] [(a) SA + (b) 85 + (c) 8C]

+ 2[Y(c)(h)-Z(b)(g)]8F

+ 2(a)[F(c)-£(f) ]SG

+ 2(g)[Y(i)-Z(b) ]SiT.

Les premieres deux lignes se reduisent facilement a

(a) [- X (/) + Z(h)] (8B - 8C) + (a) [(g) Y- (h) Z] (8A - 80),
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et la troisieme ligne a 2 (a.) [Z (g) — X (c)] SF. Done 1'expression entiere contient le

facteur (a), et nous aurons

fl2 : (a) = - [X (f) + Z (h)] (SB - SG)

+ [Y(g)-Z(h)](8A-8C)

+ 2[Z(g)-X(c)]SF

+ 2[Y(c)-Z(i)]SG

+ 2[Y(f)-Z(b)]SH,

expression qui se reduit sans peine a la forme sym^trique sous laquelle je la presente

dans l'equation finale.

12. Cette equation est fli + ^^O; savoir, en omettant le facteur (a), nous avons

2 [{F [(b) - (c)] -(B-G) (f) -H(g) + G (h) } SX

+ {G[(c)-(&.)]+H(f)-(G-A)(g)-F(h) \8Y

+ {H [(a) - (b)] - G (h) + F (g) -(A-B) (h)} SZ]

- X (f) (SB - SO)

-Y(g)(SG-SA)

-Z(h)(SA-SB)

+ {X[(b)-(c)]-Y(h) + Z(g)}8F

+ {X(h)+Y[(c)-(a,)]-Z(i)}SG

+ {-X(g)+Y (f) + Z [(a) - (b)]} SH = 0.

On se rappelle que £ signifie

doc dy dz

13. Pour de'duire de la le rfeultat de M. Levy, j'ecris d'abord X = 0, F=0; nous

avons alors

[(a), (b), (c), (f), (g), (h)] = (5#, AZ\ 0, 0, 0, -HZ*),

et l'equation devient

2[(AF-GH)SX + (-BG + FH)SY] + HZ(SA-SB)-Z(A-B)SU = 0;

mais ici

(A, B, G, F, G, H) = [2Zh, -2Zh, 2h, 0, -Zg, Zi, -Z(&-b)],

et l'equation devient

2 {[f (a - b) - 2gh] SX + [g (a - b) + 2fh] 87} - (a - b) (SA - SB) - 4>hSH = 0.
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Mais nous avons 8X — gZ, SY—fZ, 8Z=cZ, et, de plus,

8A = 28Zh - 2gSF = 21Z2 + 2 (ch - fg) Z,

SB = 2fSX - 28Zh = - 21Z* - 2 (ch - fg) #,

8if=-S^(a-b) + gSX-fSF=(/-j)^ + (-ac + bc-f2+g2)^;

Fequation est done

4fg(a-b) + 4(f2-g2)h-(a-b)[4^ + 4(c^^

ou enfin

2fg(a-b) + 2h(f2-g2)-i?[(/-j)h + Z(a-b)]=0,

ce qui s'accorde avec le resultat cite.

14. En changeant la signification de X, Y, Z, ecrivons p = X + F + Z, ou X, F, Z

denotent a present des fonctions de xt y, z respectivement ; en denotant par X\ Y, Z1

les fonctions derivees de celles-ci, les fonctions premierement representees par X, F, Z

seront X', Y\ Z\ Je cherche, au moyen de Tequation gene'rale, la condition pour que

la famille p = X 4- F + Z puisse faire partie d'un systeme orthogonal.

Denotons par X\ X", Xf" les derivees de X, et de meme celles de F et Z, et

ecrivons, pour abreger, a, /3, y = Y" — Z'\ Z" — Xf', X" — F", nous avons

(a, b, c, f, g, h) = (X", Y", Z\ 0, 0, 0),

et de la

(A, B, G, F, G, i/) = (0, 0, 0, -aX\ -0Y', -yZ),

et, de plus,

[(a), (b), (c), (f), (g), (h)] = [2aXW, 2/3ZTir, 27ITT,

Z'( aZ,2-/3F/2-7.Z'2),

F'(_aZ/2 + /3F'2-7^/2),

£'(-aZ/2-/3F'2 + 7^'2)].

Nous avons aussi

(SX', SY', 8Z') = (X'X", Y'Y", Z'Z"),

(8A , SB, 8C) = (0, 0, 0),

(SF , SG , SH) = [X'(- <xX" + Z'Z'" - Y'Y'"),

T (- /SF" + X'X'" - Z'Z'" ),

Z' (- ryZ" + Y'Y'" - X'X'")].

15. Done, dans liquation generale, la premiere ligne est

2 [- aX' . ZX'Y'Z' (/3 - 7) + 7 Y'Z' (- aX'* + /3F'2 - yZ'*)

- /3 Y'Z' (- <*Z/2 - £ F'2 + 7£'2)] X'X",

e'est-a-dire

2Z'F'£' . Z" [- 2« 08 - 7) Z'2 + 7 (- «Z'2 + /3F'2 - 7£'2)

-/3(-aZ'2-/3F'3 + 7^'2)]
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ou, ce qui est la meme chose,

2X'Y'Z' . aX" [(y - /3) X" - /3Y'2 + 7Z%

et la somme des premieres trois lignes sera aussi = 2X'Y'Z' multiplie par

aX" [(7 - /3) X" - /3F2 + yZ'2]

+ /3Y" [aX'2 + (a - 7) Y'2 - yZ'2]

+ yZ" [- aX'2 + /3F'2 + (/3 - a) Z'2\

savoir dans ce second facteur le coefficient de aX'2 est X" (y — ft) + @Y" — yZf/, = — 2f3y>

et de meme les coefficients de /3F'2 et y^/2 sont —27a, —2a/3 respectivement, done

le terme entier, ou premiere partie de lequation est

4Z' YZ' (X'2 + F/2 + Z'2) (- a{3y).

Les termes en BA, BB, BG s'evanouissent, et il ne reste que les termes en

BF, BG, BH qui forment la seconde partie de l'equation. Le premier de ceux-ci est

\X' . 2 (/3 - 7) X'Y'Z' - YZ' (- aX'2 - /3F'2 + yZ'2)

+ YZ' (- aX'2 + /3Y'2 - yZ'2)] x X' (- X"a + Z'Z" - Y'Y"),

e'est-a-dire

2X'Y'Z' [(£ - 7) X'2 + (3Y'2 -- 7^/2] (- X"a + Z'Z'" - Y'Y"').

On a done 2Z'F'^/ multiplie par

[(/3 - 7) X'2 + /3F2 - yZ'2] (- X"* + Z'Z"' - Y'Y'")

+ [_ aX'2 + (7 - a) F/2 + yZ'2} (- Y"/3 + X'X"' - Z'Z'")

+ [aX'2 - $Y'2 + («-£) Z'2] (- Z"y + Y'Y'" - Z,Z/,/),

ou dans le second facteur nous avons d'abord le terme — 2aj3y x (X'2 + Y'2 4- Z'2) et

puis le terme - 2 (aX'X'" + /3FF"' 4- yZ'Z'") x (Z'2 + Y'2 + £'2).

La seconde partie est done

4Z'F'£/ (Z/2 + F2 + £'2) [- a/3y - (aX'X'" + /3FF"' + yZ'Z'")]

et en reunissant les deux parties et en omettant le facteur — 4Z'F'iT x (X'2 + Y'2+Z'2),

Fequation devient

2a/37 + aX'X'" + 0 Y'Y" + yZ'Z'" = 0,

savoir :

2 ( Y" - Z") (Z" - X") (Z" - Y") + (Y"~ Z") X'X'" + (Z" - X") Y' Y" + (X" - F") £'£'" = 0,

equation trouvee par M. Bouquet dans sa " Note sur les surfaces orthogonales "

(Journal de M, Liouville, t. XL, pp. 446—450, 1846), et reproduite par M. Serret dans

son "Memoire sur les surfaces orthogonales" (Journal de M. Liouville, t. xil, pp. 241—254,

1847).



280 SUR LA CONDITION POUR QU'UNE FAMILLE DE SURFACES DONNEES [518

[Pp. 324—330.]

En considerant une famille orthogonale (savoir: une famille de surfaces qui fait

partie d'un systeme orthogonal), on peut se proposer la question : Etant donnee une

surface de la famille, trouver de la maniere la plus generale la famille. J'essaye de

resoudre cette question en developpant les trois coordonnees selon les puissances d'un

parametre ; et, quoique je n'aie encore calcule que les trois premiers termes des trois

developpements, les resultats me paraissent assez interessants pour les soumettre aux

geometres.

On peut, pour la surface donnee, conside'rer les coordonnees x, y, z d'un point

quelconque de la surface comme des fonctions determinees de deux parametres p, q.

Si, de plus, ces parametres sont tels, que les equations des deux systemes de courbes

de courbure soient p — const., q = const, respectivement, alors (en ecrivant pour abreger

dx __ dx _ d2x _ d2x _ d2x
dp~Xu Tq~X" df-°°3' d^dq~Xi' df = °°"

et de meme pour y et z) ces coordonnees x, y, z, considerees toujours comme des

fonctions de p} q, seront telles, que

#1^2 + yi^/2 + ^2 = 0, X, Vi Z\

x2
y* Z;

00^ 2/4 ZA

= 0.

J'ecris ici et dans la suite X, Y, Z = ylz2 — y2z1) zxx2 — z2xx, x1y2 — x2y1. On a done

identiquement

Xxx + Yy1 4- Zz-l = 0,

Xx2 + Yy2 + Zz2 = 0,

et les deux equations mentionnees sont

#1^2 + 2/12/2 + ^2 = 0,

Xx± + Yy4 4- Zz4 = 0.

Je m'arrete pour remarquer que la derniere equation, dans sa forme originale,

peut etre remplacee par trois equations de la forme x4 + Axx + Bx2 = 0, et qu'en ajoutant

les trois equations multipliees par xly yly zx respectivement, et aussi multipliees par

#2, 2/2 , %2 respectivement, on obtient les valeurs de A, B, exprimees en termes de

E = x12 + y1* + z12 et Q = xf + yf + zf

(E, G de Gauss), et que Ton trouve de la

2 d?x _\_dEdx_\ dG dx_

dp dq E dq dp G dp dq~ 3

avec les Equations semblables en y et z. Ces equations sont, en effet, les equations

(10 Ms) de Lame, "Memoire sur les coordonnees curvilignes" (Liouville, t. V. 1840, p. 322).
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Je suppose que les surfaces de la famille dependent du parametre r, lequel pour

la surface donnee se reduit a r = 0. Par le point (p, q) de la surface donnee on

peut mener une trajectoire orthogonale aux diffe'rentes surfaces de la famille ; les

coordonnees ff, rj, f d'un point quelconque sur cette courbe seront des fonctions de

py qy r, lesquelles, pour r = 0, se reduisent a x, y, z respectivement ; et j'ecris

^ — x-\-ar-\- dr2 + . . . ,

V — V + br + er2 + . . . ,

f = z + cr +fr2 + . . . ,

ou. a, b, c, d, e, f, ... sont des fonctions inconnues de p et q.

Pour exprimer que la courbe coupe orthogonalement les differentes surfaces de la

famille, ecrivons pour abreger

%?2~^2?i = X + Ar + Dr2 + ..., X = yxz2 - y2zlf

&2-&%i=Y + Br +JEr2 + ..., A=y1c*-yic1+b1za-b9p1,

ZiV2-&Vi = Z +Cr +Fr2+...,

(ou. (?i = -t^ •-•> comme pour x, y, z) . La condition cherchee est

X + Ar + Dr2+ ... _ Y + Br + Er2 -f ... __ Z + Cr + Fr2 + ...

a + 2dr + . . . " b + 2er + . . . "" c + 2/r + . . .

laquelle doit etre satisfaite pour une valeur quelconque de r; on a done

X Y Z

(1)
b

A 2dX ^B 2eY^C 2/Z .

^ a a2 ~ 6 b2 c c2 '

savoir, les equations (1) contiennent (a, b, 6), les equations (2) contiennent de plus

(d, e, f), et ainsi de suite.

Pour qu'il y ait un systeme orthogonal, il faut et il suffit que Ton ait

flf-2 + W?2 + Si?8 = 0,

pour toute valeur de r ; on aura done

[0] x,x2 + y{y2 + zxz2 = 0,

[1] xxa2 + x2ax + yjb2 + ya&i + ^2 + #aCi = 0,

[2] xxd2 + x2dx + ^^ + 2/2^i + S1/2 + ^2/1 + <hfh + &A + CiC2 = 0,

savoir, lequation [0] est satisfaite d'elle-meme ; Tequation [1] contient (a, 6, c), l'equation

[2] contient de plus {d, e, f), et ainsi de suite.

c. viii. 36
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II paralt done qu'il y a les trois equations (1), [1] pour determiner (a, 6, c); les

trois equations (2), [2] pour determiner (d, e, f), et ainsi de suite. Mais les choses

ne se comportent pas ainsi. On satisfait a (1), [1] par des valeurs de (a, b, c) qui

contiennent une fonction arbitraire X, fonction qui est ensuite de'terminee au moyen

d'une equation a differences partielles du second ordre, obtenue au moyen des equations

■(2), [2] ; on satisfait alors a (2), [2] par des valeurs de (d, e, f) qui contiennent une

fonction arbitraire 0; je presume que cette fonction serait ensuite de'terminee au

moyen des equations (3), [3], et ainsi de suite ; mais je n'ai pas encore fait les calculs

ulterieurs.

Par rapport a \, en remplacant cette fonction par p = X VX2 -f F2 + Z2, Tequation

pour p est

2 d2p 1 dE dp 1 dG dp

dp dq E dq dp G dp dq~ '

savoir, e'est la meme equation que pour x, y, z: ainsi Ton y satisfait en prenant p

egal a une fonction lineaire (avec terme constant) quelconque de x, y> z.

Pour obtenir ces conclusions, partant des equations (1), [1], les equations (1) donnent

a, b, c = XX, XY, XZ,

ou X est une fonction de p, q: ces valeurs satisfont d'elles-memes a liquation [1],

La verification se fait sans peine ; j'ecris pour abreger xxx2 pour denoter xxx2 + yxy2 + zxz2i

et ainsi dans les cas semblables: 1'equation a, verifier est done

xx (XX)2 + x2 (XX\ = 0,

cest-a-dire

X (xxX2 + x2Xi) + X2xxX + Xxx2X = 0,

ou nous avons

xLX = 0, x2X = 0 ;

reste a trouver le coefficient xxX2 -f x2Xlt Nous avons

X = y1z2-y2z1,

et de la

Xx = y^4 - y^i + 2/3^2 - y^z,

X2 = yxZs - yfo + y±z2 - y2zi}

et de la, en faisant la somme des trois termes de xYX2 et x2Xy respectivement, on

trouve

xxX2 = ■

^4) y±> z±

— X22L.Xi

savoir: x1X2 + x2X1 est egal a —2 multiple par ce determinant, = — 2Xx4, e'est-a-dire

x1X2 + x2X1 = 0. Done la fonction X est jusqu'ici indeterminee.
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Passons aux equations (2), [2]. Substituant dans (2) les valeurs de (a, b, c), ces

equations deviennent

XX X2X~~XY X*Y~XZ X2Z'

On y satisfait en ecrivant

2d, 2e, 2f=\(0X + A), X(8Y+B), X(eZ+C),

ou 6 est fonction de (p, q); en substituant ces valeurs dans l'equation [2], la fonction

6 disparatt d'elle-meme ; mais on obtient pour X une Equation line'aire entre X, Xly X2

et X4, laquelle est ainsi une equation a differences partielles du second ordre, et, cela

etant, on a pour d, e, f les expressions mentionne'es, qui contiennent la fonction 6y

fonction qui nest pas determined par les equations (2), [2],

L'equation [2], sous la forme abregee, est

xYd2 + x2dx + axa2 = 0,

c'est-a-dire

x, [X (6X + A )], 4- x2 [X (6X + A)]1 + 2a,a2 = 0,

ou, ce qui est la meme chose,

X [x, (eX 4 A)2 + x2 (eX + A\] + X2x, (eX + A) + X,x2 (eX + A) + 2axa2 = 0.

Les termes en 6 sont

x [^ (ex2 + e2X) + x2 (ex, + e,x)] + x2exxx + xxex2x,

qui s'evanouissent d'eux-mernes ; l'equation se reduit done a

X (A2xx -f A,x2) + X2Ax, + \xAx2 4- 2aYa2 — 0,

ou, en substituant la valeur de a,a2.

X (A2x, + Axx2) + X2Ax, 4- X,Ax2 + 2 (XX\ (XX)2 = 0 ;

on a

(XX\ (XX)2 = (\X1 4- X,X) (XX2 4 X2X), = X2XXX2 4- XX2XXX 4- XXXXX2 4- X,X2X\

et Ton trouve sans peine Ax1 — — a1X, Ax2 = — a2X, et de la

Ax, = - (XXX ^ = -X1X2-XXX1,

Ax2 = - (XX)2 X, = - X2X2 - XXX2.

Substituant ces valeurs, l'equation entiere contiendra le facteur X, et en l'ecartant, elle

devient

A2x, + A,x2 + X2XX, 4- X,XX2 + 2XX,X2 = 0.

36—2



284 SUE LA CONDITION POUR QU'UNE FAMILLE DE SURFACES DONNEES [518

Pour abreger encore la notation, au lieu de xf, (= x? + yi2 + z?\ j'ecris simplement

11, et ainsi dans les cas semblables: savoir, je me sers des abreviations

11 = x* + ^2 + z^

12 = xYx2 + y^2 + zYz2 (= 0),

et je remarque que liquation 12 = 0, en prenant les derivees par rapport a. p, q

respectivement, donne 15 + 24=0, 23 + 14=0, equations qui servent pour eliminer des

formules les expressions 15 et 23. Si pour un moment nous denotons ainsi par 124 le

x1 yx z1

®2 2/2 ^2 , alors, en multipliant par les determinants analogues 123 etdeterminant

x4 y4 z4

125 respectivement, l'equation 124 = 0 donne

= 0, 11 . 14

. 22 24

31 32 34

0,11 . 14

. 22 24

51 52 54

dont chacune est une equation a trois termes entre les quantites 11, 22, . .

Nous avons

A=y, (\Z)2 - y2 (\Z\ + z2 (\Y\ - z, (XF)2,

= \(y1Z2-y2Z1 + z2Y1-z1Y2) + \1(z2Y-y2Z) + \2(y1Z-z1Y);

or nous avons

1 , & = z^x2 — z2xY , x{y2 — x2y1 ,

et en formant de la les valeurs de Ylf Y2, Zu Z2 on obtient sans peine

A=\ [x, (15 - 24) + x2 (23 -14) -x3. 22 + 2#4.12 -x5. 11]

+ X1(#2.12-#1.22) + X2(#1.12-#2.11),

ou, ce qui est la meme chose,

A = X[- 2xlt 24-2^2.14-^3. 22-#5>ll]-X1#1.22-X2#2. 11.

Ecrivons pour un moment

A = XP + X1P'+X2P";

A1 = PXX + (P + P/) \ + P/'X, + P'X3 + P"X4,

A2 = P2X + P2' X2 + (P + P2") X2 + P'X4 + P"X5,

A,x2 + A2x, = X (P,x2 + P2x,) + X2 [(P + P/) x2 + P/aJ

+ X2 [P,f/x2 + (P + P2") x,] + X3P^2

+ x4(P,,^+P^1) + ^P,/^i.

nous avons

et de la,
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[Pp. 381—385.]

Les expressions de Plt P2)... contiennent les derivees du troisieme ordre

dsx _ d3x _ dsx dsx __

dj?~X«> dfdq~X7> dpdq*-®8' dtf"*99"'

En formant les derivees des equations 23 + 14 = 0, 15 + 24 = 0 par rapport a.

p et q respectivement, on obtient

17 + 26+ 2.34 =0,

18 + 27 + 35 + 44 = 0,

19 + 28+ 2.45 =0.

On obtient alors

P, = - 2x, (44 + 17) + 2x2 (34 + 17)

- 4^ . 24 - 2x4 . 14 - 2x5 . 13 - x6 . 22 - x8 . 11,

et de la la somme P±x2 est

= - 2 . 22 (34 + 17) - 4 . 23 . 24 - 2 . 24 . 14 - 2 . 25 . 13 - 26 . 22 - 28 11,

ou, ce qui est la meme chose,

Pxx2 = - 22 . 17 - 11 . 28 + 2 . 14 . 24 - 2 . 25 . 13.

On a de meme

P2 = - 2 . #x(45 + 28) - 2 . x2 (44 + 18)

- 2x3 . 25 - 2x4 . 24 - 4x5 . 14 - x7 . 22 - x9 . 11,

et de la la somme P2oo1 est

= - 2 . 11 (45 + 28) - 2 . 13 . 25 - 2 . 14 . 24 - 4 . 15 . 14 - 17 . 22 - 19 . 11,

ou, ce qui est la meme chose,

P2x± = - 22 . 17 - 11 . 28 + 2 . 14 . 24 - 2 . 25 . 13 (= Pxx2) ;

on a done

P,x2 + P2x, = - 2 . 22 . 17 - 2 . 11 . 28 + 4 . 14 . 24 - 4 . 25 . 13.

On obtient sans peine les autres sommes

P^2 = 0, F'x. + P'x^- 2. 11. 22, P,/a?1 = 0,

Pxx = - 11 . 24 - 22 . 13, Px2 = - 11 . 25 - 22 . 14,

et Ton a ainsi

Axx2 + A2xY = X (- 2 . 11 . 28 - 2 . 22 . 17 + 4 . 14 . 24 - 4 . 25 . 13)

+ \ (- 3 . 11 . 25 - 2 . 22 . 14 - 22 . 23)

+ \2 (- 2 . 11 . 24 - 11 . 15 - 3 . 22 . 13)

+ X4(-2.11.22).
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Liquation en X est

Axx2 + Afa + 2\X1X2 + \2XX2 + \2XXX = 0,

et Ton obtient sans peine

XXX2 = 11 . 45 + 22 . 34 + 3 . 14 . 24 + 25 . 13,

XX2 = 11 . 25 + 22 . 14,

XX2 =11.24 + 22.13.

Done enfin liquation en X est

X[ll (- 28 +45) + 22 (- 17 + 34) + 3 . 14. 24 - 25 . 13] - \ . 11 . 25 - A,2 . 22 . 13 - \4 . 11 . 22 = 0.

Oette equation est verifiee par la valeur R = -^(V= vl2 + F2 + Z2); en effet, en

denotant pour un moment le premier coefficient par A, l'equation a verifier est

AF2 + 11.25.XX1 + 22.13.XX2 + (X2.X1X2 + X2.XX4-3.XX1.XX2) = 0,

e'est-a-dire

11 . 22A + 11 . 25 (22 . 13 + 11 . 24) + 22 . 13 (22 . 14 + 11 . 25)

+ 11 . 22 (11 . 45 + 22 . 34 + 3 . 14 . 24 + 24 . 13 + XX4)

- 3 (22 . 13 + 11 . 24) (22 . 14 + 11 . 25) = 0,

et Ton remarque qu'il n'y a ici que les termes — 2 (ll2. 24 . 25 + 222. 13 . 24) qui ne

contiennent pas le facteur 11.22.

Savoir, liquation est de la forme

11 . 22 n - 2 (ll2 . 24 . 25 + 222 . 13 . 14) = 0 ;

mais, des equations mentionnees 123.124 = 0 et 125.124 = 0, on obtient

222 . 13 . 14 = 11 . 22 (22 . 34 + 14 . 24),

ll2 . 24 . 25 = 11 . 22 (11 . 45 + 14 . 24).

Done liquation entiere contient le facteur 11.22 et, en Fe'cartant, elle devient

O - 2 (11 . 45 + 22 . 34 + 2 . 14 . 24) = 0.

On a

n = 11 . (- 28 + 2 . 45) + 22 (- 17 + 2 . 34) - 25 . 13 + 3 . 14 . 24 + XX4 ;

liquation est done

-11.28-22.17-25.13-14.25 + XX4 = 0;

et Ton verifie sans peine que la valeur de XX4 est actuellement

XX4 = 11 . 28 + 22 . 17 + 25 . 13 + 14 . 24.
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Done, en ecrivant \ = ^, liquation en p ne contiendra que les termes en p1} p2, pi-

En effet, l'equation devient

-11.25^-22.13^- ^(k-fyXXt-fyXX^,

on, comme auparavant, XX1 denote XX1+YY1 + ZZ1, et de meme XX2 denote

XX2 + YY2 + ZZ2. Nous avons deja trouve

XX^ 22. 13 + 11. 24, XX2 = 22.14 + 11.25;

l'equation devient ainsi

11.22^-14. 22^-24. 11^ = 0.

Savoir, cette equation est

d2p 1 dE dp 1 dG dp __

dpdq E dq dp G dp dq

Pour completer la solution, il convient d'exprimer A, B, G en termes de p. Nous

avons

A = X (- 2xx. 24 - 2x2. 14 -ccz . 22 - x5. 11) - \w1 . 22 - \2x2 . 11.

Substituant la valeur A, = ~ , le coefficient de p est

y(-2^2.24-2^2.14-^3.22-^.ll)+^(^1.22ZX1 + ^2.ll.XX2)

= ^3 [11. 22 (-2^.24-2^.14-^.22-^. 11)

+ #7 . 22 (13 . 22 + 24 . 11) + #a . 11 (14 . 22 + 25 . 11)],

ou, ce qui est la meme chose

y3 [x, . 22 (22 . 13 + 11 . 15) + x2 . 11 (11 . 25 + 22 . 23) - 11 . 22 (xs . 22 + x5 . 11)].

Le terme entre [ ] est fonction lineaire de x3, ys, zs, x5, y5, z5, et en reunissant

les termes qui contiennent ces quantite's respectivement, on le reduit sans peine a la

forme

X [11 (Xx5 + Yy5 + Zz5) + 22 {Xx, + Fy. + Zzz)\

ou, ce qui est la meme chose

X(11.125 + 22.123).

Nous avons done

^=-^(11.125 + 22.123)-~(^1.22-f^/o2.ll).
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Nous avons

11 = E, 22 = 0, F=VW;

done, en ecrivant, pour abreger,

P

la valeur est

EG^EG

A = efx--

(11. 125 + 22. 123) = 0',

da? dp „d# dp

GT
siEG V dp dp dq dq) '

avec des expressions semblables pour B et G. Dans les expressions 2d = -M= (0X -f ^L) ...,

la fonction 0' se combine avec la fonction arbitraire 0} de maniere qu'il serait permis

de remplacer 0+0' par un seul symbole 0, mais je retiens 0-\-0\

Done, enfin, les expressions de f, ij, f deviennent

L v^s

pF '(6 + e')PY

£=* + fi-r+J

p / ~ d# dp „ d# dp

i?6r V dp dp dq dq,

_ JL ('(? ^ dR + 3^ d£
EG \ dp dp J dq dq.

-£_ fr> ^z dp j-ydz dp

EG V dp dp dq dq

r2 + ...,

r2 +

,.2 +

Je remarque que Ton satisfait a toutes les conditions en prenant p = const, (ou, ce qui

est la meme chose, p = 1), 0 + 0' = 0: cela donne

savoir, la famille est ici celle des surfaces paralleles a la surface donnee.

[Pp. 1800—1803.]

J'ai trouve que lequation differentielle du troisieme ordre, sous la forme [ci-dessus

trouvee], contient le facteur etranger X2 -f F2 -f Z2, et que Fequation debarrasse'e de ce

facteur devient beaucoup plus simple. La reduction et aussi la nouvelle methode dont

je me suis servi pour obtenir lequation reduite sont toutes les deux assez penibles;

mais cette nouvelle methode a Favantage d'etablir un resultat intermediaire qui a

quelque valeur. J'ai change un peu la notation; aussi je commence en Texpliquant.

Je prends £7=0 lequation d'une surface; X, F, Z les coefficients differentiels du

premier ordre ; a, 6, c, /, g, h les coefficients du second ordre ;

(A, B, G, F, G, H\dx, dy, dz)2 = 0
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liquation differentielle des courbes de courbure ; savoir :

A = 2(hZ -gY),

B = 2(fX-hZ),

C=2(gY-fX),

F = hY -gZ -(b-c)X,

G = fZ -hX-(e-a)Y,

H= gX -fY -(a-b)Z;

et

[(A), (B), (C), (F), (G), (H)] (dx, dy, dzf

= {A, B, C, F, G, HJYdz-Zdy, Zdx-Xdz, Xdy-Ydxf;

savoir :

(A) = BZ* + GY' - 2FYZ,

{B) = CX> + AZ*-2GZX,

(C)=AY* + BX»-2HXY,

(F) = -aYZ-fX* +gXY+hXZ,

((?) = - bZX +fYX - g F» + h YZ,

(H) = - cXY vfZX + gZY - h&,

ce qui explique la signification des symboles (A), (B), ...; aussi

F2 = X2+F2 + £2,

et

(a, b, c,f, g, h) = (bc-f\ ca-g2, ab-h\ gh-af, hf-bg, fg-ch).

Cela etant, a chaque point P de la surface U=0, je prends sur la normale une

distance infinitesimale PP' — p, ou p est une fonction quelconque des coordonne'es x, y, z

du point P; on obtient ainsi une surface, lieu des points P', laquelle se nomme la

surface voisine, et les points P et P' sont des points correspondants sur les deux

surfaces.

Pour que les deux surfaces forment partie d'un systeme orthogonal, je trouve que

la distance p, considered comme fonction des coordonne'es (x, y, z), doit satisfaire a

cette equation differentielle du second ordre

[(A), (B), (C), (F), (G), (£)](<*,, dy, dzyP = 0.

Or, si la surface donnee U= 0 et la surface voisine sont des surfaces consecutives cTune

famille r—f(cc, y, z) = 0 ; savoir, si 1'equation de la surface donnee est r — f(oc, y, z) = 0,

et celle de la surface voisine r + dr —f(%, y, #) = 0, on a

ou dr est une constante; 1'equation devient ainsi

V

c. viii. 37

[(A),...](da, dy, dzyT=o,
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oii, a present, Xy F, Z9 a, 6, c, /, g9 h denotent les coefficients diffe'rentiels de f(x9 y9 z)9

ou (ce qui est la meme chose) du parametre r, consider^ comme fonction des coordonnees

x, y, z. Cette equation est done une equation du troisieme ordre, a laquelle doit

satisfaire la fonction p; multiplied par V5, elle est en effet liquation [dont il s'agit],

laquelle, comme j'ai deja dit, contient le facteur V2: done pour e'earter le d^nominateur,

il suffira de multiplier par Vs.

J'ecris 8 = Xdx + Ydy + ZdZ9

et de la

SX9 S7y 8Z=aX + hY+ gZ, JiX + bY+fZ, gX+fF+cZ,

respectivement. On trouve

d* y= - yi O2 +h*+? + &») + yi W.

dydxy= - ~ {gk + bf+ cf+ Bf) + A BYBZ,

ou, en ecrivant co = a + b + c, a =a + b + c, ces valeurs deviennent

1 1 — 3
dx y=- -y3 (aco - co + a + 8a)+y-5 (&X)2,

dyd«y=-^(fco +f + 8f)+*-JY8Z.

et, en substituant ces valeurs, les termes en co, co disparaissent d'eux-memes, et

1'equation, multipliee seulement par — V39 se reduit a

[(A), ...](«,...) + [(il), . . .] (Ba, ...)-y2 [(A), . . .] (BX, BY, BZf = 0,

ou le premier terme est

(A)a + (B)b + (C)c + 2(F)f+2(G)g+2(H)h,

et de meme pour le second terme.

Or je trouve que Ton a identiquement

[(A), ...](8X, 8Y9 8ZY= - V*(A9 ...$SX, 8Y, 8Z)\

de maniere que l'equation est

[(A)9...](a,...) + [(A)9...](8a9...) + 3(A9...)(8X9 8Y9 8Zf = 0,

et, de plus, que Ton a identiquement

[(A),...](a,...) = -(A,...)(BX, BY, BZ)» = 2 BX, BY, BZ

X, Y, Z

BX, BY, BZ
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ou 8X, 8Y, SZ denotent respectivement aX + hY+gZ, hX + bY+fZ, gX+fY+cZ;

Tequation se reduit done a

[(A),...](Ba,...) + a = 0,

ou 12 peut etre exprime a volonte sous Tune quelconque des trois formes

= + 2 [(A),. ..](«,...).

= + 2(A,...^BX, BY, BZf,

= -4 BX, BY, BZ

X, Y, Z

BX, BY, BZ

Prenant la premiere forme, l'equation est

[(A), ...](Ba,...)-2[(A), ...](a, ...) = 0,

ou, ce qui est la m6me chose,

(A) Ba + (B) Bb + (G) Be + 2 (F) B/+ 2 (G) Bg+2(H) Bh

- 2 [(A)a + (B)b + ((J)c + 2 (F)f+ 2 (G)g + 2(H) h] = 0,

ou les coefficients sont des fonctions donnees de X, Y, Z, a, b, c, f, g, h, les coefficients

differentiels de r du premier et du second ordre, et B denote Xdx+ Ydy + Zdz.

37—2
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519.

ON CURVATURE AND ORTHOGONAL SURFACES.

[From the Philosophical Transactions of the Royal Society of London, vol. clxiii. (for the

year 1873), pp. 229—251. Keceived December 27, 1872,—Bead February 13, 1873.]

The principal object of the present Memoir is the establishment of the partial

differential equation of the third order satisfied by the parameter of a family of

surfaces belonging to a triple orthogonal system. It was first remarked by Bouquet

that a given family of surfaces does not in general belong to an orthogonal system,

but that (in order to its doing so) a condition must be satisfied ; it was afterwards

shown by Serret that the condition is that the parameter, considered as a function of

the coordinates, must satisfy a partial differential equation of the third order: this

equation was not obtained by him or the other French geometers engaged on the

subject, although methods of obtaining it, essentially equivalent but differing in form,

were given by Darboux and Levy; the last-named writer even found a particular form

of the equation, viz. what the general equation becomes on writing therein X — 0,

F=0 (X, Y, Z the first derived functions, or quantities proportional to the cosine-

inclinations of the normal). Using Levy's method, I obtained the general equation, and

communicated it to the French Academy, [518]. My result was, however, of a very

complicated form, owing, as I afterwards discovered, to its being encumbered with the

extraneous factor X2 + Y2 -f Z2 ; I succeeded, by some difficult reductions, in getting rid

of this factor, and so obtaining the equation in the form given in the present memoir, viz.

((A), (B), (G), (F), (G), (iT)$Sa, 86, So, 28/ 2S<7, 28A)

- 2 ((A), (B), (G), (F)9 (G), (fl)$a, b, c, 2/ , 2g , 2h ) = 0:

but the method was an inconvenient one, and I was led to reconsider the question.

The present investigation, although the analytical transformations are very long, is in

theory extremely simple: I consider a given surface, and at each point thereof take

along the normal an infinitesimal length p (not a constant, but an arbitrary function
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of the coordinates), the extremities of these distances forming a new surface, say the

vicinal surface ; and the points on the same normal being considered as corresponding

points, say this is the conormal correspondence of vicinal surfaces. In order that the

two surfaces may belong to an orthogonal system, it is necessary and sufficient that at

each point of the given surface the principal tangents (tangents to the curves of

curvature) shall correspond to the principal tangents at the corresponding point of the

vicinal surface; and the condition for this is that p shall satisfy a partial differential

equation of the second order,

((A), (B), (G), (F), (Q), {H)\dx, dy, dtyP = 0,

where the coefficients depend on the first and second differential coefficients of ?7, if

?7= 0 is the equation of the given surface. Now, considering the given surface as

belonging to a family, or writing its equation in the form r — r (x, y, z) — 0 (the last

r a functional symbol), the condition in order that the vicinal surface shall belong to

this family, or say that it shall coincide with the surface r + Sr — r{%, y, z) = 0, is p=jr,

where V= VX2 + F2 + Z\ if X, F, Z are the first differential coefficients of r(x, y, z\

that is, of the parameter r considered as a function of the coordinates ; we have thus

the equation

((A), (B), (O), (F), (0), (fl)$d», dy> dzy~ = 0,

viz. the coefficients being functions of the first and second differential coefficients of r,

and V being a function of the first differential coefficients of r, this is in fact a

relation involving the first, second, and third differential coefficients of r, or it is the

partial differential equation to be satisfied by the parameter r considered as a function

of the coordinates. After all reductions, this equation assumes the form previously

mentioned.

Article Nos. 1 to 21. On the Curvature of Surfaces.

1. Curvature is a metrical theory having reference to the circle at infinity; each

point in space may be regarded as the vertex of a cone passing through this circle,

say the circular cone; a line and plane through the vertex are at right angles to each

other when they are polar line and polar plane in regard to the cone ; and so two

lines or two planes are at right angles when they are harmonics in regard to the

cone, that is, when each line lies in the polar plane, or each plane passes through

the polar line of the other. A plane through the vertex meets the cone in two lines,

which are the " circular lines " in the plane and through the point ; a line through

the vertex has through it two tangent planes, which might be called the "circular

planes " of the point and through the line ; but the term is hardly required. Lines

in the plane and through the point, at right angles to each other, are also harmonics

(polar lines) in regard to the two circular lines.

2. Consider now a surface, and any point thereof; we have at this point a

tangent plane and a normal. The tangent plane meets the surface in a curve having
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at the point a node, and the tangents to the two branches of the curve (being of

course lines in the tangent plane) are the "chief tangents" of the surface at the

point.

3. The chief tangents are the intersections of the tangent plane by a quadric cone,

which may be called the chief cone ; but it is important to observe that this cone

is not independent of the particular form under which the equation of the surface is

presented. To explain this, suppose that the rational equation of the surface is £7 — 0 ;

taking f, rj, £ as current coordinates measured from the point as origin, the equation

of the chief cone is (f*dx + rjdy + &zf U = 0, where x, y, z denote the coordinates of the

point. But it is in the sequel necessary to present the equation of the surface in a

different manner; say we have an equation between the coordinates {x, y, z) and a

parameter r (r being therefore in general an irrational function of x, yy z)y which, when

r = r1, reduces itself to £7 = 0: we have then r = r2 as the equation of the surface;

and the corresponding equation of the chief cone is (]*dx + rjdy 4- t$z)2 r = 0 ; this is not

the same as the cone (%dx + rjdy + $z)2 £7=0, although of course it intersects the tangent

plane in the same two lines, viz. the chief lines ; and so in general there is a distinct

chief cone corresponding to each form of the equation of the surface. But adopting

a definite form of equation, we have a definite chief cone intersecting the tangent

plane in the chief tangents.

4. Observe that the equations £7 = 0, r = r1} although each relating to one and

the same surface, serve to represent this surface, and that in different ways, as belonging

to a family of surfaces, viz. one of these is the family £7= const., and the other the

family r — const. In order to represent a given surface as belonging to a certain

family, we need the irrational form of equation ; thus r denoting the irrational function

zji2 nj2 g2

of x, y, z determined by the equation hr^ 1 = 1, we have r = 0 as the
' v J ^ a+r b+r c+r

/v>2 nj2 &2

equation of the ellipsoid —^~jr^— = 1> considered as belonging to a family of confocal

quadrics.

5. Although at first sight presenting some difficulty, it is convenient to use the

same letter r to denote the parameter considered as a function of the coordinates, and

the special value of the parameter ; thus in general the equation of a surface may

be written r (x, y, z) — r = Q (in which form the first r may be regarded as a functional

symbol), or simply r — r = 0, viz. the first r here denotes the given function of (x, y, z),

and the second r the particular value of the parameter.

6. By what precedes we have through the point and in the tangent plane two

circular lines, the intersections of the tangent plane by the circular cone having the

point for its vertex.

We have also through the point and in the tangent plane two other lines, termed

the principal tangents, viz. the definition of these is that they are the double (or

sibiconjugate) lines of the involution formed by the circular lines and the chief

tangents, or, what is the same thing, they are the bisectors (and as such at right

angles to each other) of the angles formed by the chief tangents.
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7. The principal tangents may also be considered as the intersections of the

tangent plane by a quadric cone, called the principal cone; this being a cone con

structed by means of the circular cone and the chief cone, and thus depending on

the particular chief cone, that is, on the form of the equation of the surface. The

definition is that the principal cone is the locus of a line (through the point), such

that the line itself, the perpendicular (or harmonic in regard to the circular cone) of

the polar plane of the line in regard to the chief cone, and the normal of the surface

are in piano.

8. Analytically, taking, as before, {%, y, z) for the coordinates of the point, and

u, v, w as current coordinates measured from the point as origin, then the equation

of the circular cone is u2 + v2 + w2 = 0 ; and taking Xu + Yv + Zw = 0 for the equation

of the tangent plane, and {a, b, c, /, g, K§u9 v, w)2 — 0 for that of the chief cone, then,

if the line be u : v : w — % : tj : f, we have

(a, . .$£ v, £$>, % w) = 0

for the equation of the polar plane, and thence

u : v : w = a% + h7)+gZ : hg+brj+fi; : g£+fv + c£

for those of the perpendicular, or harmonic in regard to the circular cone ; also for the

normal u, v, w = X : Y : Z ; whence, if the three lines are in piano, we have

X , Y , Z

as the equation of the principal cone. This is in the sequel written, for shortness, as

S, v, S l = o.

a*, &?, »r

X, F, Z

9. Consider any point P', not in general on the surface, in the neighbourhood

of the point on the surface, say P; then the point P' has in regard to the surface

a polar plane, which plane, however, is dependent on the particular form of equation—

viz. x\ y\ z' being the coordinates of P', and U' the same function of these that

U is of oo, y, z, then the form U= 0 of the equation of the surface gives for P' the

polar plane (ud^ + vdy> + wd^) TJ' = 0 ; and we may through P' draw hereto a perpen

dicular (or harmonic in regard to the circular cone), say this is the normal line of

P'. Then for points P' in the neighbourhood of P, when these are such that their

normal lines meet the normal at P, the locus of Pr is the before-mentioned principal

cone. The analytical investigation presents no difficulty.

10. Taking P' on the surface, the normal line of P' becomes the normal at a

consecutive point P' of the surface (being now a line independent of the particular

form of equation), and this normal meets the normal at P ; that is, we have the
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principal cone meeting the tangent plane in two lines, the principal tangents, such

that at a consecutive point P' on either of these the normal meets the normal at P ;

viz. we have the principal tangents at the tangents of the two curves of curvature

through the point P.

The plane through the normal and a principal tangent is termed a principal

plane ; we have thus at the point of the surface two principal planes, forming with the

tangent plane an orthogonal triad of planes.

11. I proceed to further develop the theory, commencing with the following lemma:

Lemma. Given the line Xu -f Yv + Zw = 0, and conic

(a, b, c,f, g, hju, v, w)2=0,

then, to determine the coordinates (ulf vly w^)} (u2, v2, w2) of the points of intersection

of the line and conic, we have

= (ffa + VVi + ?Wi) (^2 + yv3 + fws),

or, what is the same thing, we have

(a, ...$F?- Zv, Z% - Xf, Xv - Y& = 0

as the equation, in line coordinates, of the two points of intersection. The proof is

obvious.

12. Making the equations refer to a plane and a cone, and writing throughout

£, 77, £ as current point coordinates, the theorem is:

Given the plane X% + Yrj + Z% = 0, and cone

(a, by c, /, g, A$£ v, 0* = ®;

then, to determine the lines of intersection of the plane and cone, we have

(o, . .$ r? - zv, zz-x&Xt,- Y%y = 0

as the equation of the pair of planes at right angles to the two lines respectively.

13. Denoting the coefficients by (a), (b), &c, that is, writing

{a,..1Y^-Z%Z^-X^Xv-Y^Y

-. ((a), (b), (c), (/), (</), (h)J& V, S)\

the values of these are

(a) = bZ* + cY* -2/YZ,

(b) = cX* + aZ* - 2gZX,

(c) = aY* + bX* -2hXY,

(f) = -aYZ-fX* +gXY+hXZ,

{g)=- bZX +/YX-gY* +hYZ,

(h) = - cXY+fZX + gZY - hZ\
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We have the following identities :

(a)X + (h) Y+(g)Z=0,

(h)X + (b) Y+(f)Z=0,

(g)X + (f)Y+(c) Z=0,

((b)(c)-(f)\.., (g) (h)- (a) (f),...) =-(X\ Y\ Z\ YZ, ZX, XY)<f>,

that is, (b) (c) - (ff = - X*<f> &c., where

</> = (6c -f\ ..gh-af,. .$X, Y, Z)\

Writing also

aX+hY+gZ, hX+bY+fZ, gX+/Y+cZ=8X, 8Y, 8Z,

and X2 + F2 + Z2 = V2 ; also a + 6 + c = a>, then

(a) = (b + c) F2 - «X2 + XSX - Y8Y-ZBZ,

(b) = (c .+ a) F2 - <oY* - X8X + Y8Y-Z8Z,

(c) = (a + b) F2 - wZ* - X8X - Y8Y+Z8Z,

(/) = _/F2 - wF^ + Y8Z + Z8Y,

(g) =-gV* - <oZX + Z8X + X8Z,

(h)=-hV* - coXY + X8Y+ Y8X.

14. I give also the following lemma:

Lemma. The condition in order that the plane X%+ Yr] + Z%=0 may meet the

cones

(A, B, G, F, G,H^, v, r)2 = 0,

(A', B', C, F', G', H'\l v> £)2 = 0

in two pairs of lines harmonically related to each other, is

(BO' + B'G - 2FF', .., GH' + G'H - AF' - A'F, . .$Z, F, Zf = 0.

Writing here

(A,..\Y^-Zr,, ZS-XS, Xrj-Y^f

= ((A), (B), (G), (F), (G), (H)1l v, $)«,

that is, (A) = BZ2+GY1-2FYZ, &c, the condition may be written

(A)A' + (B) E + (C) G' + 2(F)F' + 2(G)G' + 2 (H) W = 0,

or say

((A),.#A',..) = 0;

and we may, it is clear, interchange the accented and unaccented letters respectively.

c. viii. 38
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15. I take r — r = 0 for the equation of a surface, X, Y, Z for the first derived

functions of r, (a, b, c, f, g, h) for the second derived functions. The equation of the

tangent plane at the point (#?, y, z)y taking £, ?;, f as current coordinates measured

from this point, is

the equation of the chief cone in regard to this form of the equation of the surface is

(a, b, c,f,g, h&& 77, ?)2 = 0,

and the equation of the circular cone is £2 -f- tf + f2 = 0, or, what is the same thing,

(i, i, i, o, o, o$f, V, D2 = o.

Imagine a quadric cone

(A,B, G, F, G,H&, n, f)» = 0,

such that it meets the tangent plane in the sibiconjugate lines of the involution

formed by the intersections of the tangent plane by the chief cone and the circular

cone respectively; that is, in a pair of lines harmonically related to the intersections

with the chief cone, and also to the intersections with the circular cone; the

conditions are

((A)>...^a,..) = 0,

and

(A) + (B) + (G) = 0,

viz. if only these two conditions are satisfied the cone will intersect the tangent plane

in the two principal tangents.

16. The principal cone, writing, for shortness,

af + ^ + flfc Af + &*?+/£ g2+fv + cS=8£, 8V, Sf,

was before taken to be the cone

f, v, K =o.

8fc *v, 8?

X, Y, Z

Kepresenting this equation by

\{A, B, G, F, G, m&v, 0» = O,

the expressions of the coefficients are

A = 2hZ - 2gY,

B = 2/X - 2hZ,

G = 2gY- 2/X,

F= hY- gZ-(b-c)X,

0= fZ - hX-(c-a)Y,

H= gX- fY-(a-b)Z.
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These values give

AX + HY+ GZ = ZBY - YBZ,

HX + BY + FZ = XBZ - ZBX,

GX + FY + CZ = YBX-XBY;

whence also

(A,...^X, Y,Z)2 = 0,

as is, in fact, at once obvious from the determinant-form ; and also

A+B + G= 0.

17. Writing for shortness

(a, b, c, f, g, h) = {be -f2, ca - g\ ab - h2, gh - of, hf- bg, fg - ch),

we find

Aa + Hh + Gg = co (hZ -gY) + hZ -gY,

Hh + Bb + Ff = a (fX - hZ ) +fX-hZ,

Gg+Ff + Cc=a>(gY-fX) + gY-fX;

whence

(A,...^a,...) = 0.

18. By what precedes, we have

({A), ...%£, v, 0* = O

for the equation of the two principal planes, where the coefficients (A), (B), &c. are

functions of A, B, &c. and of X, Y, Z, as mentioned above. These coefficients satisfy

of course the several relations similar to those satisfied by (a), (b), &c, and other

relations dependent on the expressions of A, B, &c. in terms of a, b, &c. and X, Y, Z.

19. Proceeding to consider the coefficients (-4), (B), &c, we have then

(A) + (B) + (C) = (A + B+C)V*-(A,..~IX, Y, Z)\

that is

(A) + (B) + (G) = 0.

Observing the relation A + B + G = 0, the equations analogous to

(a) = (b + c) V2 - (a + b + c) X2 + &c, are (A) = -AV2 + XB'X -YB'Y- ZB'Z, &c.

if for a moment we write B'X, B'Y, B'Z to denote the functions

AX + HY+ GZ, HX + BY+ FZ, GX + FY+ GZ.

But, from the above values, XB'X + YB'Y+ ZB'Z = 0, or the equation is (A) = - A V2 + 2XB'X,

that is = - A V2 + 2X (ZBY- YBZ). The equation for (F) is (F) = - FV2 + YB'Z + ZB'Y,

where YB'Z + ZB'Y is = Y(YBX-XBY) + Z(XBZ-ZBX), viz. this is

= ( F2 - Z2) BX-XYBY+ XZBZ.

38—2
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We have thus the system of equations

(A) = -AV°- . + 2XZ8Y -2XY8Z,

(B) = - BV* - 2YZ8X . + 2XY8Z,

(C) =-CV* + 2YZ8X -2XZ8Y

(F)=-FV* + ( F» - Z*) 8X - XYSY + XZ8Z,

(Q) = - GV* + XY8X + (£2-X2)SF- YZ8Z,

(H) = -HV*- XZSX + YZ8Y + (X2-Y°)8Z.

20. We hence find

(A)a + (H)h + (G)g = -(Aa+Hh + Gg) V* + (Z8Y - Y8Z)8X + XP,

(H) h + (B)b+ (F)f= - (Hh + Bb + Ff) F2 + (X8Z - Z8X )8Y+YQ,

(G) g + (F) f + (C) c =- (Gg + Ff + Go) V*+(Y8X - X8Y)8Z + ZR,

if for shortness

P = (gY - hZ) 8X + (aZ - gX) 8Y+ (hX - aY) 8Z,

Q = (/F- bZ) 8X + (hZ-fX) 8Y + (bX - hY) 8Z,

R = (cY -fZ) 8X + (gZ - cX) 8Y+(fX -gY) 8Z.

Forming the sum PX + QY+ BZ, the coefficient of 8X is found to be

= -Z(hX + bY+fZ)+Y(gX+fY+cZ), =-Z8Y+ Y8Z;

hence the whole is

= 8X(Y8Z-Z8Y) + 8Y(Z8X-X8Z)+8Z(X8Y-Y8X), which is =0, that is,

PX + QY+RZ= 0.

21. Hence, adding, we find

((4),...$a,..) = 0;

viz. in this and the before-mentioned equation

(A) + (B) + (G) = 0

we have the a posteriori verification that the cone (A, ...][£, ??, £)2 = 0 cuts the tangent

plane in the double lines of the involution.

In what precedes I have given only those relations between the several sets of

quantities a, a, (a), A, {A), &c. which have been required for establishing the results

last obtained; but there are various other relations required in the sequel, and which

will be obtained as they are wanted.
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The Conormal Correspondence of Vicinal Surfaces.

Art. Nos. 22 to 35.

22. We consider a surface Z7=0 (or r = r), and at each point P thereof measure

along the normal an infinitesimal length p, dependent on the position of the point P

(that is, p is a function of x, y, z). We have thus a point P', the coordinates of

which are

x', y', z' = x + pa, y + pft, z + py,

where a, /3, 7 are the cosine-inclinations of the normal, that is,

a, ^,y = y, y, y, if V = >JX^Y*TZ* ;

the locus of P' is of course a surface, say the vicinal surface, and we require to find

the direction of the normal at P', or, what is the same thing, the differential equation

X'daf + Y'dy' + Z'dz of the surface. We have

dx' — (1 -f- dxpa) dx -f dypa . dy + dzpa . dz,

dy = dxpft . dx -f (1 + dyp/3) dy + dzp/3 . dz,

dz' = dxpy . dx + dypy . dy -f (1 + dzpy) dz,

0 = X dx -f F dy + ^ cfe ;

whence, eliminating cfe, dy, dz, we have between dx, dy, dz' a linear equation, the

coefficients of which may be taken to be X', Y', Z\ Taking these only as far as the

first power of p, we have

X' = X (1 + dypl3 + dzpy) - Ydxp/3 - Zdxpy,

or, what is the same thing,

X' = X (1 + dxpa + dyp/3 4- dzpy) - Xdxpa - F^p/3 - Zdxpy,

with the like expressions for Y' and iT. I proceed to reduce these. The formula for

X' is

X' = X {1 + p (c^a + e^/3 + ^7) + adxp + /ft^p 4- ydzp)

- /> (Xd,a -1- Ydx(3 + ^7) - (aX + /3F-f 7^) d^p.

23. I write, for shortness, B = Xdx + Ydy + Zdz, whence BX, BY, BZ=aX+hY+gZ,

hX + bY-\-fZ, gX +fY+cZ, agreeing with the former significations of BX, BY, BZ; also

VdxV, VdyVy VdzV=BX, BY, BZ, and VBV = XBX+ YBY+ZBZ. It is now easy to

form the values of

7 7 n 7 . xl a XBX h YBX g ZBX

dxa, dx/3, dxy, viz. these are y y^- , y yj- , y - -p- >

h XBY b___YBY f ZBY

dyOL, dyp, ayy, y yz , y y$~> y y% >

g^^XBZ f_YBZ c ZBZ

dZ0L, (iZP, (iZy, y y3 , y ys , y y^ ',
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and hence

j , j o , j a+b + c 8V
dxa+ dyP + dzy = y- yt >

Xdxa+Ydxf3 + Zdxy=Sy-~8X, = 0,

1
adxp + fidyp + 7^2/0 = y 8p,

aX + /3Y+yZ = F;

and we have

X'-z{l+p(i±*±-0-^) + ^}-74p,

with the like values of F' and Z'. But we are only concerned with the ratios

X' : F' : Z' ; whence, dividing the foregoing values by the coefficient in { }, and

taking the second terms only to the first order in p, we have simply

X\ Y', Z' = X-Vdxp, Y-Vdyp, Z-Vdzp.

24 We may investigate the condition in order that the surface x\ y', z may be

the consecutive surface r Jtdr = r{xi y} z\ This will be the case of

i ( X Y Z\

r+dr = r\x + p-y, y + py, z + p yj ,

df u7* Q

that is, r + dr = ?*-\-pV, or p=y. This value of p gives dxp — —yr2dxV— — ^8Xi and

similarly dyp — — 4jr28Y9 dzp = — ^~8Z; whence

X\ F', Z' = X + ^8X, Y+ ^8Y, Z + ^8Z>

which is as it should be, viz. these are what X, F, Z become on substituting therein

for x, yy z the values x -f pa, y + p/3, z -f py.

25. I return to the case where p is arbitrary, and I investigate the values of

■a, b> ... for the point P' on the vicinal surface; say these are a', b\ &c, then we

have o! — dxX' &c. The relation between the differentials may be written

dx — (1 — dxpoc) dx — dypoi dy' — dzpa dz\

dy — — dxp/3 dx + (1 — dypj3) dy' — dzpft dz,

dz = — dxpy dx' — dypy dy + (1 — dzpy) dz,
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and we thence have dx> = (1 — dxp<x) dx — dxpftdy — dxpydz &c. ; hence

a = {(1 - dxpa) dx - dxp/3dy - dxpydz] (X - Vdxp)

= (1 - dxpcc) a - dxp/3 . h - dxpy . g - dx(Vdxp)

= a — p (adxa + M^ + gdxy)

-(aa + h/3+gy)dxp

and similarly, /' = e^if' (or c4'F'), that is

/' =/" P (gdy* +fdy@ + ^/7>

- (#a +//3 + cy) dyp

— -^ SFc^p — Vdydzp.

26. Completing the reduction, we find

/a» - b - c (8X)2\ 2 * _ , T7. , _
a = a ~ p [ F"~ " T»7 ~ T xp ~ * ^

fbco-c- a (SF)2\ 2 . ,

/CO)

"T FW ~y8Zd*P ~ F*P>

9? =9~P \~y^- yr )~~v $Zd*P + 8XdvP) ~ ^^>

7/ 7 fCo/l + h BX8Y\ l/CsT-.7 -T7r7 Tr77

h =h-p i—y p^-J - y (6Xdyp + SF<4p) - Vdxdyp ;

say these expressions are a! — a + Aa, &c.

27. Taking £, 77, £ for the coordinates, referred to P as origin, of a point on the

given surface near to P, and £', 7/, f for the coordinates, referred to P' as origin, of

the corresponding point on the vicinal surface, the relation between £', 7/, £" and £, 7;, f

is the same as that between dx, dy\ dz and dx, dy, dz ; viz. we have

I = (1 — c^/oa) £' — c^pa . 7/ — c^pa . £",

77 = - dxp/3 . f + (1 - dy/o£) 7?' - dzp/3 . f,

£ = - dxpy . f - dypy .7/ + (1 - 4py) ?' :
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or conversely

f' = (1 + dxpa) % + dypa . 17 + dzpa. . £

7?'= dxPt3.% + (l + d,jpl3)v+ dzpp.l;,

?'= dxpy.!-+ dypj .V + (l + dzpy) £

say f, V, £' = £ + A£ V + &V, t+^l hence

zt + fv + #r = (* - ™»/o (f + A?) + &c-

+ XA£+YAr) + Z&Z

- V (%dxp + i)dyp + t,dzp),

where second line is

(Xa + 70 + Zy) (%dxP + vdyP + gifcp)

+ p {(Xdxa + Ydx/3 + Zdxy) £ + (X^a + Ydy/3 + Zdyy) V + (Xdza. + Ydz/3 + Zclzy) £}.

But
SX IT"2

Z4«+ Ydx/3 + Zdxy = -T--7iSZ = 0,

We require

XdyOL + F^/3 + M,y = 0,

or second line is = V(%dxp + <qdyp + %dzp) ; and we have therefore

X'f + FV + ^T = X?+ Yv + Z£

(^, #, a', f, ^ f'$?w, n2;

viz., to the first order in p, this is

= (A', ...$£, 17, D3

+ 2(^,...$Af, At,, A0£ 7,, 0.

28. Here second line is

2 {(Ag + Hv + 00 A£ + (Hi + BV + FQ A77 + (©£ + ^7? + 0?) A?} :

but

4£ + #t? + (?£=£S77-F8£ +

H£ + Bv +FZ = XS!;-Z8Z +

Gl-+Fr, + G!;=Y8Z + XBr} +

a , h , g

A, y , ^

A, 6, /

X, F, £

9> f> c

X, F, Z
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whence term in { } : s

A£ At;, An + aA^ + hArj+gA^, AAf4 &A*,+/A£ <7A£+/4

^, &?, 8? 1 X F , Z

which might be written

X, Y, Z \ S v , K

Af, A?/, A£ 8Afc 8&V) SA£-

Sf, SV, 8C £>*?,?

X, Y, Z X , F , Z

but it is perhaps more convenient to retain the second term in its original form.

29. As regards the first line, we have

A' = 21i'Z'-2g'Y'

= 2 (h + Ah) (Z- VdzP) -2(g + Ag)(Y- Vdyp)

= A + 2 (ZAh - YAg) -2V(hdzp- gdyP),

with similar expressions for the other coefficients. Attending only to the terms of the

first order, we thus obtain

A' = A+2(ZAh-YAg)-2V(hdz-gdy)p,

B' = B + 2 (XAf- ZAh) - 2 V(Jdx - hdz) p,

C' = C+2(YAg- XAf)- 2V(gdy -fdx) p,

F' = F + YAh -ZAg-X(Ab-Ac) - V(hdy-gdz -(b-c)dx)p,

0' = G + ZA/ - XAh -Y(Ac- Ao) - V(fdz - hdx -(c-a) dv) p,

H' = H + XAg-YAf-Z(Aa-Ab)-V(gdx-fdy-(a-b)dz)p,

say these are A' =A + 0A, &c, where 0 is a functional symbol; we thus have

(ii',...$r, v, ??=(A...M, v, S)*+(&i,...$fc v, Kf + ^{A,...1t v, S$AS, A*?, A«,

which, for shortness, I represent by

= (A,...^,V, zy+(A",...M % ?)2;

and I proceed to complete the calculation of the coefficients A", B", &c.

30. We have

A" =6A + coeflf. f in

2[(AZ + Hv + GS)±g + (H£ + Bn + FOAv + (GS + Fv + CS)b$]

= 9A + 2 (AdxPa + HdxPfS + GdxPy),

that is,

A" = 0A+2y(AX + HY+ GZ) dxp

+ 2p (Adxa + Hdxfi + Gdxy),

C. VIII. 39
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where coeff. 2p is

_Aa + Hh + Gg (AX + HY+GZ)8X

V Vs

±L(hZ-gY) + hZ-gY^-^(ZSY- Y8Z).

31. And similarly,

F" = 0F + (Ha + B/3 + Fy) dzP + (Ga + F/3 + Gy) dyP

+ p \(Hdzcc + Bdz@ + Fdzy) + (Gdya + Fdy/3 + Cdyy)}

= 0F+ y {(HX + BY+FZ) dzP + (GX + FY+ GZ) dvP]

[Eg +Bf + Fc (HX + BY+ FZ) 8Z

+p\ v Vs

Oh + Fb + Cf_ (GX + FY + GZ)8Y

V Vs

Gh + Fb + Cf= <o (hY-bX) + TiY-bX + aX + aX + hY+ gZ,

Hg+Bf+Fc = -(o(gZ-cX)-gY+cX-aX-aX-hY-gZ.

Sum is a>{hY- gZ -(b - c)X} + hY-gZ-(b-c) X, which is = coF + hY-gZ-(b'-d)X:

hence

F'' = 0F + (X8Z-Z8X)(±dzp-pJ^) + (Y8X-X8Y)(±dyP-p^)

+ ^{<oF+hY-gZ-(b-3)X}.

32. We may write

A"=0A+2(j. dxP - p-~) (Z8Y -YSZ) + £ {<oA + A},

B" = 0B +2(~dyP-p^\(XBZ -Z8X) + -Pf{coB + B},

0" = 0C + 2 (y dzp - 2^) (Y8X - X8Y) + |>C + C}; •

F" = 0F + (1 dsP - $P) (XSZ - Z8X ) + (~ dyP - P^P) ( YSX -X8Y) + ^ \wF + F\,

G" = 0G + (1 dxP - ^) (YSX - X8Y) + (1 dzP - p~) (Z8Y -Y8Z) + ^ {<oG + G],

H"=0H+ (ydyp- p~) (Z8Y - Y8Z ) + (1 dxp - p^j (X8Z -Z8X) + ^ {a>H + H),

in which equations A, B, &c. are the like functions of a, b, &c. that A, B, &c. are

of a, b, &c. ; viz. A = 2hZ - 2gY, &c.
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The value of QA is

QA = 2Z ({- y(ha> + h) + y\ BXByX - y (BYdxP + BXdyp) - Vdxdypj

- 2Y(\- y(gw + g) + -^-3 BZBX^ - y (BZdxp + BXdzP) - Vdxdzpj

- 2 V (hdz - gdy) p,

which is

= -T(coA+A) +y°s BX (ZBY- YBZ)y- (Zdy - Ydz) p -2V(hdz - gdv) p

- ~ (ZBY-YBZ)dxp-2V(Zdy-Ydz)dxP.

Hence the value of A" is equal to the last-mentioned expression, together with

the following terms:—

+ y(wA + A)- y°s BX (ZBY- YBZ) + y (ZBY - YBZ) dxp,

which destroy certain of the foregoing ones; viz. we have

2ZBX\ . a/m 2YBX\
A" = [2Vg - ^y^j dyP - 2 [Vh y~) dzP - 2V(Zdy - Ydz) dxp.

33. Similarly, the value of OF is

0F= 7 (- y (Jm + h) + ^s BXBY-y (BYdxp + BXdvP) - VdxdyPj

-Z(-y(gco+g) + y\ BZBX - y (BZdxP + BXdzP) - Vdxdzp}

-X' pe.{(b-c)(o + b-c} + p^-p^-yBYdyp+yBZdzP-Vd^p+Vd^p)

- V (hdy - gdz -(b-c) dx) p,

which is

y(- Fa> -F) + py^(XBZ-ZBX) + Py^(YBX -XBY)

+ {-y (YBY- ZBZ) + V(b - o)J dxP

+ LYBX + 2XBY _Vh J^

+ | y'BX + ^SY + Vg }dzp

+ (- VYdxdy + VZdxdz + VXdf - YXdi) p.

39—2
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Hence F" is equal to the foregoing expression, together with the following terms :—

+ JL(Fm + F)- ?— (XBZ- ZBX) - ^f (YBX - XBY)

+ y(YBX - XBY) dyP + y. (XBZ - ZBX) clzP,

which destroy certain of the foregoing terms ; viz. we thus have

F" = j_ 1 (YBY- ZBZ) + V(b - c)l dxp + \y BY - Vh\ dyP + j- ~ BZ - Vg\ dzP

+ V(- Ydxdy + Zdzdx + XdJ - Xdf) p.

34. We thus have

A" = . 2 (Vg - ^) dvP - 2 [Vh - Y^i dzp + 2V(- Zdydx + Ydzda) p,

B" = -2(vf-Z^dxP . +2(vh-Xy^dzP + 2V(-Xdzdll + Zdxdy)p,

■G" = + 2 (Vf- ™) dxP-2(Vg- ^~) dyp . + 2 V(- Ydxdz + Xdydz) p,

F"= {v(b-c)-y(YBY-ZBZ)}dxP-(vh-^)dl/p + (Vg-^)dzp

+ V(-Ydxdy + Zdxdz + Xdy*-Xd!?)p,

■G" = (Vh-^) dxP + |V (c - a) - y {ZBZ - ZSZ)| dyP-(Vf-^ dzp

+ V(- Zdydz + Xdydx + Yd/ - Ydx?) p,

B" = - (Vg-^)dxp-(vf-Z?yY-)dyp + {v(a-b)-T.(XBX-Y8Y)\dzp

+ V(- Xdzdx + Ydzdy + Zdx? - Zd,f) p.

35. It will be recollected that we have X'? + Y'r,' + Z'£ =X% + Yv + Z£; by what

precedes it appears that for the given surface the principal tangents are determined

by the equations

(4,..$f, 17, D2 = o,

X£+YV + ZS=0,

and that the lines which (in the tangent plane of the given surface) correspond to

the principal tangents of the corresponding point of the vicinal surface are determined

by the equations

{A,..\ir,, &+(A",..y&v, o3 = o,

x%+yv + zz=o.



519] ON CURVATURE AND ORTHOGONAL SURFACES. 309

Condition that the two surfaces may belong to an Orthogonal System.

Art. Nos. 36 to 41.

36. The condition in order that the two surfaces may belong to an orthogonal

system is that the principal tangents shall correspond, or, what is the same thing, the

lines which (in the tangent plane of the given surface) correspond to the principal

tangents of the vicinal surface must be the principal tangents of the given surface.

When this is the case, the plane and cone Xf;+Yr) + Z£=0} (A", . .$£, tj, ^)2=0 inter

sect in the principal tangents, and this is therefore the required condition.

The plane X% + Yr] + Z<Z=0 meets the cone (A", . .$£, ?;, £)2 = 0 in the principal

tangents, that is, in a pair of lines harmonically related to the circular lines and also to

the chief tangents. Forming then the coefficients (A"), (£"), (C")9 (F"), (0"), (#") from

A", &c. in the same way as (A) &c. are formed from A, &c, that is, writing

(A") = B"Z» + C"Y*-2F"YZ, &c, the conditions are

(il,,) + (5/,)+(C,,) = 0,

((^'V.. $*>.-•) = <>,

or, what is the same thing,

(A",...^(a),...) = 0.

The former of these, as about to be shown, is satisfied identically ; we have

therefore the second of them, say (A", . .$(«), . .) = 0 as the required condition.

37. We have

(A") + (B") + {G") = (A" + B" + G") V* - (A", . .$X, Y, Zf,

A" + B" + G" = y{(ZBY- Y8Z)dxp + (XBZ- ZBX)dyp + {YBX - XBY)dzp}.

Forming next the expressions of A"X + H"Y+ G"Z &c, and, for convenience, writing

down separately the terms which involve the second differential coefficients of p, we have

A"X+H"Y+G"Z=

dxp.V(hZ-gY) + dyP[VBZ-ZBV+V(gX-aZ)] + dzp[-(VSY-YBV)-V(hX-aY)l

H"X + B"Y+F"Z =

dxp [-(V8Z- ZW)- V{fY-bZ)]+ dyp. V(fX - hZ)+ dzp [(VBX - XBV) + V(hY- bX)],

G"X + F"Y+G"Z =

dxP[VBY-YBV+ V(/Z -cY)] +dyP [-(VBX - XBV) - V(gZ -cX)] + dzp.V(gY-/X),

where BV stands for -y.(XBX + YBY+ZBZ), and where the three expressions contain

also the following terms respectively:

{ . -YZd*+YZd? + (Y*-&)dydz+ XYdzdx- XZdxdv}p,

{ ZXdi . -ZXdi- XYdydz + (Z*-X*)dzdx+ YZdxdy} p,

{-XYdJ + XYdf . + XZdydz- YZdzdx+(X*-Y*)dxdy}P.
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Multiplying by X, F, Z, and adding, the terms which contain the second differential

coefficients disappear, and we obtain

(A",.JX, Y, Zf = 2V[(Z8Y-Y8Z)dxp + (X8Z-ZSX)dyp + (YSX-X8Y)dzp];

so that, attending to the above value of A" + B" + C", we have the required equation

(A") + (B?') + (C") = 0.

38. Proceeding now to form the value of {A'\ ...][(<x), ...), that is,

A" (a) + B" (b) + 0" (c) + 2F" (f) + 2G" (g) + 2H" (A),

it will be shown that the terms involving the first differential coefficients of p vanish

of themselves; as regards those containing the second differential coefficients, forming

the auxiliary equations

(A)=2(h)Z -2(g)Y,

(B)=2(f)X-2(h)Z,

(C)=2(g)Y -2(f)X,

(F) = (/OF- (g)Z-((b)-(c))X,

(G) = (f)Z- (h)X-((c)-(a))Y,

(H)= (g)X- (f)Y-((a)-(b))Z,

we find without difficulty that the terms in question (being, in fact, the complete

value of the expression) are

= F((4),...$tf«, dy, dzfp.

39. As regards the terms involving the first differential coefficients, observe that

the whole coefficient of dxp is

-2(b) {yf-m

+ 2(c) ("-T)

+ 2(/) 'v(b-c)-y(Y8Y-ZBZ)

+ 2(0) [Vh-™)

fjr Z8X\
-2(h) KVg~ v )>

which is

= 2 V{(g) h + (f)b + (c)9- ((h) g + (b)f+ (f) c)}

+ y{Z ((h) BX + (b) BY+ (/) BZ) - Y((g) BX + (f) BY+ (c) BZ)}.
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■40. The reduction depends on the following auxiliary formulae :

a(a)+h(h)+ g(g) = VBV-XBX,

h ,,+b „ +/„ = - YBX,

9 „ +/» +c „ = -ZBX,

a(h)+h(b)+g(f)= -X8Y,

h ,,+b ,,+f „ = VBV-YSY,

g „ +/„ + c „ = -ZBY,

<g)+Hf)+g{c)= -xlz,

h „ +b „ +f „ = -YBZ,

g „ +f „ +c „ = vbv-zbz,

where, for shortness, I have written SX, SY, SZ to stand for aX 4-hY+gZ, hX + 1iY+fZ,

gX+fY+cZ respectively, and VBV for XBX+YBY+ZBZ, (=a,..$Z, Y, Zf.

From these we immediately have

(a)BX + (h) BY + (g) BZ= V(XBV-VBX),

(h) BX + (b) SY+ (/) BZ= V(YBV - VBY),

(g)BX + (f)BY+(c) BZ=V(ZBV -V8Z).

Hence, in the coefficient of dxp, the first line is

= 2V(-YBZ + ZBY),

and the second line is

= y{VZ(YBV-VSY)-VY(ZSV-VBZ)}, = 2V (YBZ - ZBY) ;

so that the sum, or whole coefficient of clxp, is = 0. Similarly, the coefficients of clyp

and dzp are each =0.

41. We have thus arrived at the equation

{(A),...\d%, dy, d,fp = 0

as the condition to be satisfied by the normal distance p in order that the given

surface and the vicinal surface may belong to an orthogonal system, viz. this is a

partial differential equation of the second order, its coefficients being given functions

of X, Y, Z, a, b, c, f, g, h, the first and second differential coefficients of r (where

r = r (x, y, z) is the equation of the given surface).

The equation, it is clear, may also be written in the two forms

{A, . . .\Zdy - Ydz, Xdz - Zdx, Ydx - Xdyf p = 0,

and

P Q , B

aP + hQ + gR, hP+bQ+fR, gP + fQ + cR

X Y , Z

P = 0,

if, for shortness, P, Q, R are written to denote Zcly—Ydz, Xdz — Zclx, Ydx— Xdy

respectively, it being understood that in each of these forms the dx, dy, dz operate on

the p only.
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Condition that a family of surfaces may belong to an Orthogonal System.

Art. Nos. 42. to 49.

42. We pass at once to the condition in order that the family of surfaces

r — r (oo, y, z) = 0

may belong to an orthogonal system, viz. when the vicinal surface belongs to the

family, we have p proportional to ^ (= ,- =. ) , and the condition is

((A),...$dX9 dy, dzfy = 0,

where r is a function of (#, y, z\ the first and second differential coefficients of which

are X, Y, Z, a, b, c, f g, h ; and the equation is thus a partial differential equation

of the third order satisfied by r. The form is by no means an inconvenient one, but

it admits of further reduction.

43. We have dXy, dVy, dZy equal to — -=8X, --y88Y, - ys SZ respectively,

and thence

42 y = - y* («2 + '* + f + So) + ~ (sxy,

dyd* y = - ^W + ¥+ cf+ Bf) + '^ SYBZ,

or, as these may be written,

11 __ 3
dX2 y = ~ y~8 ia0> - ® + « + SO*) + Y5 ^X>)2'

dydzy = -ys(fco +f + Sf) + ^SYSZ,

with the like values for dy2 y , &c. Substituting, the equation contains a term multiplied

by a), viz. this is

which vanishes ; and a term multiplied by ft>, viz. this is

^((A) + (B) + (G)),

which also vanishes. Writing down the remaining terms, and multiplying the whole

by — F3, the equation becomes

((A), . .$6, . .) + ((A), . .$&», . .) - A ((A), . . .J_BX, 8Y, hZf = 0.



519] ON CURVATURE AND ORTHOGONAL SURFACES. 313

44. The last term admits of reduction ; from the equations

(A) = - A F2 + 2XZSY- 2XYBZ, &c, we find

(A)8X + (H) BY+ (G) 8Z = -V> (A8X + HBY+ GBZ) + V8V(Z8Y - YBZ ),

(H) BX + (B)BY+(F) 8Z=-V* (H8X + BBY + FBZ) + VBV(XSZ - ZBX ),

(G) BX + (F) BY+ (G) BZ=-V* (GBX + FSY +C8Z)+ V8V(Y8X - X8Y),

and hence

{(A),..~$8X, 8Y, 8Zy = -V*(A, ...%8X, BY, SZf;

wherefore the equation becomes

((A), . .$>, . .) + ((A), . .~$8a ..) + 8(A,. .~&8X, 8Y, BZf = 0.

45. It will be shown that we have identically

{{A),...\a, ...) = - (A,..~$8X, BY, BZJ = 2 BX, 8Y, BZ

X, Y, Z

BX, SY, BZ

The partial differential equation thus assumes the form

((A),..l8a,...) + n = 0,

where fl may be expressed indifferently in the three forms,

= + 2 (A,..$«,..),

= + 2(A,..~&8X, 8Y, 8Z)\

= -4 BX, BY, 8Z

X, Y, Z

8X, BY, BZ

46. Taking the first of these, the partial differential equation is

((A), ...18a,..)-2((A),..$«,... ) = 0;

or, written at full length, it is

(A) 8a + (B)8b + (C)8c+2 (F)8f+ 2 (G) 8g + 2 (H) 8h

-2((i) a + (B) b + (C) c + 2(F) /+ 2 (ff) g + 2(H)h} = 0,

where the coefficients are given functions of X, Y, Z, a, 6, c, /, g, h, the first and

second differential coefficients of r; and B is written to denote Xdx+Ydy + Zdz.

C. viii. 40
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47. It remains to prove the above-mentioned identities.

To reduce the term (A,..J_8X, BY, BZf, we have

ABX + HBY+GBZ

= A(aX + hY+gZ) + H(hX+bY+fZ) + G(gX+/Y+ cZ)

= X{ co(hZ-gY) + hZ-gY]

+ Y{-co(fY-bZ)-(fY-bZ)-CoZ-8Z}

+ Z{ w(fZ -cY)+ fZ-cY + a>Y+8Z\

= <o(Z8Y- YBZ) + (ZBY- YBZ) + (ZBY- YBZ),

that is,

ABX + HBY+GBZ=(o(ZBY-YBZ) + 2 (ZBY - YBZ) ;

and similarly

HBX + B8Y + FBZ = co (XBZ - ZBX ) + 2 (XBZ - ZBX),

QBX + FBY + CBZ = a> (YBX -XBY) + 2 (YBX - XSY),

whence

(4,..$8Z, BY, BZf = -2 BX, BY, BZ

X, Y, Z

BX, BY, BZ

48. Now, from the equations AX + HY+ GZ= ZBY- YBZ, &c. we have for the

value of twice the foregoing determinant

2 det. = 2 {(aX + TiY + gZ) (AX + HY+ GZ)

+ (hX + bY+fZ) (HX + BY + FZ)

+ (gX +/Y+cZ)(GX +FY+ GZ)} ;

and subtracting herefrom the function ((A), .. .)$a, . .), which is

(BZ» +CY* -2FYZ)a

+ (GX" + AZ* - 2GZX) b

+ (AY* + BX* -2HYZ)c

+ 2(-AYZ-FX* + GXY+HXZ)/

+ 2(-BZX + FXY-GY* +HYZ)g

+ 2(-CXY+FXZ + GYZ -HZ* )h,

the difference is found to be

= a {(A,..IX, Y, Zy + AV]

+ b{(A,..lX, Y, Zf + BV*}

+ c{(A,..\X, Y, zy + ov}

+ 2/ {(A + B + G) YZ +FV*}

+ 2g{(A+B + G)ZX + GV*}

- 21% {(A + B + G) XY + HV%
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which, on account of (A, . .$X, F, Z)2 = 0, and A +B -h 0 = 0, reduces itself to

(4,..$a,...). F2.

49. We have

^4a + Hh+Gg = a (2hZ - 2#F)

+ S(flrZ-'/F-(a-6)Z)

+ g(/Z- hX-(c-a)Y)

= X(gh-hg)

+ Y{ag-ga- (ga +fh + c#))

-f ^ (/S — ah + (ha + 6A +fff)) >

or, observing that in the coefficients of F and iT the second terms each vanish, this is

Aa + J?A + Gg = X (hg — ^A) -f F (#a — a#) + ^ (ah— ha) ;

and similarly

Hh + Bb +Ff=X (bf -fb) + Y(fh- hf) + Z(hb- bh\

Gg+Hf+Cc = X(/c-cf)+YQy-g^

Adding these equations, the coefficient of X is the difference of two expressions each

of which vanishes; and the like as regards the coefficients of Y and Z; that is, we have

and consequently

2 BX, BY, BZ

X, Y, Z

BX, BY, BZ

the required relation.

(A,..-$a,..) = 0;

= ((A),..la,...) = -(A,...lBX, BY, BZ)\

40 -2



316 [520

520.

ON THE CENTRO-SURFACE OF AN ELLIPSOID.

[From the Transactions of the Cambridge Philosophical Society, vol. xn. Part I. (1873),

pp. 319—365. Read March 7, 1870.]

The Centro-surface of any given surface is the locus of the centres of curvature of

the given surface, or say it is the locus of the intersections of consecutive normals, (the

normals which intersect the normal at any particular point of the surface being those

at the consecutive points along the two curves of curvature respectively which pass

through the point on the surface). The terms, normal, centre of curvature, curve of

curvature, may be understood in their ordinary sense, or in the generalised sense

referring to the case where the Absolute (instead of being the imaginary circle at

infinity) is any quadric surface whatever ; viz. the normal at any point of a surface is

here the line joining that point with the pole of the tangent plane in respect of the

quadric surface called the Absolute : and of course the centre of curvature and curve

of curvature refer to the normal as just defined.

The question of the centro-surface of a quadric surface has been considered in the

two points of view, viz. 1°, when the terms " normal," &c. are used in the ordinary sense,

and the equation of the quadric surface (assumed to be an ellipsoid) is taken to be

j2 Y2 Z2

._++-_ = l; 2°, when the Absolute is the surface X2 + Y2 + Z2 + W2 = 0, and the

a2 o2 c2

equation of the quadric surface is taken to be aX2 + /3F2 + yZ2 + SW2= 0: in the first

of them by Salmon, Quart. Math. Jour. t. II. pp. 217—222 (1858), and in the second by

Glebsch, Crelle, t. lxii. pp. 64—107 (1863) : see also Salmon s Solid Geometry, 2nd Ed.

1865, pp. 143, 402, &c. In the present Memoir, as shown by the title, the quadric

surface is taken to be an Ellipsoid ; and the question is considered exclusively from the

first point of view: the theory is further developed in various respects, and in particular

as regards the nodal curve upon the centro-surface : the distinction of real and
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imaginary is of course attended to. The new results suitably modified would be

applicable to the theory treated from the second point of view ; but I do not on the

present occasion attempt so to present them.

The Ellipsoid; Parameters £, 77, &c. Art. Nos. 1—6.

1. The position of a point (X, F, Z) on the ellipsoid

a2 + b2 + c2

may be determined by means of the parameters, or elliptic coordinates, £, 77; viz. these

are such that we have

X2 F2 Z2

a2 + £ b2 + % c2+f

X2 F2 Z2

a2 + 7; b2+r) c2+7)

or, what is the same thing, £, 77 are the roots of the quadric equation

X2 F2 Z* ,

a2+v b2+v c2 + v

(In its actual form this is a cubic equation, but there is a root v = 0, which is

to be thrown out, and the quadric equation is thus

v2

+ v (a2 + &2 + c2 - X2 - F2 - ^2)

+ {62c2 + c2a2 + a2b2 - (62 + c2) X2 - (c2 + a2) F2 - (a2 + b2) Z2} = 0,

or putting

P = a2 + b2 + c2,

Q = b2c2 + c2a2 + a2b2,

R = a2b2c\

the equation is

v2 + v(P-X2-Y2-Z2) + Q^(b2 + c2)X2--(c2 + a2)Y2-(a2 + b2)Z2 = 0t)

2. It is convenient to write throughout

b2 - c2 = a ,

c2 - a2 = ft

a2-b2= 7,

(whence a -J- /3 + 7 = 0).
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As usual, a is taken to be the greatest and c the least of the semi-axes; we have

thus a, 7 each of them positive, and ft negative, == — /3' where /3' is a positive quantity

= a + 7# A distinction arises in the sequel between the two cases a2 + c2 > 262 and

a? + c2< 2b2, but the two cases are not essentially different, and it is convenient to

assume a2 -f c2 > 262, that is, a2 - b2 > b2 - c2 or 7 > a, say 7 - a positive. The limiting

case a2 + c2 = 262 or 7 = a requires special consideration,

3. We have

- £7 X2 = a2 (a2 4- f) (a2 +7?),

-7a F2=62(62 + f)(62 + 7?),

- a/3 Z2 = c2 (c2 + f) (c2 + ??).

It is in fact easy to verify that these values satisfy as well the equation of the

ellipsoid as the assumed equations defining the elliptic coordinates £, ??. We may also

obtain the relations

Z2+F2 + ^2 = a2 + 62-hc24-^4-77,

a2X2 -f b2Y2 + c2Z2 = a4 + ¥ + c4 + 62c2 + c2a2 + a262 + (a2 + b2 + c2) (£ + ??) + &.

These, however, are obtained more readily from the equation in v, viz. the roots

thereof being £, 77, we have

-.%-.v = a2 + b2 + c2~X2- Y2-Z2,

j:v = b2c2 + c2a2 + a2b2 - (62 + c2) X2 - (c2 + a2) F2 - (a2 + &2) Z2,

which lead at once to the relations in question.

4. Considering £ as constant, the locus of the point (X, F, Z) is the intersection

of the ellipsoid with the confocal ellipsoid

X2 F2 Z2

a2 + % b2 + % c2 + £

viz. this is one of the curves of curvature through the point; and similarly considering

rj as constant, the locus of the point is the intersection of the ellipsoid with the con-

focal ellipsoid

X2 Y2 _&___!.

a2 + r] + b2 + rj + c2 + r)~~ '

viz. this is the other of the curves of curvature through the point.

5. If instead of £ and 77 we write h and k, we may consider h as extending

between the values — a2, — b2, and k as extending between the values — 62, — c2.

h = const, will thus give the series of curves of curvature one of which is the

section by the plane X = 0, or ellipse semi-axes 6, c ; say this is the minor-mean

series. In particular h=—a2 gives the ellipse just referred to ; and h = — b2, or say

h = — b2 - e, gives two detached portions of the ellipse semi-axes a, c ; viz. each of these

portions extends from an umbilicus above the plane of %y, through the extremity of

the semi-axis a, to an umbilicus below the plane of xy<
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And in like manner k — const, gives the series of curves of curvature one of which

is the section by the plane Z = 0, or ellipse semi-axes a, b ; say this is the major-mean

series. In particular & = — c2 gives the ellipse just referred to; and & = — 62, or say

Jc = — b2 + e, gives the remaining portions of the ellipse semi-axes a, c ; viz. these are

two portions each extending from an umbilicus above the plane of xy, through the

extremity of the semi-axis c, to an umbilicus above the plane of ocy.

The ellipse last referred to may be called the umbilicar section, the other two

principal sections being the major-mean section and the minor-mean section respectively.

In the limiting case h = k= — b2, we have the umbilici, viz. these are given by

Z2

a2 ''

1 F=0,
a

The two series of curves of curvature cover the whole real surface of the ellipsoid ;

so that at any real point thereof we have f = A, rj = k, or else £ = k, rj — h} where h, k

are negative real values lying within the foregoing limits — a2, — &2 and — &2, — c2

respectively. But observe that f, rj taken separately may each extend between the

limits — a2, — c2.

6. Suppose f = 97, the equation in v will have equal roots, or the condition is

(P^X2~F2~^2)2 = 4{Q-(62 + c2)Z2~(c2 + a2)F2~(a2 + 62)^2},

viz. this surface by its intersection with the ellipsoid determines the envelope of the

curves of curvature. This envelope is in fact a system of eight imaginary lines, four

of them belonging to one of the systems of right lines on the ellipsoid, the other four

to the other of the systems of right lines. For in the values of X2, F2, Z2 writing

V = %> we nnd

X

Lb

±V-7a -zr&a + f,

± ^'^^ - = c2 + £

or representing for shortness the left-hand functions by ± X\ ± Y\ ± Z\ the eight lines

are

a2+£ = X' = X' = -X' = -Z'

&2 + £ =
Y' = - y = Y' . = - Y'

c2 + f = Z' = -Z' = -Z' = Z'

a2 + f = --X' = X' = X' = -X'

& + £
= Y' = -F' = T = -Y'

c2 + £ = Z = Z' = -Z' =
-£',
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so that in the two tetrads each line intersects the four lines of the other tetrad, but

it does not intersect the remaining three lines of its own tetrad. The intersections

are four points corresponding to £ = — a2, being the imaginary umbilici in the plane

X = 0: four to £=-&2, being the real umbilici in the plane F=0: four to £ = -c2,

being the imaginary umbilici in the plane Z=Q: and four corresponding to £ = oo, which

may be called the umbilici at infinity (1).

Sequential and Concomitant Centro-curves. Art. No. 7.

7. Consider any particular curve of curvature ; the normals at the several points

thereof successively intersect each other in a series of points forming a curve ; and we

have thus, corresponding to the particular curve of curvature, a curve on the centro-

surface, which curve may be called the sequential centro-curve. Again the same normals,

viz. those at the several points of the particular curve of curvature, are intersected,

the normal at each point by the consecutive normal belonging to the other curve of

curvature through that point ; and we have thus, corresponding to the particular curve

of curvature, a curve on the centro-surface, which curve may be called the concomitant

centro-curve. If instead of a single curve of curvature we consider the whole series,

say of the major-mean curves of curvature, we have a series of major-mean sequential

centro-curves, and also a series of major-mean concomitant centro-curves ; and similarly

considering the series of the minor-mean curves of curvature we have a series of

minor-mean sequential centro-curves and also a series of minor-mean concomitant

curves; the configuration of the several curves will be discussed further on, but it may

be convenient to remark here that the centro-surface may be considered as consisting

of two portions, say,

(A) locus of the major-mean sequential centro-curves; and also of the minor-mean

concomitant centro-curves ;

(B) locus of the minor-mean sequential centro-curves, and also of the major-mean

concomitant centro-curves.

Investigation of expressions for the Coordinates of a point on the Centro-surface.

Art. Nos. 8 to 13.

8. Consider the normal at the point (X, F, Z). Taking in the first instance

(x, y, z) as current coordinates, the equations are

x-X y-Y z-Z
v = - T;r = „ , = X suppose,

a2 fr c2

1 According to Salmon, Solid Geometry, [2nd Ed. 1865], p. 229, the number of umbilici for a surface of

the ?ith order is —n (10?i2 - 25w + 16) ; viz. for n — 2, this is =12, as in the ordinary theory, not recognizing

the umbilici at infinity. But whether properly umbilici or not, the 4 points which I call the umbilici at

infinity do in the present theory present themselves in like manner with the 12 umbilici.
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or, what is the same thing,

—r(1 + s)- »-r(1 + p)--*(, + ?)-

Suppose now that the normal meets the consecutive normal, or normal at the

point X + dX, Y+dY, Z+dZ; and let x, y, z belong to the point of intersection of

the two normals; we must have

o = dx(i + ^) + x2d\,

\ a2) a2

0 = dY(l + ±) + £dK,

o-dz(i+ £)+!<&,

which determine the direction of the consecutive point; the equations in fact give

0 =

or, what is the same thing,

0 =

dX,
dX X

a? ' a?

dY,
dY Y

dZ,
dZ Z

c2 '

aWX, dX, X

VdY, dY, Y

<?AZ, dZ, Z

which is the differential equation of the curve of curvature. This equation must

therefore be satisfied by taking for X-\-dX, Y+dY, Z+dZ, the coordinates of the

consecutive point along either of the curves of curvature,—say along that which is

the intersection with the surface

X2 Y2 Z2

+ T^r~ + -
a2 + 7] ' b2 + rj ' c2 + r)

9. To verify this, observe that we then have

XdX YdY ZdZ_

a2 + b2 + c2

XdX YdY ZdZ

a2 + v + b2 + r) + c2 + v '

or, what is the same thing,

XdX : YdY : ZdZ = a2 (a2 + v) a : b2(b2 + v)/3 : c2(c2 + 7?)y.

C. VIII. 41
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But from the equations — fiyX* = a2 (a2 + £) (a? + rj) &c, these become

X2 Y2 Z2
XdX : YdY : ZdZ=-

' a2 + f * 62 + f ' c2 + r

or, what is the same thing,

X Y Z

dX : dY : dZ=^ :^ : ^j

and, substituting these values in the determinant equation, it becomes

XYZ a2, 1, a2 + £

~(a2 + £)(&3 + £)(c2 + £) ^ ^ ¥ + g

>, 1, c2 + £

which is identically true, since evidently the determinant vanishes.

10. Proceeding with the solution, we have from the three equations

VJV ^^ „JV (XdX YdY ZdZ\ ^ /Z2 F2 Z\ .
XdX+YdY+ZdZ+ x[-2 +_F.+__)+rfx(_ + ^ + _).a

and observing that from the equation

X2 + Y2 + Z2 =a2+b2 + c2 + % + V)

considering therein r\ as constant, we have

XdX+YdY+ZdZ = id%,

the equation becomes

and the three equations then are

or say

0 = dX(a2 + \)-±Xd%, &c.

But from the equation — ftyX2 — a2 (a2 + £) (a2 + 77), considering therein rj as a

constant, we have

X~~a2+£'

and the equations thus become

viz. these are all satisfied if only \ = £.

11. The coordinates of the point of intersection of the two normals thus are

:Z(1 + J)> ^F(1 + l). *=*(1 + J>
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or squaring, and substituting for X2, &c, their values as given by

- /3yX2 = a2 (a2 + f) (a2 + 77), &a,

the equations become

- £7 a¥ = (a2 + £)3 (a2 + 77),

- Ci/3 C2Z2 =(c2 + £)3 (c2 + T)\

viz. these equations give (%, y, z) the coordinates of a point on the centro-surface, the

intersection of the normal at the point (X, Y, Z) of the ellipsoid, (determined by the

parameters £, rj), by the normal at the consecutive point along the curve of curvature

X2 Y2 Z2 1

a2 + 77 b2 4- 77 c2 + rj

or say 77 is the sequential parameter (1).

Of course by interchanging f and 77 we should obtain the coordinates of the point

of intersection of the normal at the same point {X, Y, Z) by the normal at the con

secutive point along the other curve of curvature : £ being in this case the sequential

parameter.

12. I stop for a moment to consider the foregoing two equations

\ = f, dX = -\d&

which at first sight appear inconsistent. But observe that in the foregoing solution

X is the parameter of the point (#, y, z) of the centro-surface considered as a point

on the normal at {X, Y, Z) ; X + dX is the parameter of the same point considered as

a point on the normal at the consecutive point (X + dX, Y+dYy Z + dZ) : the value

\ + d\ = £ + dl; would belong to a different point, viz. the consecutive point of the

centro-surface considered as a point on the consecutive normal—wherefore the dX of

the solution ought not to be =d%. In further explanation, observe that the equations

x = X ( 1 + — J , &c. where X = £,

if we pass from (00, y, z) to the consecutive point on the centro-surface, give

\\ X
cfc-*X(l+£ +£<*?;

but since by what precedes,

this is

0 = rfx(1 + £)-ifdf,

X
dx=z^a~2 d&

The expressions are given in effect, but not explicitly, Salmon, p. 143.

41—2
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Or since

this is

and similarly

a2x = X(a2+%),

dx _ „ d%

y a^+"r

dz

2 + i

d£

z v + r

which are the correct values of dx, dy, dz as derived from the equations

- /3ya*a? = (a2 + f)3 (a2 + 77), &c.

13. The equations — /3ya2x2 = (a2 + £)3 (a2 -I- 77), &c. give expressions for the coordinates

(x, y, z) of a point on the centro-surface in terms of the two parameters (f, 77) : the

elimination of (£, 97) from these equations will therefore lead to the equation of the

surface ; but the discussion of the surface may also be effected by means of these

expressions for the coordinates in terms of the two parameters.

Discussion by means of the equations — fiya2x2 = (a2 + £)3 (a2 + v)> &c- ; Principal Sections, &c.

Art. Nos. 14 to 24 (several subheadings).

14. To fix the ideas consider the section of the surface by the plane z = 0 ; we

have in the surface z — 0, that is, £ = — c2, or else 77 = — c2, values which give respectively

- j3ya2x2 = - /33 (a2 + 77),

-yab2y2 = a3 (b2 +77);

or, what is the same thing,

7

P

era? a2 + 77,

^%2 = -&2-*?;

■ /37aW = - /3 (a2 + f)*,

■yab2y2= a (b2 + f)3 ;

7«¥ = (a2 -f |)3,

7&y = - (62 + £)3.

The first set of equations gives

which is the equation of an ellipse.

The second set gives

a2x2 b2y2 .,

/32 + a2 '

or in a rationalised form

(«¥ + &y - 72)3 + 27a2b2y2x2y2 = 0,

which is the equation of an evolute of an ellipse.
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15. The ellipse -^--f-—x = * ^s a cuspidal curve on the surface, and the section

by the plane z = 0 is consequently made up of this ellipse counting three times, and

of the evolute ; it is therefore of the twelfth order ; and the order of the surface is

in fact = 12.

X2 Y2
It is clear that the section of the centro-surface arises from the section — + nr = 1>

a2 b2

viz. the normal at any point of this ellipse lies in the plane Z=0, and its inter

section by a normal at the consecutive point of the ellipse gives a point of the

evolute; the evolute being thus the sequential centro-curve of this section * the inter

section by the normal at the consecutive point on the other curve of curvature gives

CL2X2 b2/U2

a point on the ellipse -#£- + —f- == 1, which ellipse is therefore the concomitant centro-

X2 Y2
curve. Observe that this other curve of curvature cuts the ellipse —- 4- -y- = 1 at

1 a2 b2

right angles, and that the normals at the consecutive points above and below the

point on the ellipse will meet each other and also the normal at the point of the

ci2x2 b2v2

same ellipse at the point on the ellipse —^ -1—~ = 1 : this shows that the last-

mentioned ellipse is a cuspidal curve on the centro-surface.

16. The three principal sections of the centro-surface are consequently

so = 0, -£- + —= 1, and (by)3 + (cz)3 = a3 ;

~ C2Z2 aV , , , ,2 2 n2

y = 0, _ +— = 1, and (cz)3 + {ax)3 = (33 ;
a y

a2x2 b2y2 ^ 1 , .2 /7 .2. m

* = °> -p+tf=1> and W + (ty)8 = 78;

viz. each section is made up of an ellipse counting three times and of an evolute

(of an ellipse). I have for shortness represented the three evolutes by their irrational

equations. It will presently appear that the section (imaginary) by the plane infinity

is of the like character.

17. Considering only the positive directions of the axes, we have on each axis

two points, viz.

• r 7 £
axis ol #, x— — , x = ;

a' a

a 7

b

axis of y, y= i> y =

axis of z,
a

z =

c'
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through each of which, in the two different planes through the axis respectively, there

passes an ellipse and an evolute. In the assumed case a2 + c2 > 2b2, the disposition of

the points is as shown in the figure.

 

Plane of xz, evolute is outside ellipse,

yz9 „ inside „

®y> » cuts » 5

but in the contrary case a2 + c2 < 2b2, the disposition is

Plane of xz, evolute is outside ellipse,

yZy „ cuts „

xy, „ is inside „ ;

there is no real difference, and to fix the ideas I attend exclusively to the first-mentioned

case

a2 + c2>262.

18. In each of the principal planes, the evolute and ellipse, qua curves of the

orders 6 and 2 respectively, intersect in twelve points, 3 in each quadrant; viz. of

the 3 points two unite together into a twofold point or point of contact, and the

third is a point of simple intersection; assuming for the moment that this is so, the

figure at once shows that in the plane of xz or umbilicar plane the contact is real,

the intersection imaginary; in the plane of xy, or major-mean plane, the contact is

imaginary, the intersection real ; but in the plane of yz or minor-mean plane the

contact and intersection are each imaginary. The contacts arise, as will appear, from

the umbilici of the ellipsoid, and may be termed "umbilicar centres," or "omphaloi;"

the simple intersections "points of outcrop," or simply "outcrops." By what precedes

there are in the umbilicar plane, four real umbilicar centres (in each quadrant one) ;

and in the major-mean plane four real outcrops (in each quadrant one) ; the other

umbilicar centres and outcrops are respectively imaginary.
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19. The surface consists of two sheets intersecting in a nodal curve connecting

the outcrop with the umbilicar centre. As to the form of this curve there is a cusp

at the outcrop; and the curve does not terminate at the umbilicar centre but, on

passing it, from crunodal becomes acnodal (viz. there is no longer through the curve

any real sheet of the surface): moreover the curve is not at the umbilicar centre

^

o*< ^o

perpendicular to the plane of xz, and there is consequently on the opposite side of

the plane a symmetrically situate branch of the curve, viz. the umbilicar centre is a

node on the nodal curve. Completing the curve, the nodal curve consists of two

distinct portions, one on the positive side of the plane of yz or minor-mean plane

consisting of two cuspidal branches as shown in the figure; the other a symmetrically

situate portion on the negative side of the minor-mean plane.

Intersections of Evolute and Ellipse.

20. Consider in the plane of xy the ellipse and evolute,

¥ + a* = 1} ^ + bHj2 - 7^3 + 2^2a2bvy2 = °-

First, these are satisfied by

- Coordinates of Umbilicar centres in plane of xy (imaginary),

a1®1 = ■

7

by =

Viz. the equations respectively become

-£-? = l, (-^^-72)3 + 27a3/33==0,

7 7 7

the first of which is a + /3 + 7 = 0, and the second is (a3 + /33 + 73)3 - 2^3/3Y = °- ^ut

the equation a + /3 + y = 0 gives cC° + /33 + 7s = Safiy, and the two equations are thus

identically satisfied. Moreover the condition for a contact is at once found to be

/32 [(a2x2 + b2y2 - 72)2 + 9y2by] = a2 [(a¥ + by - 7s)2 + 9y2aV],

or, what is the same thing,

(a2 - /32) (aV + by - yj + 972 (aW - /32%2) = 0 ;
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and substituting the foregoing values, this is

a3 4- 8s — a2Ss 4- a?B2

7 7

that is,

"IZII (ae + £3 + 73)2 + 9fya2y82 («_£) = 0,

which, putting therein a + /? = — 7, and a3 -f /33 + 73 = 3a/37, is also satisfied ; that is, the

points in question are points of contact of the ellipse and evolute.

21. Secondly, consider the values

£3 (y-*\*

7 W - A

aS //3-ry\3

—-fof^n

y 7 u-js/

- Coordinates of outcrops in plane of #y (real).

Substituting in the equation of the ellipse, we have

«(/3-7)3 + /^(7-«)3 + 7(a-/3)3 = 0,

which is

08- 7)(7- «)(«-£)(«+£ +7) = 0,

or the equation is satisfied identically: and substituting in the equation of the evolute,

we have first

«*+»y 7- y(cc-ftf

which in virtue of a (/3 — 7) + ft (7 — a) + 7 ( a — ft) = 0 becomes

ay,£v , 3^7 (A "7) (7 -«)(«" A)

3«/3Q8-7)(7-«)

(a-£)2

and then, completing the substitution, it is seen that the equation of the evolute is

also satisfied. The points last considered are simple intersections, and we have thus the

complete number (8+4, =12) of the intersections of the evolute and ellipse.

22. We have a, 7 positive, /3 negative ; whence a — /3 is positive, ft — 7 negative ;

y — a (= a? + c2 — 2b2) is positive, and hence, the outcrops in the plane of xy are real ; the

umbilicar centres are imaginary for this plane, but real for the plane of zoo, the coordinates

being

Or \
/.2«2 — _ _ »
GZ " j39

a*a? = - 2!

Coordinates of Umbilicar centres in plane of xz (real).

p' >
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Nodes of the Evolute.

23. The Evolute is a curve with four nodes, all of them imaginary; viz. for the

evolute in the plane of xy, the equation of which is

(a2x2 + by - y2)3 + 27y2a2b2x2y2 = 0,

these are

a2x2 — — <y2, ")

V Coordinates of Nodes of evolute in plane of xy (imaginary),

by = - 72J

in fact these values satisfy as well the equation of the evolute, as the two derived

equations

6a2x [(a2x2 + b2y2 - y2)2 + 9y2b2y2] = 0,

Qb2y [(a2x2 + b2y2 - y2)2 + 972a2^2] = 0,

or the points in question are nodes of the evolute.

The evolute has the four cusps on the axes and two cusps at infinity, in all

6 cusps as just mentioned; it has 4 nodes: and the order being 6, the class is

30 - 2 . 4 - 3 . 6, = 4.

Section by the plane infinity.

24. The surface itself is finite, and the section by the plane infinity is therefore

imaginary ; but by what precedes the nodal curve must have real points at infinity,

viz. there must be real acnodal points on this imaginary section. The section by the

plane infinity resembles in fact the principal sections; viz. writing successively £=oo,

and 7] = oo , we have

~/3ya2x2 : -yab2y2 : - afic2z2 = a2 + tj : b2 + r) : c2 + 7)

or

= (a2 + £)3 : (b2+%f : (c2 + £)3,

giving respectively

a2x2 + b2y2 + c2z2 = 0, and (aaxf + (bfryf + {cyzf = 0,

where the first equation represents an imaginary conic which counts three times; and

the second equation, the rationalised form of which is

(a2a2x2 + b2/3y + o2y2z2J - 27a2b2c2ot2j32y2xyz2 = 0,

an imaginary evolute. The conic and evolute have four contacts and four simple inter

sections (in all 4.2 + 4 = 12 intersections) which are all of them imaginary. But the

evolute has four real nodes (acnodes) a2a2x2 = b2fi2y2 = c2y2z2 ; or, what is the same thing,

there are four real lines <z2a2&'2 = b2/32y2 = c2y2z2, which are respectively asymptotes of the

nodal curve: viz. inasmuch as the equation of the surface contains only the squares

c. viii. 42
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w2, y2, z2y the lines in question will be not merely parallel to, but will be, the

asymptotes of the nodal curve.

The plane infinity may be reckoned as a principal plane, and we may say that in

each of the four principal planes there are four umbilicar centres, four outcrops, and four

evolute-nodes.

The generation of the surface considered geometrically. Art. Nos. 25 to 28.

25. I have deferred until this point the discussion of the generation of the

centro-surface by means of the centro-curves, for the reason that it can be carried on

more precisely now that we know the forms of the principal sections and of the nodal

 

curve. The two figures exhibit (as regards one octant of the surface) the portions

already distinguished as (A), and (B): they intersect each other in the nodal curve,

shown in each of the figures.

26. Consider first the generation of the portion (A) by means of the major-mean

sequential centro-curves. The major-mean curves of curvature (attending to those below

the plane of ocy) commence with a portion (extending from umbilicus to umbilicus) of

X2 Z2 .
the ellipse — + — =1, this may be termed the vertical curve, and they end with the

a c

X2 Y2
whole ellipse —- + tt = 1, which may be termed the horizontal curve. The normals at

the several points of the vertical curve successively intersect along a portion (terminated

each way at an umbilicar centre) of the evolute in the plane of xz or umbilicar

plane ; viz. this portion of the evolute, shown fig. (a), is the sequential centro-curve

belonging to the vertical curve of curvature. The curve of curvature is at first a

narrow oval surrounding the vertical curve ; the corresponding form of the sequential

centro-curve is at once seen to be a four-cusped curve as in fig. (6), and which we

may imagine as derived from the curve (a) by first doubling this curve and then
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opening out the two component parts thereof: the two upper cusps of the curve (b)

are situate on the y^-ellipse of the centro-surface, and the two lower cusps upon two

detached portions respectively of the a^-ellipse of the centro-surface. And as the curve

 

of curvature gradually broadens out and ultimately coincides with the XF-section of

the ellipsoid, the four-cusped curve continues to open itself out, and ultimately coincides

as shown figure (c) with the soy-evolute of the centro-surface, viz. this evolute is the

sequential centro-curve belonging to the horizontal curve of curvature or XF-section

of the ellipsoid. The successive sequential curves are also shown (so far as regards

an octant of the surface) in the figure (A).

27. We consider next the generation of the portion (B) by means of the major-

mean concomitant centro-curves. Starting as before with the vertical curve of curvature,

the concomitant centro-curve is a finite portion (terminated each way at an umbilicar

centre) of the #£-ellipse of the centro-surface. As the curve of curvature opens itself

out into an oval, the concomitant centro-curve in like manner opens itself out into

an oval, the two further vertices thereof situate on two detached portions of the

ocz-evolute of the centro-surface, and the two nearer vertices on the yz-evolute of the

central surface. And as the curve of curvature continues to open itself out, and

ultimately coincides with the horizontal curve or XF-section of the ellipsoid, so the

concomitant centro-curve continues to open itself out and ultimately coincides with the

ocy-elliipse of the centro-surface. The successive forms (so far as relates to an octant

of the surface) are shown in the figure (B). We have in each case attended only to

the curves of curvature below the plane of xy, and the corresponding centro-curves

above the plane of %y, but of course everything is symmetrical as regards the two

sides of the plane.

28. There is a precisely similar generation of the portion (A) by the minor-mean

concomitant centro-curves, and of the portion (B) by means of the minor-mean sequential

centro-curves.

42—2
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The Nodal Curve. Art. Nos. 29 to 60.

29. If two different points on the ellipsoid correspond to the same point on the

centro-surface, this will be a point on the Nodal Curve : the conditions for this if

(£> v)> (fi> Vi) are the parameters for the two points on the ellipsoid, are obviously

(a2 + ft)3 (a2 + v) = (a2 + ft)3 (a2 + Vl),

(b2 + ft3 (b2 +v) = (b2 + ft)3 (b2 + %),

(c2 + %f(c2 + V) = (c2 + ^(a2 + Vl);

these equations in effect determine 7) as a function of ft so that the equations

- /3ya2x2 = (a2 + %)s (a2 + v), &c.

then determine the coordinates (#, y, V) of a point on the Nodal Curve in terms of

the single parameter ft

The relation between £ and ?; would be obtained by eliminating ft, r\x from the

foregoing equation: but it is easier to eliminate 77 and rj1} thus obtaining between

ft and £ a relation in virtue of which ft may be regarded as a known function of

f ; 77 and ^ can then be expressed in terms of ft ft, so that each of these quantities

will be in effect a known function of gQ-).

30. The relation between ft ft is in the first instance given in the form

a2 [(a2 + ?)3 - (a2 + ft)3], (a2 + ft)3, (a2 + ft)3 = 0.

&2[(&2 + £)3-(&2 + £)3], (&2 + f)3, (&2 + ft)3

C2 [(C2 + £)3 _ (C2 + Ji)8]j (C2 + £)3? (C2 + £)3

Throwing out a factor (f—ft)2, this becomes

2 [a2 {3a4 + 3a2 (f + ft) + ft 4- £ft + ft2}

x(62-c2).(l, 1, r$(&2 + ft(c2 + ft), (&2+ft)(c2 + ?))2] = 0,

where the left-hand side is a symmetrical function of ft ft vanishing for £ = ft, and

therefore divisible by (f - ft)2 ; it is also divisible by A, = (b2 - c2) (c2 - a2) {a2 - b2) (= a/9y).

To work this out, write £+ft=£>, ££i = <7, tae equation may be written

%{{b2-c2)a2 3a4 S¥c4

+ 3a2j) + 3b2c2(b2+c2)p

+ jt)2 - q + (b* + c*)(p2-q)

+ b2c2 (p2 + 8q)

+ 3(b2 + c2)pq

+ 3q2

where the left-hand side divides by A (p2 — 4g).

1 This was my first method of solution ; and I have thought the results quite interesting enough to

retain them—but it will appear in the sequel that I have succeeded in expressing £, rj, £lf 7)lf in terms of a

single parameter <r.
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31. Developing and reducing, and omitting this factor, the final result is

6R + SQp + P (p2 + 2q) + Spq = 0,

where as before P, Q, R denote a2 + b2 + c2, b2c2 + c2a2 + a2b2} a2b2c\ respectively ; that is,

or, as this may be written,

QR + 3Q£ + Pf

+ & (3Q + 4P£ + 3£2)

+ fi»(P. + 3£ ) = 0,

viz. the parameters f, £2 have a symmetrical (2, 2) correspondence.

32. From the equations (a? + f)3 (a2 + 77) = (a2 + f,)3 (a2 + %), &a, we have

X (62 - c2) {(a2 + £)3 (a2 + 9) - (a2 + £)3 (a2 + %)} = 0,

262c2 (62 - c2) {(a2 + £)3 (a2 + 17) - (a2 + £,)3 (a2 + %)} = 0 ;

and observing that the term in { } is

a6 (3£+ v-S&- Vi)

+ a*(3|* + 8& -3£2-3£1%)

+ a2( ? + 3p)j- fx*-3fxV)

+ ( F* -^1),

these are readily reduced to

(3£ + ^ - 3f, - Vl) P + (3p + 3fr - 3£2 - 3^0 = 0,

(3£ + »;-3£1-%)^ + f3'?-fi3'?i =0,

or, what is the same thing,

3(f-fi)(P + £ + &) + '70P + 3f)-%(P + 3f1) = O,

3(f-ft)^ +^(P+ p)-1?1(P+ ^) = 0,

and if we hence determine the ratios 3(f— £2) : ?7 : %, the first of the resulting terms

divides by £ — £2, and we have

3:i,: % = -P(£2 + ££ + £3) + 3P-3^(£ + £)

:i2(2£-£)-£3(P + £ + £)

Hence observing that by the relation between £, £, the first term is

= 3{P#1 + Q(£ + £,) + 3i2}>

the equations become

1 : r, : Vl= P%1 + Q (f + &) + 3P

: J2(2^-f )-^(P + f + .fi)

:iJ(2£-&)-?(P + M-fc);
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and we thus have

which, considering ^ as a given function of £, gives rj as a function of £.

33. I write £ + £x = 2x, £ ~ £x = 2y, so that _p = 2x, # = x2 — y2. The relation between

£, £ takes the form

6(P+Qx + Px2-x3)--(6x + 2P)y2 = 0,

or, what is the same thing,

2 = (x + a2)(x + b2)(x + c2) ^

y x + i(a2 + 62 + c2) '

so that taking x at pleasure and considering y as denoting this function of x, the

values of tj, ^ belonging to a point on the nodal curve are £=(x + y), £i = (x — y) ;

and the value of r\ is then given as before.

34. The form just given is analytically the most convenient, but there is some

advantage in writing —=. x, — y, in the place of x, y respectively ; viz. we then have

2 _ (x + a2 V2) (x + b2 VI) (x + c2 VI)

7 " x + iVI(a2 + 62 + c2) '

where g = —. (x + y), g1 = -— (x — y), so that if (£, £2) be taken as rectangular coordinates
v2 ■ v2

of a point in a plane, (x, y) will be the rectangular coordinates of the same point

referred to axes inclined at angles of 45° to the first-mentioned axes respectively.

35. The curve is a cubic curve symmetrical in regard to the axis of x, and having

the three asymptotes,

x = - i (a2+62-fc2) VI, y= ± {x + £ (a2 + b2 + c2) VIj,

viz. these all meet in the point P the coordinates of which are

x = - i (a2 + b2 + c2) VI, y = 0 :

moreover we have y = 0 for the values x = — a2 V2, — b2 VI, — c2 V2, that is, the curve

meets the axis of x in the points A, B, G ; the order in the direction of — x being

G, B, P, A as shown in the figure: and with these data it is easy to draw the curve:

the portion which gives the crunodal part of the nodal curve is that extending from

B to the points 12 ; viz. at B we have £ = £x = — b2, corresponding to the umbilicar

centre ; and at 12, 12 we have £ or £i = — c2, ^ or £ = — c2 -\ -x -, corresponding to the

outcrop.
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36. The nodal curve passes through (I) the umbilicar centres, (II) the outcrops,

(III) the nodes of the evolute. The geometrical construction led to the conclusion that

the real umbilicar centre was a node on the nodal curve, and that the real outcrop

was a cusp (the tangent lying in the principal plane). It will presently appear

generally, as regards the several points real or imaginary, that the umbilicar centre is

a node on the nodal curve, and the outcrop a cusp—the tangent at the outcrop

being in the principal plane : as regards the node on the evolute this is a simple

point on the nodal curve, and by reason of the symmetry in regard to the principal

 

plane, the nodal curve will at this (imaginary) point cut the principal planes at right

angles. Hence considering the intersections of the nodal curve by a principal plane,

the umbilicar centre, outcrop and node of the evolute count respectively as 2 points,

3 points and 1 point, and as for each kind the number is 4, the whole number of

intersections is 4(2 + 3 + 1), = 24 It may be shown that these are the only inter

sections, of the nodal curve with the principal plane ; and this being so, it follows

that the order of the nodal curve is = 24 ; which agrees with the result of a

subsequent analytical investigation.
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37. The umbilicar centres or points (I) belong to values such as ^ = ^1 = — a2

which are the united values in the equation between (£, £j), viz. writing herein £i = £

the equation becomes

(Z + a2)(£ + b2)(£ + c2) = 0,

so that the united values are £ = ^ = — a2, —b2 or — c2. (It may be remarked, that

treating this cubic as a degenerate quartic, a united value would be £ = fx = oo , corre

sponding to the umbilicar centres at infinity.)

To a value such as g=—a2 there corresponds (not only the value £i = — a2, but

also) a value ^ = — a2 4- -~—— , as it is easy to verify. And the outcrops or points (II)

belong to such values £ = — a2, ^ = — a2 + .

p — 7

And the nodes of the evolute or points (III) belong to values such as £ = <w&2 + co2c2>

%! = co262+ coc2 (co an imaginary cube root of unity) which, as it is easy to see, satisfy

the relation between (£, £). But to complete the theory we require to have the values

of 7], 7]x and also the coordinates of the points on the centro-surface, and of the two

points on the ellipsoid.

38. I exhibit the results first for the umbilicar centres (imaginary), outcrops

(imaginary), and nodes of the evolute (imaginary), in the plane w = 0; secondly for the

real umbilicar centres in the plane y = 0 and for the real outcrops in the plane z = 0.

The formulae contain an expression XI which is a symmetrical function of a, /?, y

(or a, b, c), viz. it is

a =ol2 - /37= /32 - 7« = 72 - a/3 = £ (a2 + /32 + y2) = - (fiy + ya + a/3).

We have

I. f = - a2, v = - a2 ; & = - a2, ^ = - a2.

X =0,

Y2 = -b2±,

a

Z2 =

a '

,/3

x1 = o,

F^-i

72 — — r2-

>• (Umbilicus).

a? = 0 ,\

6y = —

c'z* = ■

r

a ' V (Umbilicar centre).
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IT. £ = - a2, v = -a2 +

vp - ir
(/3-7)3'

( i* («-/3)3 9 /3(y-ay

p — y

x=o, xx=o,

«(/3-7)3 tt0-V,

Ellipse, concomitant. Ellipse, sequential.

x= 0,

y «(/8-7)3'

^s( )3 (Outcrop).

Ca2a =

«(/S-7)3'

F2 i?2
(Observe that at point Y1} Z1 of ellipse _+_=i, the coordinates of the centre

of curvature are y = ~~- , z = ~ , and it thence appears that this is the point in

regard to which the ellipse is sequential.)

III. % = cob2 + (o2c2, V = -a2; £ = co2b2 + coc2, Vl = -a2.

X = 0, X1 = 0,

Z2 = - c2&), Z2 = - cW,

",y = _ «*, ). (Node of evolute).

c2z2 = - a2, I

39. Observe that these are the only ways in which it is possible to satisfy the

equations

0 = (a2 + %f (a2 + V) = (a2 + f,)3 (a* + ifc),

viz. starting from this equation we have

I a2 + f = 0, ^ + £ = 0,

c. vni. 43



338 ON THE CENTRO-SURFACE OF AN ELLIPSOID. [520

whence in the equations for rj, %, substituting the values ^=^ = — a2, we have

1 : v : Vl = a*P-2a*Q + 3R9

: -a2R + ae(P-2a2),

: -a2R + aQ(P-2a2),

that is,

1 : v : Vl = -a2/3<y : a4/3y : a4/3%

or

v = Vl = -a\

40. II. a2 -f £ - 0 without a2 + £ = 0, consequently a2 4- % = 0 ; writing £ = — a2, in

the relation between (£, ^), this is

6i2 + 3Q (£ - a2) + P (£2 - 4a2£ + a4) - 3a% (& + a2) = 0,

viz. this is

£2 (&2 + C2 _ 2a2) + £ (- a4 - a262 - a2c2 4- 362c2) + a2 (a4 - 2a262 - 2a2c2 + Sb2c2) = 0,

where the left-hand side should divide by £ + a2 ; the equation in fact is

(?i + O {& (&2 + °2 - 20 + ^4 - 2a2& - 2a2c2 + 3b2e2} = 0 ;

or, what is the same thing,

(ft + O {(?i + «2) OS - 7) - 3/37} = 0,

whence

41. Considering these values of f, £. as given, the verification of the value

J?! = — a2, and determination of rj = — a2 + ,-^-~-3 is somewhat complex.

Writing for a moment A = — ■ , we have

1 : v : %= P(a4 + a2A)-Q(2a2 + A) + 3P

: -jR(a3+ 2A)-(a2 + A)3(2a2-P + A

: -R(a2- A)-a6(2a2-P + A).

The first term is

a4P - 2a2Q + 3P + A (a2P - Q),

which is

= - a2/3y + A (a4 - 62c2) ;

and for the value of %, proceeding to the third term, this is

- a2R - a6 (2a2 - P) -f A (R - a%

which is

= a*/3y - a2A (a4 - b2c2\

so that without any further reduction % = — a\
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42. We have then

and I assume

_-.fi (a2 + 2A)- (g2 + A)3 (a2 -b2 - c2 + A)

V - a2/3y + A (a4 - 62c2)

—
<^>.«.

and investigate the value of O.

We have

■ - B (a2 + 2A) - (a2 + A)3 (a2 - &2 - c2 + A), = a4/3y + A©, suppose.

The equation therefore is

*4/3y+AQ 9/3y

- a2/3y + A (a4 - 62c2) "*" (/3 - y)3 '

that is,

A© = - a2A (a4 - b2c2) + j^7 O {- a2/3y + A (a4 - b2c2)} = 0,

or writing _7 = - , omitting the factor A, and multiplying by (/3 - y)2;

this is

(/3 - 7)2 {© + a2 (a4 - b2c2)} + 312 {- a2/3y + A (a462c2)} = 0,

in which equation

© = -2i2 - a6 -(3a4 + 3a2A + A2) (a2- b2 -o2 + A),

and thence

© + a2 (a4 - b2o2) = same + a2 (a4 - 62c2),

= - 3a6 + 3a4 (62 + c2) - 3a262c2

+ A {- 6a4 + 3a2 (&2 + c2)}

+ A2 (- 4a2 + &2 + c2)

-A3

= 3a2/3y + 3a2A (/3 - 7) + A2 (/3 - 7 - 2a2) - A3.

43. Hence, substituting for A its value and multiplying by (/8 — 7)3, we have

(/S-7)3{©+a2(a4-62c2)}

= 3a2/3y (/3 - 7)3 - 9a2/3y (/3 - 7)3 + 9/3272 (/3 - y - 2a2) (£ - y) + 27/33y3,

which is

= - 6a2/3y (/3 - y)3 + 9/32y2 (/3 - 7)2 - 18a2/3272 (/3 - y) + 27/33y3 ;

viz. this is

= {_ 6a2 (£ - y) + 9/3y} {(/3 - 7)2 + 3/37} /37,

= {- 6a2 (/3 - y) + 9/3y} (/32 + /3y + y2) /37,

43—2
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and the equation thus is

{_ 2a2 08 - 7) + 3/37} (/32 + fiy + <f) /37 + O j- a2fa - |^ (a4 - &V)j (/3 - 7) = 0,

or finally

& {a2 (/3 - 7) + 3 (a4 - b2c2)} = (- 2a2 08 - 7) + 3j8y) (/32 + fa + y2).

But c2 = a2 + /3, b2 = a2 — 7, and hence a4 — 62c2 = — a2 (j8 — 7) -f £y, and therefore

a2 08 - y) + 3 (a4 - 62c2) = - 2a2 (/3 - 7) + 3/37 ;

the equation thus divides by — 2a2 (/8 — 7) + Sfa and we have

Q, = /32+fa + y2>

-or, as this may also be written, £2 = a2 — ^8y, = /32 — 7a, — y2 — a/3. So that II has the

value originally so denoted, and we have then

44. III. Lastly the equation 0 = (a2 + %f (a2 + ??) = (a2 + £i)3 (a2 + %) is satisfied if

a2 -f 7; = 0, a2 + ^?i = 0 : the equations

(c2 + %y (c2 +v) = (c2 + £)3 (c2 + ^

then give

(&2+?)3 = (&2 + £)3,

which can be satisfied by £=%!, leading to ^=^1= — a2y which is the case L, or else by

62+r=o> (&2+£),

C» + £=©*((* + £),

that is,

£ = 6)62 + ft)2c2, & = «2&2 + «c2.

To show that these values satisfy the relation between £, g1} observe that they give

£ + & = ~ &2~c2, (& = 64 - 62c2 + c4,

whence also

r+^1+^12=3(64+c4),

and the relation becomes

6a262c2 - 3 [a2 (62 + c2) + b2c2] (b2 + c2)

+ [a2 + (b2 + c2)] . 3 (64 + c4) - 3 (b2 + c2) (64 - b2c2 + c4) = 0,

which is an identity
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45. I will show that these values of ft ft give the foregoing values rj = ^ = — a2.

We have

1 : «/-% : ij + ih=P#i + Q(?+&) + 3B

: (ft - f) (3E - (£» + £ft + ft2) (P + 1 + ft)}

: (ft+£){ £-(f2-£ft + ft3)(P + ? + ft)}>

this is

1 : V-Vi ■ ^ + ^ = «2(&2 + c2) : 0(ft-£) : - 2a2a2 (62 + c2),

or

t] — 7)x = 0, ?? + % = - 2a2 ; that is, ?? = % = — a2.

46. For the real umbilicar centres and outcrops we have

I. £ = - 62, f? = - b\ ft = - &2, % = - &3.

X2=-a2|,

7=0, ^ = 0,

II. £ = -c2,

22

/8'

^2=_r2-

CL"0C — ~

y=o> \ (real umbilicar centre).

C£° = -

0'J

?? = - c2 +

9a/3

or t) + a2 ■= — /3

(«-/3)3

(«-/3)3

ft = -c2 +

X2 = - w

3«/3

a-/3

Y(«-/3)3

% = -C,

*,.-_*£ T^«

7(«-/?r

ellipse concomitant.

 

-v ^3(7-«)3\aiK - 7 (a-/3)3

«3 (/3-7)3

6y = ■
(real outcrop).

7 («-/3)3

2 = 0.
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Nodal curve in vicinity of umbilicar centre, aV — — -^ , y— 0, c2£2 = — —. Art. Nos. 47 to 49.

47. Write

f = - &2 + g, ? 7?==_&2 + r)

we have to find the relation between #, ql9 r, rx; first for q, qlt the equation of

correspondence gives

+ 3Q(-2624-g + g1)

+ P{664-6&2(^ + *) + 32 + ^1 + g12}

+ 3 {-266 + 3&4(^ + g1)-&2(g2 + 4^1 + g12) + ^1(g + ^1)}=0?

that is,

3(q + qi)(3¥-2¥P + Q)

+ (q2 + qqi +qi2)(-3b2 + P)

viz. this is

- 3(q + qi)*J

+ (q2 + 4qq1 + qi2)(y-«)

+ Sqq1(q + q1)=Oi

whence approximately q + qx = 0 ; but it will appear that the value is required to the

second order; we have therefore

q+qi=iy^ (q2 + *qqi + qi2)

48. Now the equations

(a? + £>3 O2 + v) = O2 + £)3 («2 + %), and (c2 + £>3 (c2 + V) = (c2 + ^)3 (c2 + %),

putting therein for £, »?, £1( %, their values, give the first of them

log(l+r) + 81og(1+2)-log(l+^) + 81og(l+£),

that is,

r + 3q-^(r*+ Sf) +^ (r» + 3f) = r, + 33l -~ (n2 + 3fc«) + ~ (rx» + 32l») ;

and similarly the second equation

r+Sq+ ± (r* + 3«f) + ~ (t* + 3g») = n + 3?1 + ^ (tf + 3^) + ^ fa* + 3q') ;
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whence multiplying by y, a, and adding,

which, neglecting terms of the third order, is

r + 3q = r1 + 3q1.

Subtracting the two equations we have

viz. this is

r2 + Sq2 + f ^Z^ (r8 + Sq3) = r2 + Zq2 + f^* (n3 + 3ft8),

or, what is the same thing,

r2 - r2 + 3 (q2 - ft2) + f^^ {r8 - n3 + 3 (g3 - ft3)} = 0,

which, putting therein r — r2 = — 3 (q — ft), is

— r — n + g + ft + § (— r2 ~ ?Ti — ri2 + <Z2 + ??i + 2i2) = 0,

say this is

combining herewith

we have

and

where

-r-r1 + 2 + 2i+2A=0;

r - rx + 3g - 3ft = 0,

r + gr - 2ft - A = 0,

r2 - 2g + ft - A = 0,

A = -J- ^— (- r2 - rrx - rx2 + q2 + #ft + ft2).

But substituting herein the values r = — q + 2ql9 r1 = 2q — q1, this becomes

and then

r = - g + 2ft + A,

that is,
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49. We have then

oW"-?(1 + 5)(1 + ?),>

__£(, r + Sq Sq(r + q)\

and in the same way from c2z2 = - - 1 1 - -J ( 1 J , we have

moreover we have at once

Hence, writing x + Sec, 0 + 8y, z + Sz for x, y, z, we find

*-±Jv;
7a 2

s -, -2(a-/3) ,

or, what is the same thing,

to^^^JCg^^l /2;<-2(a-^)

72a 6 V 7a 7a2

where x, z denote the values at the umbilicar centre.

Nodal curve in vicinity of real outcrop, viz.

a*cfi = -^p^t, 6y=-.?!^l^j z=s0. Art. Nos. 50 to 52.

7 (a-^S)3' * 7 (a-/3)3'

50. Write

«. , 3a/9 „ „ ■
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and first for the relation between q and qly writing for a moment 7=] + q1 = Q1} and

therefore |i= — c2 + Q1; the equation of correspondence gives

- 3a/3 (q + &) + (q2 + 4qQt + &2) (a - /3) + 3^ (j + &) = 0,

which, putting for Qi its value, is

3*/3'
3a)8 y+ft +

a-/3

+ (« - P) ( <Z2 + *Hi + <Zi2 + (4? + 2ft)^+ W

that is,

-3q8(g- + g,)

+ 3a£ (4? + 2^i) + (a - /3) {f + 4>qqx + qf)

or, what is the same thing,

(9"'9+|?§,)9+s*'

+ %i (? + ?0 = 0,

or, for small values,

(8 +(«-/3)jg + gI = 0' that is' (^^g + gi = °-

51. Moreover, from the equation (c2 + f)8 (c2 + 77) = (c3 + fi)3 (c2 + %), we have

r^T^-s^^j -^ that is, ft-*^-*.

or, since g and qT are of the same order, 02 is of the order q-f. Hence; starting from

the equations — fiya?oc2 = (a2 -f ^2)3 (a2 + rj^) &c, the terms of x, y arising from the

variation of ^ are indefinitely small in regard to those arising from the variation

of £ : and we have

23* _ 8gx _ - (a-fl)

* _«4._M'~ ?1/3(7~«)'
P + a-/3

y a+-3^'- gi«(/3-7)'

a — |8

C. VIII. 44
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and for hz (= z) we have

C {bZ> ~ a0\a- ft) Vl' ~(a-/3)8' ~ 302 *'

so that writing for greater simplicity, (a — fi) q1 = — <*$■&, the formulae become

2Sx 3a

= «r,
x j— a

28y 3/3

flV3

52. This shows that there is at the outcrop a cusp, the cuspidal tangent being

in the plane of xy. It appears moreover that this tangent coincides with the tangent

of the evolute. In fact, from the equation (aa?)3 4- (&#)* — y2 = 0 of the evolute we have

(aocf. doc + (%)f. dy = Q

or substituting for (x, y) their values at the outcrop,

ff (y - «). ^ +. « (ff - 7) ^ = 0 .

7*(a-£) « 7*(*-£) 2/

that is,

/3(7-«)^ + a(/3-7)^=0,

which is satisfied by the foregoing values of — , and — , and the two tangents there-

x y

fore coincide.

We have

which in virtue of

a2oc (0 - y) + 62/3 (y - a) + c2y (a - /S) = 3a/3y,

is

4 {(&)• + (Syft = ~~~^ {3«/3 - * (« - /9)}

(observe 3a/3 - c2 (a - /3), = — c2 (y - a) - Sa2a, is negative)

- 9sr2a2/32

'<#&{*- py
fi,
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if ^ be the value at the outcrop. Writing 8s for the element of the arc we have

cOV:3

which exhibit the form at the outcrop.

The Nodal Curve ; expressions for the coordinates in terms of a single parameter <r.

Art. Nos. 53 to 60.

53. After the foregoing investigation of the nodal curve, I was led to perceive

that it is possible to express f, tj, %ly ^ in terms of a single variable <r, and thus to

obtain expressions for the coordinates of a point of the nodal curve in terms of the

single variable cr. The result was obtained by the consideration that the acnodal

portion of the nodal curve could only arise from imaginary values of £, rj ; the question

thus was, what imaginary values of these quantities give real values for the coordinates

x, y, z. To make y real we may assume

£ = -62-P(0-<K>,

(i = V — 1 as usual) : this being so, if A denote one or other of the quantities

% -.0L(=a?-b\ c2~62),

the expressions for — fiyaW, —yab2y2 will be

= {A-p(0 - cf>i)Y {A + p(d + <f>if},

and we have therefore the condition that this shall be real (for the two values A =7,

A = — a) : being real, it will in certain cases be positive, and we shall then have real

values for the remaining coordinates x, z.

54. The condition of reality is easily found to be

A2(3<92-<£2 + 3)-6^A(02 + ^^

viz. this equation in A must have the roots 7, - a, or the expression on the left hand

must be
= (3<92 - <£2 + 3) {A2 - (7 ■- a) A - ay] :

we have therefore

(7-q)2__ 36((92+</>2 + l)2

- 7a (3<92 - </>2 + 3) {3 (<92 + cf>J + 3<92 - 0»J '

_ 60p(62 + cj>2 + l)

44—2
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and writing 02-j-</>2 = X, 302-£2=F, the first of these is

(7~a)2_ 9(X+F)(X+1)2

-yet ~~(F+3)|3(X2-l) + F+3}'

which regarding X, Y as the coordinates of a point in a plane is a cubic curve having

the point X-f 1 = 0, F+3 = 0 as a node: hence writing F+ 3 = 3<j (X + 1), X and F

will be each of them a rational function of <t. The second equation is

~ F+3 ~J a' that ' P~ 26 ' _VZTF'

and we have also

20 = VX+F, 2<£ = V'3X-F;

the equations thus become

'3X - F]

X+FI'

.-"^-')'8(r+r){^-\/¥^'-

which are better written in the form

77 = _^+i(7_a)<7(X+F){l + v/^:^}SJ

where X, Y are given functions of <r. We in fact thus obtain an analytical expression

of the noda] curve, quite independent of the considerations as to real and imaginary

which suggested the process : the foregoing values substituted for £, y will give

— f3ya?oc2, &c. equal to rational functions of <r, so that taking for £, % the same expressions,

/— SX 4- F
only changing therein the sign of the radical a/ —y -±V ' tnese values of gl9 % give

the very same values of — /37aV, &c, or the values of f, 77, £1; ^ satisfy the conditions

(a2 + £)3 (a2 + 77) = (a2 + £)3 (a2 + Vl), &c.

for a point on the nodal curve.

55. To complete the investigation, writing as above F + 3 = 3a (X + 1), we obtain

(7-cty = (3<r+ l)X + 3o— 3.

-7a cr(X-fo--l) '

or putting for a moment

(7-«)'q-==g

— jo. '
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we have

(K-3)(a-l) g(ff-2) + 4.

3(7 + 1-^ ' + 30-+1-Z '

3g<r(o--2) + 12<r „ 3(«r- l){g(o- -!) + !}

+ Scr + l-K ' Sa + l-K

(«r-l)(3o--2)jr _ _ 3(o- 1)1^(0-2) +4}.

+ 3o-+l-iT ' ^-^ 3(7+1 -Z

or substituting for K its value we have

7« I (7 - a)!

ya \ 7 — a/ \ 7 -- a

So- + 1 - K = — {(3a- + 1) 7a + (7 - a)2 o-}, = — (Oct + 7a),

if as before fl = /32 — 7a ; and the result is

'a (a-
_2a \( 2y_

f-«-HT-).{i-7 '■ u;v--°;|.

?7 = — fr

and changing the sign of the radical we have the values of £1? %.

56. Write for a moment

'8(ff + -^ )(*-%-

A-i(7-a)«r|l- / -^ ^LA___1^jj = (A _ a + a VS)* = A + B VS,

8(<r+J«.V<r-_?y.

then in the product of these two expressions the rational part is = AA' + BB'8 ; but

from the manner in which they were arrived at we have 0 — ABf + A'B> and the

rational part is thus
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We have

^-h,-«>-^8;-2Ws,,

hence the rational part in question is

. (7-«)- <rQx-l)(3<r-2)(3 + S)

Tn<r + y«r 3(A-a)2H-a3£ ** &)+A*l>

which putting therein A = 0 gives the value of —yab2y2; and putting A =7, or A= — a,

gives the value of — /3<yct?a? or — a/3cV.

57. We have

1-,S =
<r(8«r-2)

3a7

3o-2-2o--3o-2-2<7-
47a

4 0- +
(y - «)s

S + 8--

<r(3<r-2)

3

<r(3<r-2)

12

•--H"-"-^]

Hence we have at once the value of

' L +^L^^U
-2)\ 7-a/\ 7~a

^^V -1 (?-«)■ <r(<r-l)(3<r-2) ,"

a = 2 (P - 7) °"-

where

58. Moreover

(a - a)2 - a2# = A2 - 2aA -f a2 (1 - S)

, [(3a- - 2) {- (7 - a) Ao- + A2} + (7 - a)2 a-2 4- 3a7]7

3(7-2'

where the term in [ ] is

a-2 (7 - a) (7 - a -3A) + <r (3A2 + 2 (7 - a) A 4- 3a7} - 2A2,

and since A = 7 or —a, that is, A2 — (7 — a) A — ay = 0, the coefficient of a is

= A{6A-(7-a)}}

or the term is the product of two linear functions of a- ; and we have

(A_a)2_a2/S = _ -{<r(7-a)-2A}{<7(7-a-3A) + A}.
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Similarly

3(A-a)2 + a2£ = 3(A2-2aA) + a2(3 + >Sf)

= 3V^2 K8cr " 2) J" (y - «) ^A + A2} + * {(7 ~ «) o- + «} {(7 - «) * - 7}!

where the term in [ ] is

(7-«)2o-B-(7-a)(7-a + 3A)c72+{3A2 + 2(7-a)A-a7}a--2A23

in which the coefficient of cr is = A {2A + 3 (7 - a)}, and the term is a product of

three linear functions : hence

3(A-a)2 + a2£
■ 3(*-l)

3cr-2
{(7 - a) a - A} {(7 - a)cr - 2A}.

59. Substituting these values we have the expression

1 {(7 - a) a + a} {(7 - a) a - 7} {(7 -a) a- 2A|2 {(7 - a - 3A) cr + A}3 t

Oo-+7a {(7-a)o-- A}(3cr-2)2 ;

which writing therein A = 7 gives — (3yaV, and writing A = — a gives — a/3c2£2 ; we have

above an expression for —yab2y2 requiring only a simple reduction, and the final results

are

{(7 -■«) <r + «} {(7 - «) <r - 27}2 {(/3 - 7) cr + 7}3

(ncr-}-7a)(3cr--2)2
-/37aV =

_ (cr - 1) cr2 {(7 - af a + 3«7l8
- ryOLby

0L/3C22<

(11(7 + jOi) (3(7 -2)2

= {(7 - «) cr - 71 {(7 - «) cr + 2a}2 {(« - /3) (7 - a}

(ncr + 7a)(3(7-2)2

where it is to be observed that, equating the denominator to 0, we have a triple

root a = 00 ; to indicate this, we may insert in the denominator the factor (I — Oct)3.

60. We see here the meaning of all the factors, viz.

Planes.

x— 0 y = 0 z — 0 00

Evolute nodes

Umbilicar centres

Outcrops

a

y-a

-ya

(7-1

y -a

2y

y-a

-2a

CT = 0
»=§

cr = ■

y — a

— 3ya

-A
a

"""a-p
cr = 00
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For the real curve a extends from ^ through 0 to — ~, viz.

g — -^ gives outcrop in plane z = 0,

<t= 0 „ umbilicar centre in plane y — 0,

o- = -^y- „ evolute-node in plane oo .

It is to be noticed that the order of magnitude of the terms in the table is

27 7 1 2 —7 a. — 7a — a — 2a — 37a
r«! 7^~a' lj *J £-7' ^8' "O"' 7^aJ 7^' (o^)2

so that the values -=, 0, —~- which belong to the real curve are contiguous; this

is as it should be. Several of the preceding investigations conducted by means of the

quantities £, 77, £, % might have been conducted more simply by means of the formulae

involving <r.

The Eight Cuspidal Conies. Art. Nos. 61 to 71.

61. The centro-surface is the envelope of the quadric

a2x2 by c2z2 ., ft

(a2+£)2 + (62 + £)2 + (c2 + £)2

Hence it has a cuspidal curve given by means of this equation and the first and

second derived equations

a2x2 b2y2 c2z2
(a2 + £)3 + (b2 + £)3 + Tf + ff ~ u>

a2x2 by c2z2

(a2+^(62 + £)4"(c2+f)4

which equations determine a¥, fry, c2z2 in terms of £, viz. we have

_/37a2tf2 = (a2 + £)4,

-7a6y = (62 + |)4,

-a/?c222==(c2-l-£)4;

so that, comparing with the equations — fty a2x2 = (a2 + £)3 (a2 -f v) &c» which give the

centro-surface, we see that for the cuspidal curve £ = 7) ; or the cuspidal curve now in

question arises from the eight lines on the ellipsoid, which lines are the envelope of

the curves of curvature : it is clear that the curve is imaginary.
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62. From the foregoing equations we have :

Va ax + V/3 by + V7 cz — V — a/?7,

a* \la~x 4- /3* 'siby + 7* Vc# = 0,

the second of which is best written in the rationalised form

(1, 1, 1, -1, -1, -l)(aVaafl, /3*J@by, y*Jycz)2 = 0,

and combining herewith the equation

Va ax + V'ft by 4- V7 cz = V — a/37,

then for any given signs of Vex, V/3, V7 and V - a/37 the firs^ °f these equations

represents a quadric surface, the second a plane, or the two equations together represent

a conic.

By changing the signs of the radicals (observing that when all the signs are

changed simultaneously the curve is unaltered) we obtain in all 8 conies, but only

four quadric surfaces; viz. the two conies

Va ax -f VyQ by + V7 cz— ± V — ctfiy

lie on the same quadric surface.

63. The conies form two sets of four, corresponding to the two sets of four lines

on the ellipsoid. The analysis seems to establish a correspondence of each conic of the

one set to a single conic of the other set ; viz. the conies have been obtained in pairs

as the intersections of the same quadric surface by a pair of planes: there is a like

correspondence of each line of the one set to a single line of the other set, viz. the

lines meet in pairs on the umbilici at infinity, but this correspondence is included in a

more general property : in fact each line of the one set meets each line of the other

set in an umbilicus ; and the corresponding conies (not only meet but) touch at the

corresponding umbilicar centre ; and qua touching conies they have two points of

intersection, and consequently lie on the same quadric surface. It is to be added that

the two conies touch also, at the umbilicar centre, the cuspidal conic of the principal

section.

64. The 8 conies form two tetrads, and the principal conies (reckoning as one of

them the conic at infinity) another tetrad: the complete cuspidal curve consists therefore

of three tetrads of conies: with these we may form (one conic out of each tetrad) 16

triads; viz. each conic of one tetrad is combined with each conic of either of the other

tetrads, and with a determinate conic of the third tetrad, to form a triad. And the

conies of each triad, not only meet but touch at an umbilicar centre, the common tangent

being also by what precedes, the tangent of the evolute at that point, which point is

also a node of the nodal curve.

c. vin. 45
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65. In fact consider the two conies

Va ax ± V/3 by+^ycz = *J — a/3y,

(1, 1, 1, -1, -1, -l)(aVaaa?, ± /3 V/3 by, 7 Vy as)2 = 0 ;

for the intersections with the plane y — 0 we have

Va a# + Vy cz = V — a/37,

(a Va a# — 7 V7 as?)3 = 0 ;

so that the two conies each meet the plane in question in the same two coincident

points, that is, they each touch the plane y = 0 at the same point, viz. the point given

by the equations

Va ax + V7 gz = V — a/37,

avaax — y V7 as = 0 ;

viz. this is the point, a# —7—^. , c# = ■ .. , which is one of the umbilicar centres

* V^S V-yS

and the common tangent at this point is

Va ax + V7 cz — V — a/37,

which is also the common tangent of the ellipse and evolute in the plane y = 0.

66. It has been seen that the nodal curve meets each principal conic at four

•outcrops, which points are cusps of the nodal curve : it is to be further shown that

the nodal curve meets each of the 8 cuspidal conies in four points (giving 32 new

points, which may be called 'outcrops/ the 16 points heretofore so called being

distinguished as the principal outcrops or 16 outcrops, and the points now in question

as the 32 outcrops), which points are cusps of the nodal curve.

In fact to obtain the intersections of the nodal curve with the 8 cuspidal conies,

we must in the equation of the nodal curve, or (what is the same thing) in the

expressions of £, 77 in terms of a, write tj — £.

67. Putting for shortness,

e=1 (7- «)■«•(*- l)(3<r-2)

4 ria- + 7a '

and as before

3^+ fc'V- ^

a y - «/ V 7 - a

(7(3(7-2)

we have thus

©(l+V^)3 = i-V>S3
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or, what is the same thing,

© (1 + 3S) - 1 + V3 {0 (3 + S) + 1} = 0 :

we have without difficulty

6 (3 + S) + 1 = &=£. j8ff. - 6a* + 4c + ,-**%

6(l + 3ViS)-l =

(7-a)s(30--2)(<r + —- V<r - 27

7 — a/ V 7-— a,

Oct + 7a

so that the resulting equation contains the factor

a/K-^H'-,-^- V----
47a

'(y-«)2

Omitting it, the equation becomes

a /a" - 2(7 - 7-^t:, (3(7 - 2)* Vo7 + V3 I3<j* - 6o* + 4(7 + r^ul* = 0,

or putting for shortness = M, and rationalising, this is

- (a-2 - 2a - M) (3(7 - 2)3 <r+ 3 (3(73- 6(72 + 4(7 + Mf = 0,

and, working this out, the terms in a6, a5 disappear, and the result is

(36 + 21M) o-4 - (64 + 36itf) a3 4- 32(72 + UMa + SM2 = 0,

or, as this may also be written,

3M* + M (27(74 - 36(73 + 16(7) + 4 (9o-4 - 160-3 4- 8a-2) = 0,

a quartic equation in a: to each of the 4 roots there correspond 8 intersections, viz.

there will be in all 32 intersections, lying in 4's upon the 8 cuspidal conies.

68. To show that these points are cusps, or stationary points on the nodal curve,

starting from the expressions of — /3ya2x2 &c. in terms of a we have, first for dy,

_2(fr_d f 1 2 3(y-«)2 Q 6_J

y (a-— 1 a (y — a)2 cr H- 3ay Xicr + 7a 3a- — 2j '

or, as this may be written,

2dy_ , f 1 2 12 4 + 3J/ 6_)
y ■ - d<T \a - 1 + o- + 4o- + 3M (i + SM)a + M 3a - 2) '

[ 3q-2-6o- + 4 (32 + 24Jf)o--9if2 )

_ {3o-3 - 5^'+¥a- + (16 + 12if) <r2 + (161/ + 9Jf2) <r + 3Jkf3J '

7 4 {(36 + 27if) <r4 - (64 + 56M) <r3 + 32a-2 + 16ilf<r + 3ilf2}

= da
a (a - 1) (3(7 - 2) (4(7 + 3if) {(4 + 3M) a + M)

viz. the numerator vanishes when a- is a root of the quartic equation.

45—2
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69. We have next

2dx , f 7-a 2(7-a) 3(/3-7) O 6
= da S7 r ■ \- ~, N x- -f

x ((7 — a) a + a (7 — a) o- — 27 (/3 — 7) cr + 7 Qo- + 7a 3<r — 2) '

which, putting —?— = B. and therefore ~ — B—l, and 7^— = (7, is
r ° 7 — a 7 — a p — 7

, f 1 2 3 4 + 3Jf 6

(7 + 5-1 ' a-2B ' (7+C (4 + SM) cr + M 3(7-2)'

3
and adding the fractions except -~, the numerator is

*2(27MB + 36B-4)

+ 0 {M(B*-B)M+72B*-80B + 8}

+ 4ilf-16.B2 + 16.B,

which, observing that B2 — B—\M, is

= c72(27iO + 365-4)

+ a- (-2<filf2 + 18M - 85 + 8),

and, substituting for M and 5 their values, this is found to be

4(27 + a)» 2 8(27+«)3a

= 4(27 + «)3 ^ / 2a\

(7-a)3 °" V 7-a/'

70. Hence observing that C = „7 = ft—^ , the whole coefficient of da is

& ft - 7 27 + OL

4(27 + a)3^2 + _2a_^

(7_a)3 r ^7-« 7 , 3

(3o--2)(0- + 5-l)(0--25)[(3if+4)o- + l^]+o-+C,

and the numerator of this expressed as a single fraction is

- 4(27 + «)2 / 2a

which is

+ 3 (3o- - 2) (a-2 - a- - 1 if - _B<r) {(3Jf+ 4) <r + Jf},

= 3 (3o- - 2) (o-2 - o- - Jif) {(3M+ 4) o- + M}

+ o- -3JS(3a--2)J(3if+4)o- + ilf}

, 4(27 + a)2/ 2a \ ..„ , .'
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the term in [ ] is

^<27IT+86)Bh>(-?*±--~

+ <7 mm+s) +^(-y+^

+ |W-g?+gS7''

L (7 -«)4 .

which is found to be

= - 4o-2 + o- (8 + 15M + -\7- if2) -2M- \M\

and the whole numerator is thus

3 (3<7 - 2) (<x2 - o- - pf) [(3Jf + 4) o- + M]

- 4o-3 + a-2 (8 + 15-M + -^ J/2) + <r (- 2Jf- f-if2),

which is

= (36 + 27M) o-4 - (64 + 36Jf) <73 + 32a-2 + 16Jf<r+ 3ilf\

71. We have thus

2doc , (36 + 27if)o-4-(64 + 36il/)o-3 + 32o-2+16ilfo- + 3if2

= Of<7 — " T ,

00 a- (<r - 1) (3<r - 2) (4<r + 3Jf) {(4 + 3Jf) «r + Jf} (<r + -g^-j

and thence also

2<fe , (36 + 27M) <r4 - (64 + 36Jf) a3 + 32o-2 + 16if«r + 3iH2

_ f^Q- . _____ _ _

z <r (cr - 1) (3c7 - 2) (4(7 + 3J-") {(4 + 3_¥) cr + M} (or - -iLg

so that dx and efc also vanish when a is a root of the quartic equation: the points

in question are therefore cusps of the nodal curve.

Centro-surface as the envelope of the quadric la2®2 (a2 + £)~~2 = 1. Art. Nos. 72 to 76.

72. The equations — fiyaW = (a2 + £)3 (a2 + 77), &c. considering therein £, 77 as variable

give the centro-surface ; considering 77 as a given constant but £ as variable they give

the sequential centro-curve; and considering £ as a given constant but 77 as variable

they give the concomitant centro-curve.

73. Suppose first that 77 is a given constant; to eliminate £ we may write the

equations in the form

- (£7)* (tt^)f (a2 + 77)" * = (a2 + £), &c,

and then multiplying first by a (a2 + 77), &c. and adding, and secondly by a, &a, and

adding (observing that 2« (a2 + f) (a2 + 77) = — a/3y, 2a (<x2 + £) = 0) ; we have

X(aaxf(a2 + 7jf = (a/3y)f,

2(aa#)f(a2-f 77)"^ = 0,

which equations, considering therein 77 as a given constant, are the equations of a

sequential centro-curve.



358 ON THE CENTKO-SURFACE OF AN ELLIPSOID. [520

If from the two equations we eliminate tj we should have the equation of the

centro-surface ; the second equation is the derivative of the first in regard to rj ; and

it thus appears that the equation of the centro-surface might be obtained by equating

to zero the discriminant of the rationalised function

norm. [{2 (aaxf (a2 + vf} - (a^)1] ;

but the form is too inconvenient to be of any use.

74. Taking next £ as a given constant, and writing the equations in the form

- /3ya2x2 (a2 + |)~3 = (a2 + v\ &c. ;

then multiplying by a (a2 + £), &c. and adding, and again multiplying by a, &c. and

adding, we have

2a2^2 (a2 + %)~3 = 0 ;

or writing these equations at full length,

a?x2 b2y2 c2z2

(a2 + £)2 (&2+£)2 (c2 + f)2

a2x2 b2y2 cV ~

(a2 + ^f + (b2+^y + (^TW

which equations, considering therein £ as a constant, are the equations of any con

comitant centro-curve : since the equations are each of the second order it thus appears

that the concomitant centro-curves are quadriquadrics.

75. If from the two equations we eliminate £, we have the equation of the

centro-surface ; the second equation is the derivative of the first in regard to . f ; and

it thus appears that the equation of the centro-surface is obtained by equating to

zero the discriminant in regard to £ of the integralised function

(a2 + £)2 (b2 + f)2 (c2 + %f {(2a2x2 (a2 + £r2 - 1},

or, what is the same thing, the discriminant of the sextic function

(a2 + £)2 (62 + ff (c2 + £)2 - %a2x2 (b2 + £)2 (c2 + £)2-

76. If instead hereof we consider the homogeneous function

w2 (a2 + |)2 (b2 + £)2 (c2 + £)2 - Xa2x2 (b2 + £)2 (c2 + £)2,

then the coefficients are of the second order in (x, y, z, w), and the discriminant, being

of the tenth order in the coefficients, is of the order 20 in (x, y} z, w). But the

sextic function has a twofold factor ( 1 + — ) if w2 = 0, and it has evidently a twofold

factor if x2 — 0 or y2 = 0 or z2 = 0, that is, the discriminant contains the factor x2y2z2w2 ;

or, omitting this factor, it will be of the order 12 in (x, y, z, w); whence writing

w=l, the centro-surface is of the order 12. I have in this manner actually obtained

the equation of the centro-surface : see the memoir " On a certain Sextic Torse,"

Camb. Phil Trans, t. xi. (1871), pp. 507—523, [436].
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Another generation of the Centro-surface. Art. Nos. 77 to 83.

77. By what precedes, the equation of the centro-surface is obtained as the

condition in order that the equation

{ZaW(a* + %)-2}-l = 0

may have two equal roots. But taking m an arbitrary constant, this is the derived

equation of

{ZaV (a2■+ f)-1} + £■ + m = 0,

and as such it will have two equal roots if the last-mentioned equation has three

equal roots; and conversely, we have thus the equation of the centro-surface by

expressing that the last-mentioned equation, or, what is the same thing, the quartic

equation

(Z + m)(Z+a2)(Z + b2)(Z + c2)-2aW(% + ¥)(Z + c2) = 0

has three equal roots. The conditions for this are that the quadrinvariant and the

cubinvariant shall each of them vanish ; the two invariants are respectively a quadric

and a cubic function of m; viz. the equations are

(a, b, c)(m, 1)2 = 0, (a, b', c', d')(m, 1)3 = 0;

where the degrees in (on, y, z) of a, b, c are 0, 2, 4 and those of a', b', c', d' are

0, 2, 4, 6 respectively: the equation of the centro-surface then is

a, b, c =0,

a, b, c

a, b, c

a', b', c', d'

a', V, c', d'

which is of the right order 12; but it would be difficult to obtain thereby the

developed equation.

78. For the nodal curve the cubic equation must be satisfied by each root of

the quadric equation, or, what is the same thing, the quadric function must completely

divide the cubic function; the conditions are

a, b, c

a, b, c

a', V, c', d'

where the degrees may be taken to be

0, 0, 2, 4

0, 2, 4, 0

0, 2, 4, 6
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and the order of the nodal curve is thus = 24 : two of the equations in fact are

= 0,a, b = 0, b, c

a, b, c a, c

a', b', c' a', c', d'

which are surfaces of the orders 4, 6 ; or the nodal curve is a complete intersection

4x6. By the results above obtained as to the nodal curve, it appears that the two

surfaces must have an ordinary contact at each of the 16 umbilicar centres, and a

stationary or singular contact at each of 48 outcrops.

79. The derivation of the centro-surface from the surface

b2y2
azx*

.+ +

GZZ"

+ £_m = 0
a2 + £^62-f £ c2 + £

requires to be further explained. The surface, say F"=0, is a quadric surface depending

on the two parameters £, m; the axes coincide in direction with those of the ellipsoid,

and their relative magnitudes are as

- Vc^Tf : r VPT| : - Vc2 + £
a b c

viz. these are as the axes of the confocal surface

.+
r + ■ .-1=0

a2+£ 62-f£ c2+£

divided by a, b, c respectively; to fix the absolute magnitudes observe that the

equation may be written

x2 + y2 + z2 — "in -

<

y + •
a? + f b2 + | c2 + f

i) = o,

viz. the surface V= 0 is a surface through the spheroconic which is the intersection

of the confocal surface by the arbitrary sphere x2 + y2 + z2 — m = 0 ; but, while the

surface is hereby and by the preceding condition as to the axes completely determined,

the geometrical significance is anything but clear.

80. Considering then the quadric surface V=0, depending on the parameters £, m ;

suppose that m remains constant while f alone varies ; we have thus three consecutive

surfaces V = 0, V = 0, V" — 0 ; and these I say intersect in a point of the centro-surface ;

the point in question will depend on the two parameters (£, m), and if these vary

simultaneously we have the whole system of points on the centro-surface; but if only

one of them varies, the other being constant, we have a curve on the centro-surface.

The three equations may be replaced by V= 0, 8^F= 0, 8^2F=0; of which the first

alone contains m ; and it thus appears that if m be the variable parameter, the equations

of the curve are B^V=0, BfV= 0, viz. the curve is then the quadriquadric curve which

is the concomitant centro-curve of the curve of curvature for the parameter f. But if
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the variable parameter be £, then this is a curve on the 12-thic surface 0=0 obtained

by the elimination of f from the equations V= 0, S^V=0; viz. we have O = #3 — T2 = 0,

where $ = (a, b, c)(m, l)2, T=(&', b', c', d') (m, l)8, and the curve in question is the

curve 8=0, T = 0, which is the cuspidal curve on the surface O = 0 ; the elimination

of m from the two equations S = 0, T = 0 gives as above the equation of the centro-

surface.

81. The surface 0=$3— T2 = 0 obtained as above by the elimination of £ from the

equations V = 0, 8%V = 0, (or, what is the same thing, by equating to zero the discriminant

of V in regard to £,) may be termed the sociate-surface : we have then the quartic

and sextic surfaces $ = 0, T=0 intersecting in the before-mentioned curve, which may

be called the sociate-edge ; and the locus of these sociate-edges is the centro-surface.

82. We may if we please, changing the parameter in one of the functions, consider

the two series of surfaces S = 0, T=0 depending on the parameters m, m' respectively;,

a surface of the first series will correspond to one of the second series when the

parameters are equal, m = m\ and we have then a sociate-edge. Taking a point

anywhere in space, through this point there pass two surfaces $=0, and three surfaces

T— 0 ; but there is no pair of corresponding surfaces, or sociate-edge. If however the

point be taken anywhere on the centro-surface, then there is a pair of corresponding

surfaces S = 0, T = 0 ; that is, through each point of the centro-surface there passes a

single sociate-edge ; and if the point be taken anywhere on the nodal curve of the

centro-surface, then there are two pairs of corresponding surfaces ; that is, through each

point of the nodal curve there are two sociate-edges : this explains the method above

made use of for finding the equations of the nodal curve, by giving to the equations

S = 0, T = 0, considered as equations in m, two equal roots.

83. The a posteriori verification that the surfaces F=0, V' = 0, V"=0 intersect in

a point of the centro-surface, is not without interest ; the parameters fx, ^ of the point

of intersection are found to be fx = £, 7j1 = m— a2 — b2 — c2 — 3£; whence in the equation

F=0, writing - j3ya2x2 = (a2 + £)3 (a2 + Vi) and m = a2 + i2 + c2 + 3^ + % the resulting

equation considered as an equation in £ should have three roots £■ = fx : the fourth

root is at once seen to be ^ = %, and we ought therefore to have identically

-a(.2^

(tf + fM^+fKc' + f)'

and by decomposing the right-hand side into its component fractions this is at once

seen to be true.

Third generation of the Centro-surface. Art. Nos. 84 and 85.

84. Instead of the foregoing equation V = 0, consider the equation

■ ( a2x2 , b2u2 g2z2 tf\ ( a2x2 . b2y2 c2z2 \ ^

C. viii. 46
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The equations ^W=0, d^W—0 contain only %, and are in fact identically the same as

the equations d^V=0, d$2V = 0; the elimination of £ from the equations d$V=0, d^2W=0

would therefore lead to the equation of the centro-surface : and the centro-surface is

connected with the surfaces TT=0, d^W=0, d%2W = Q and the parameters £, 77 in the

same way as it is with the surfaces V = Q, d%V=0, d$2V=0 and the parameters £, m.

That is, if from the equations W=0, d$W = 0 we eliminate £ we have a surface 0 = 0,

depending upon 77 and having a cuspidal curve ; and the locus of the cuspidal curve

(as 77 varies) is the centro-surface. But the equation W= 0 divides by f- — 77, and

throwing out this factor it becomes

j <iiL + ——*L± 1 = 0

(a2 + f) (a2 + 7;) (62 + f) (ft2 + 77) (c2 + f) (c2 + 7;)

so that the surface f} = 0 is obtained by eliminating £ from this equation and the

derived equation in regard to £ ; or, what is the same thing, by equating to zero the

discriminant in regard to ff of the cubic function

•72/V.2

(a* + *) (V + f) (c2 + f) - 2~- (&2 + D (c2 + ft

This surface is in fact the torse generated by the normals at the several points of the

curve of curvature belonging to the parameter 77 ; the cuspidal curve is the edge of

regression of this torse, that is, it is the sequential centro-curve of the curve of

curvature ; and we thus fall back upon the original investigation for the centro-surface.

85. In verification I remark that if X, Y, Z be the coordinates of a point on the

curve of curvature in question, and (x> y, z) current coordinates, then the tangent plane

of the torse, or plane through the normal and the tangent of the curve of curvature,

has for its equation

Xx Yy Zz , A

a2 + v &2 + V c2 + V

and if in this equation we consider the point (X, F, Z) to be the point belonging to

the parameters (77, £), Y^z- ^ we nave ~" ^7 X2 = a2 (a2 + £) (a2 + 77), &c, then this plane

will be always touched by the before-mentioned ellipsoid,

a2x2 b2y2 c2z2

(a3 + ft (a2 + v) (& + f) (&2 + n) (c2 + £> (c2 + V)

The condition for the contact in fact is

V_^!_ (a2 + g)(a2 + 77) ,

(a2 + 77)2 a2

viz. substituting for (X, F, Z) their values, this is

which is true. And this being so, the ellipsoid and the plane have each the same

envelope, viz. this is the torse in question.
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Reciprocal Surface. Art. No. 86.

86. The centrosurface is the envelope of

a2x2 b2y2 c2z2 i _ a .

(a2~+W + W+W+ W+W"

hence the reciprocal surface in regard to the sphere x2 + y2 + z2 - k2 = 0 is the

envelope of

a2 62 c2

that is,

a2X2 + b2Y2 + c2^2- &2 + 2£ (X2 + F2-f £2) + f (J + ~ + ^) = 0,

viz. the envelope is

(a2X2 -J- &2F2 + c2Z2 - ¥) (^ + ~ + ~) - (X2 + F2 + £2)2 = 0,

or, expanding and multiplying by a2b2c2, this is

a2 (b2 - c2)2 F2^2 + b2 (c2 - a2)2 Z2X2 + c2 (a2 - 62)2 X2Y2

- ¥ (b2c2 X2 + c2a2 Y2 + a262 Z2) = 0,

or, what is the same thing,

a2a2 F2^2 + b2/32 Z2X2 + c2y2 X2F2 - A;4 (b2c2 X2 + c2a2 F2 + a2b2 Z2) = 0,

which may be written

a2F2^2 + b2Z2X2 + c2X2F2 + f2X2 + g2Y2 + \i2Z2 = 0,

where

(a, b, c, f, g, h) = {aoi, b/3, cy, 2k2bc, 2k2ca, 2k2ab),

and consequently,

af+ bg + ch = 2k2abc (a + 0 + 7) = 0.

It would doubtless be interesting to discuss this surface as it here presents itself,

and with reference to its geometrical signification as the locus of the pole, in regard

to the sphere, of the plane through two intersecting consecutive normals of the

ellipsoid : but I abstain from any consideration of the question.

Delineation of the centrosurface for given numerical values of the semiaxes.

Art. Nos. 87 and 88.

87. I constructed on a large scale a drawing of the centro-surface for the values

a* = 50, 62=25, c2 = 15.

(These were chosen so that a, b, c should have approximately the integer values 7, 5, 4,

and that a2 + c2 should be well greater than 2b2 ; they give a good form of surface,

46—2
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though perhaps a better selection might have been made ; there is a slight objection

to the existence of the relation a2=2b2, as in the ^-section it brings a cusp of the

•evolute on the ellipse.) We have therefore

a = 10, £ = -35, 7=25;

the ellipses in the principal planes of the centro-surface are

f_ z2

(5)2 + (8'937)2~ '

2? if?

+ ■
(2*582)2 (3-535)

£ =i,
(4-950)2 ' (2)!

and these determine on each axis the two points which are the cusps of the evolutes.

We have moreover for the umbilicar centre # = 2*988, y = 0, £=1*380, and for the

outcrop x = 1*127, y = 1*947, z = 0.

88. For the delineation of the nodal curve (crunodal portion) we have first to find

the values of £, £x; these are given in terms of x, y ante No. 33 [p. 334], where y is

a given function of x, and x extends between the values {— b2 and — i (a2 4- b2 + c2)} — 25

and — 26§. It was thought sufficient to- divide the interval into 6 equal parts, that is,

the values of x were taken to be —25, —25*3, ... — 26*6. The values of £, £ being

found, those of rj, % were obtained from them by means of the original equations

(a2 + £)3 {a2 + v) = (a2 + £0 (a2 *+ v) &c- Yl7" we have thus for the determination of ??, rql

three simple equations, affording a verification of each other.

For the performance of these calculations (viz. of the values of y, £, £l5 77, %) I

am indebted to the kindness of Mr J. W. L. Glaisher, of Trinity College. The results

being obtained it is then easy to calculate as well the coordinates (x, y, z) of the

point on the nodal curve as also the coordinates (X, Y, Z) and (Xlf Ylt Zj) of the

corresponding two points on the ellipsoid (these last are of course not required for

the delineation of the nodal curve, but it was interesting to obtain them). The

whole series of the results is given in the annexed Table, and from them the drawing

was constructed.

I find also in the neighbourhood of the umbilicar centre (if £ = — 25 -f q),

Sx = -02868 q2,

Sy=± -02484 q2,

82 = -02191 q2,

and in the neighbourhood of the outcrop (if £x = — 38*333 -f- ^- t-r),

Bx= 1-127 w,

Sy = - 1-704 tsr,

§5 = 4- 4*582 "or '\
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& V V! x V * X Y Z Xx Yx Z,

-25 o- -25- -25- -25- -25- 2-988 o- 1-380 5-326 o- 2-070 5-326 o- 2-070

-25-3 4-2669 -21-0664 - 29-6002 -38-3193 -16-6728 2-543 0-360 0-996 4-394 2-289 2-491 6-233 1-957 1-023

-25*6 6-3191 - 19-3475 - 31-9858 -42-9911 -15-4693 2-148 0-721 0-662 3-504 3-189 2-283 5-956 2-580 0-584

-26- 8-1240 -17-8760 - 34-1240 -45-7879 -15-1047 1-786 1-175 0-373 2-780 3-847 1-948 5-626 3-005 0-293

-26-3 9-8760 -16-4573 - 36-2094 -47-5684 -15-0106 1-448 1-500 0-139 2-159 4-391 1-426 5-251 3-346 0-098

-26-6 11-6667 -15-0000 -38-3333 -48-7037 -15-0000 1-127 1-947 o- 1-610 4-869 ! 0- 4-829 3-651 o-

The calculations were performed before I had obtained the formulaB in a, which

would have given the results more easily.
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521.

ON DR. WIENER'S MODEL OF A CUBIC SURFACE WITH 27

REAL LINES ; AND ON THE CONSTRUCTION OF A DOUBLE-

SIXER.

[From the Transactions of the Cambridge Philosophical Society, vol. XII. Part I. (1878),

pp. 366—383. Read May 15, 1871.]

I.

I CALL to mind that a cubic surface has upon it in general 27 lines which may

be all of them real. We may out of the 27 lines (and that in 36 different ways)

select 12 lines forming a "double-sixer," viz. denoting such a system of lines by

h, b2, b3, 64, b5, 66;

then no two lines a meet each other, nor any two lines b, but each line a meets

each line 6, except that the two lines of a pair (aly 6i), (a2, b2)9...(a6i 66) do not

meet each other. And such a system of twelve lines leads at once to the remaining

fifteen lines; viz. we have a line c12, the intersection of the planes which contain the

pairs of lines (au b2) and (a2, &x) respectively.

The model is formed of plaster, and is contained within a cube, the edge of

which is = 18*2 inches : the lines a, b, c are coloured blue, yellow, and red respectively ;

the lines a1} b2, b5 being at right angles to each other, in such wise that taking the

origin at the centre of the cube, the axes parallel to the edges, and the unit of

length =1*6 inches, the equations of these three lines are

b2, x — 0, z — 1,

h, y=0, s=-l.
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The model is a solid figure bounded by portions of the faces of the cube, and

by a portion of the cubic surface, being a surface with three apertures, the collocation

of which is not easily explained.

To determine the construction I measured, on the faces of the cube, the coordinates

of the two extremities of each of the twelve lines; these were measured in tenths

of an inch (taking account of the half division, or twentieth of an inch), and the

resulting numbers divided by 16 to reduce them to the before-mentioned unit of 1*6

inches. These reduced values are shewn in the table : knowing then the coordinates

of two points on each line, the equations of the several lines became calculable; the

true theoretical form of these results—(viz. the form which, but for errors of the

model, or of the measurement, they would have assumed)—is

* = 1,

&., x = Bxz + D, y = B1'z + D',

h, x = 0,

h, x = Bs(z + ft),
y •=£,'(*+ ft),

h, x = B, o + A),
y = 5/ (* + &),

h, y = o,

h, x = B6(z + /3e), y = B6'(z + &).

alt x = 0, y = o,

Oa, x- A^ + G2, y = A3'(z-l),

<h, x = As(z + 1), y = A3'(z-l),

at, x = Ai(z + l), y = A4'(z-l),

(h, x = A5(z + 1), y = At'z + Ct',

<h, ... X = A, (2 + 1), y = A«'(z-l);

-1,

but in consequence of such errors, the results are not accurately of the form in question.

The faces of the cube being as in the diagram :

X

:w

^5^J)

the Table is
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Equations calculated

from the measure

ments of the model.

ABCD

s=- 5-688

EFGH AEBF BGFG AEDH

3 = + 5-688 2/^ + 5-688 x = - 5-688 2/= -5-688 x=+ 5-688

X = 0

y = 0

^ = 0

y=Q

a?=0

2/ = 0
%

x = - '7S0z- -187

y = - 423s + -406

^ = 4-250

2/= 2-812

x = - 4-625

2/ = - 2-000

a2

x-— -6543 — -656

y = - -5883 + -531

&•= 3-062 ^ = -4-375

2/- -2-812
%

2/ = 3-875

a = -2-9123 -2-959

y = - -7363 + -752

2/- -0625

3 = -9375

2/- 2-937

3 = -2-969

(X4

x= 1-024^+1-014

2/ = - 1-0493- -277

cc = - 4-812
y =-5-063

3 = 4-562y= 5-688

x = -264s; + -187

y = - -104s + -219

se=- 1-313 a= 1-687

2/ = - -375

a6

2/= -8125

aj = -l-611s + -151

2/ = - 1-4383 + -288

2/- 5-500

3 = - 3-625

y = -4-656

3 = 3-437
h

x = 0 # = 0

3=-l

<e = 0

K
3 = -l 3=-l

a; = -1-3523- -685

y = -2-0343- -984

cc = 3-750

3-- 3-281

^ = -3-812

3- 2-313
h

x = - -7533- -0315

y = - -500z- -0315

x = 4-250 <« = - 4-313

h
2/= 2-812 2/ = -2-875

y= o y = 0

2 = 1
h 3=1

3 = + 1

<c= 1-1233- -702

y = - 1-1233+ -702

^ = -5-688

% = _ 4-438

2/ = -5-688

3 = 5-688h

I hence calculate the intersections: considering any two lines which ought to

intersect, then projecting on the horizontal plane and calculating x7 y the coordinates
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of the point of intersection of the two projections, these values of a, y substituted in

the equations should give the same value of z\ but if the lines do not accurately

intersect, then the values of z will be different.

K h h h h h

0 0 0 0 0

«! % 0 0 0 0 0

- 1 - -495+ -011 - -052 + -010 + 1 + -625

- -077 + -381 + 4-292 - -967 - -398

a2 + -455 * + -771 + 2-803 - -008+ -008 + -227

- -129+-013 - -796 + -067 -5-704+ -036 + 1 + -346 + -076

- -423 - -001+ -001 - 4-782 -1-310 - -673

% + -699 + 1-119 * - 3-227 - -028+ -028 + -344

- -264 + -021 - 1 + 6-350+ -042 + 1 + -162+ -146

- -957 - -023+ -023 + 1-286 - 5-871 - 1-330

a4 + 1-238 + 1-488 + 1-736 * + -008 + -008 + -847

- -674 + -014 - 1 - 1-398+ -060 + 1 - -344+ -215

+ 2:519 - -005+ -005 + -282 + -412 + 18-764

a5 -1-801 + -772 + -476 + -194 * - 14-155

+ 1-462 + -008 - 1 - -717 + -001 - -518 + -070 + 15-282 + 4-052

+ -194 - -038+ -038 + -045 - -131 + -451

a6 + -214 + -323 + -283 + -284 + -057+ 057 *

+ -040 + -022 - 1 - -582 + -042 - -423 + -208 - 1

Starting from the assumed equations of 62, b3, b4, 65, 66, a1? and calculating by the

theory the remaining lines, the equations of the Mines (those of &2 being calculated) are

bl9 x = 1-321*- -310,

y = -1-295* + -581;

b2 , x = 0, z = — 1 ;

b3, x = - 1-352 0 + -510),

y = - 2 034 (z + -510);

b4, x = - '753 (z + -052),

y = - -500 (z + -052) ;

h, y = 0, z = + l;

66, se= 1123 O- -624),

y = - 1-123 (z - -624) ;

C. VIII. 47
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and the equations of the a-lines (those of all but ax being calculated) are

au x — 0, y — 0;

a2} # = - '753 ^--091,

2/ = - '4980-1);

<h,

a5,

««,

# = - -609 0 + 1),

2/ = - -677 0-1);

a? = - 2*506 0 4- 1),

y = - -8410-1);

x = '874 0 + 1),

2/ = - -967,2- -288:

a? = -170 0+ 1),

2/ = - -0710-1);

and thence for the points of intersection the coordinates are

h h h h

0 0 0

0

0 0

0

+ -624

* 0 0 0

-1 - -510
•052

+ 1

- -170

+ -446

+ -105

+ -662

+ -996

- 1

+ 197-| - -844 - -336

+ -336

+ -325

* + 1 31 -,1- i.e. lines a2, b4

nearly parallel.

0

+ 1-262-i

- -515 0

+ 1-354

-1

- 1-805 -1-218

0

- -641

+ -782 * - 2-007

+ 3-964

- -641

+ -053- -155 + 1

-1-071

+ 1-323

- -573

0

+ 1-682

-1

+ 1-438

+ 2-164

- 1-574

-5-012 -1-259

+ 1-259

- -497

* 0

+ 1

+ 3-189

- 2-849

+ 2-649

0

+ -679

-1

+ -259

+ -291

- -702

+ -383 + 6-410

-6-410

+ 6-333

+ -255 *

•561

+ -241

+ -041

+ '417

0

+ -142

- 1

- -074

+ -112

+ -131 + -340

- -565

+ -087

•226

0

+ 1

*
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II.

I have in a paper "On the double-sixers of a cubic surface," Quart Math. Journal,

t. x. (1870), pp. 58—71, [459], obtained analytical expressions for the twelve lines of

a double-sixer, and also calculated numerical values, which however (as there remarked)

did not come out convenient ones for the construction of a figure. A different mode

of treatment since occurred to me, by means of the following equation of the cubic

surface

x y z w\ (xz yw 7 (x y z
■*- + *+-

which as will appear is a very convenient one for the purpose. We in fact obtain at

once eight lines of the double-sixer; viz. these are

1. x = 0, w = 0,

3. y = 0, z = 0,

5 °l-l-0 £_^ = o

6. iU0, *
w
7 = 0,

and also five lines not belonging to the double-sixer, viz.

12.

2'. x = 0, y = 0,

4'. 0 = 0, w = 0,

5> ? 8'~U' iS7 7'_U'

6'. ?_« 0,|-*-0;

23.

34.

41.

56.

/« z w\ 1 , (x z ro\ 1

,y \a 7 0/07 \a 7 0/ a 7

« y w\ \

w

0,

_fc^_y_^J__o

a' /3' 8'7 /8S U /3 S/ PV '

\a fi 7/ «7 \a p 7/ «7

a/870 a/570

The remaining lines of the double-sixer are then easily determined; viz. the lines

3, 5, 6, and 12 are met by the line 2', and by a second line V ; this, as a line

meeting 3, 5, 6, will be given by equations of the form

'/3
y=*(^-w)' ^-|^ = <£(-'*-™)>

and observing that these equations, writing therein x = Q, give

:V> y>
PSf*' 7 S' /3'o>*'

47-
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the condition of intersection with the line 12 gives

a' — ka.
</> = ■

'v-kS'

which is the value of <£ in the foregoing equations: and to these we may join the

resulting equation

Proceeding in like manner for the lines 3', 2, 4, the equations for the remaining

four lines of the double-sixer are

a! /

1 - w g> = <£ [y - ;

x — w

.p

,/8

ivyy (aS' - a'B) = z<j>W (/3y - #'7).

4. <£:

7' — ky

1'. t-

a! — ka

'-^(^-^

= <l>(z--w),

2/77 («£' - a'/3) = #/3/3' (78' - 7'8).

3'.
7 - fry

9 #-*£'

*(«§
" 2/) = * - W g7 ,

♦(«! - y) = z - iv 1 ,

x<f>8V (a/3' - af0) = wou((yV-y'8).xfPff (aS' - d'8) = yaa' (#/ - /3'7).

It may be added that :—

In plane x = 0,

intersection of V lies on line £ : w = (s/3' — a'ft) 77 : ay^S'S' - dyfih,

2 „ 2/ : z = ay(3'S' - aV/3S : (aS' - 0*8) 77,

and that the line joining these intersections is the line 12.

In plane y = 0,

intersection of 2 lies on line x : w = «7/3/8/ - a'7 £8 : — (£7' - /3 7) 88',

3' „ * : w = ay/3'8' - «Y£8 : 0/3' - a'£) SS7,

and that the line joining these intersections is the line 23.
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In plane z = 0,

intersection of 3' lies on line x : y = (y8' — y'8 ) olol : ayft'8' — a'y'ft8,

„ 4 „ x : w = — (^7' — /3 7) act' : ayft'8' — ay'ft8,

and that the line joining these intersections is the line 34.

And in plane w — 0,

intersection of 4 is on line y : z = (aS' — a'S) /3/3' : ayft'8' — a'y'ft8,

V „ x : y = ayft'8' - a'773S : (78' - y'8) #8',

and that the line joining these intersections is the line 14.

The equations of the remaining ten lines of the surface may be obtained without

difficulty, and also the forty-five triple planes, but I do not stop to effect this ; the

planes x = 0, y=0, z = 0, w = 0, are, it is clear, triple planes, containing the lines

1, 2', 12; 2', 3, 23; 3, 4', 34; and 4', 1, 41 respectively.

If, to fix the ideas, the planes x = 0, y = 0, z — 0, w = 0 are taken to be those of the

tetrahedron ABGD(x = BGD &c, as usual), then the edges AB, BC, CD, DA (but not the

remaining opposite edges AC, BD) will be lines on the surface. Each plane of the tetra

hedron, for instance ABG (w = 0), is met by the ten lines not contained therein in two

vertices A, C, three points on the edge BA, three points on the edge BG, and two other

points, viz. these are the intersections of the plane ABG by the lines 4 and 1'. For

the construction of a model it is sufficient to determine the three points on each edge,

and the two points, say in the plane ABG and in the plane DBG (x = 0) respectively ;

for then each of the remaining eight lines will be determined as a line joining two

points in these two planes respectively. If in the first instance k is considered as a

variable parameter, then the two points in the plane iv = 0 are given as the inter

sections of two fixed lines by a variable line (14) rotating round the fixed point

Of 77 Z IT U Z

-^ + - = 0, -> — ^7 + -, = 0 ; and the like as regards the two points in the plane

a /3 7 a ft 7

# = 0. By making (with assumed values of the other parameters) the proper drawings

for the two planes w = 0, x = 0, it is easy to fix upon a convenient value of the

parameter k\ and I have in this manner succeeded in making a string model of the

double-sixer; viz. the coordinates x, y, z, w are taken to be as the perpendicular

distances of the current point from the faces of a regular tetrahedron (the coordinates

being positive for an interior point) ; the values of a, ft, 7, 8 were put =3, 4, 5, 6

and those of a', ft', y\ 8' = 1, 1, 1, 1 ; the value of k fixed upon as above was

k — — \ ; this however brings the lines 2 and 4 too close together (viz. the shortest

distance between them is not great enough), and also their apparent intersection too

close to their intersections with the line 6' ; and it is probable that a slightly

different value of k would be better.
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The results just obtained may be exhibited in a compendious form as follows :

x : y : z : w -

1 is line BC 0 0

2' „ CD 0 0

3 „ DA 0 0

4' „ AB 0 0

5 meets CD

„ AB a £

y 8

6 „ CD y 8'

„ AB
/

a /?'

6' „ BC

„ AD a

£ y

8

5' „ JK7

a'

£' 7

8'

a/ — ka

(a'-ka)(ayP'V-a'y'p8)

„ BCD -(a'-£a)(y8'--yS)#3'

(a'-ka)(y%-y'$)pP'

(%~M)(ap'-a!p)yy'

-(8' -M)(aP'-*'p)yy'

(V-k8)(ayP'V-a'y'p8)

3' „ £<7

„ ABD

P'-kp

(P-kP){aypS-a'y'fih)

y - &y

-(/3'-&/?)(y8'-y8)aa'

(/^-^(yS'-y^aa'

(Y-h)(ayF&-a'YI3S) (y'-ky) (ap'-a'p)8V

-(y'-ky)(aP'-a'P)W

2 „ jLB

„ BCD

a' — A;a P'-kp

(p'-kp)(ayp'$'-a'yfp8)
(P'-kp)(aS'-a'8)yy'

-(P'-kp)(a$'-a'$)yy'

(a,-ka)(Pyf-P'y)SS/

-(o!-ka)(py'-p'y)W(a — &a) (ay/3' 8' — dy'fih)

4 „ CZ>

„ iLB2>

y'-ky

(y'-ky)(ayP'V-a'y'p8)

S'-ifcS

-(8'-M)(py'-P'y)aa'

(8'-k8)(Py'-p'y)aa'

-(y'-ky)(aV-a'8)Pp'

(y'-&y)(a8'-a'S)£/3'

(8'-&8)(ay/J'8'-aY08)

■ „ ABC
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_w\ JL_
V and 2 meet BCD on line ( ~~oi + ~~ I') «x

3'S'

2 and 3' , , GDA

3' and 4 ,, DAB

4 and 1' , , ABC

z w\ 1

ft \a 7 o/ a 7

y w\ iX

W /8' + 7' J a7 U /3 + 7 J«V '

or calculating the numerical values from the foregoing assumed data, say

X ■ y :z : to

1 is line BC 0 0

2' ... CD 0 0

3 ... DA 0 0

4' ... AB 0 0

5 meets CD 5 6 z =45*5, w = 54*5.

... AB 3 4 x=. 42-9, y = 57*1.

2 —50, w = 50.6 meets CD 1 1

... 45' 1 1 x = 50, y = 50.

y = U4, z -55-6.6' meets BC 4 5

... 42) 3 6 a = 33-3, w = 66-7.

2/ = 50, 3 - 50.5' meets BC 1 1

... 42) 1 1 a? =50, w = 50.

a? = 44, 2 =56.1' meets AD 11 14

... 5C2) -44 70 126 y = -25-l, 2 = 39*9, w = 71-8.

... 45(7 99 44 -70 Not required.

2/ = 48, 2 =52.3' meets BC 12 13

... 4C2) -36 117 78 Not required.

... 452) 36 108 -78 ^ = 47-2, 2/= 141-7, w = ~102-3.

2 meets 45 11 12 ^ = 47*8, y =52-2.

... BCD 100 180 66 y= 26-4, z = 44, w = 16-2.

... 4C2) -99 189 66 Not required.

4 meets CD 13 14 2 =48-1, w=51-9.

... 452) 42 156 -126 cc = 50-5, y = 187*6, w=- 151*5.

... ABC 42 156 117 Not required.
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1' and 2 meet BCD on line 35y - 32* -f SOw = 0,

2 and 3' ... GDA 26^ + 22^ - 21w = 0,

3' and 4 ... DAB &b- 1y - 6w=0,

4' and 1 ... ABC 52^ - 47y - 44 * = 0,

which last four equations serve as a verification.

The outside numerical values are given in the manner most convenient for the

construction of a drawing; viz. when the coordinates refer to a point on an edge of

the tetrahedron, or say on the side of an equilateral triangle, then taking the length of

this edge (or side) to be = 100, the numerical values are fixed so that the sum of the

two coordinates may be = 100, and the two coordinates thus denote the distances from

the extremities of the edge or side: but when the three coordinates belong to a point

in the face of the tetrahedron, or say in the plane of an equilateral triangle, then

the sum of the coordinates is made = 86*6, and the three coordinates thus denote the

perpendicular distances from the sides of the triangle.

III.

It is possible to find on a cubic curve a double-sixer of poinfs 1, 2, 3, 4, 5, 6

and 1', 2', 3', 4', 5', 6' such that any six points such as 1, 2, 3, 4', 5', 6' lie in a

conic. In fact considering a cubic surface having upon it the double-sixer of lines

1, 2, 3, 4, 5, 6 and 1', 2', 3', 4', 5', 6', the section by any plane is a cubic curve

meeting the lines, say in the points 1, 2, 3, 4, 5, 6, V, 2', 3', 4', 5', 6': each of the

lines 1, 2, 3 meets each of the lines 4', 5', 6', and consequently the six lines lie in

a quadric surface : therefore the points 1, 2, 3, 4', 5', 6' lie in a conic : and so in the

other cases ; the number of the conies is of course = 60.

The cubic curve may be a given curve, and six of the points upon it (not being

points on a conic) may also be taken to be given ; for instance the points 1, 2, 3, 1', 4', 5'.

For take through the points 2, 3 respectively any two lines 1, 2 ; through 1', 4", 5'

respectively the lines 1', 4', 5' each meeting each of the lines 2, 3 : and through 1

a line meeting each of the lines 4', 5'. It is easy to see that a cubic surface may

be drawn through the cubic curve and the lines 1, 2, 3, 1', 4', 5': for the passage

through the cubic curve requires 9 conditions; the surface then passes through the point

2 and to make it pass through the line 2 requires 3 conditions; similarly the surface

passes through the point 3, and to make it pass through the line 3 requires 3 conditions.

The surface now passes through V and through the points of intersection of the

line r with the lines 2, 3 : to make it pass through the line 1' requires 1 condition ;

similarly to make it pass through the lines 4', 5', 1 requires in each case 1 condition ;

or there are in all 19 conditions, so that the cubic surface is completely determined.

Take now through the points 1, 2, 3, 4', 5', a conic meeting the cubic in the point 6':

then through the lines 1, 2, 3, 4', 5' we have a quadric surface passing through this
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conic, and therefore through 6': hence through 6' we may draw a line 6' meeting

each of the lines 1, 2, 3 ; and since the cubic surface passes through the point 6'

and also through the intersections of the line 6' with the lines 1, 2, 3, it passes

through the line &. We complete in this manner by constructions in the plane of

the cubic the system of the twelve points, viz. each new point is given as the inter

section of the cubic curve by a conic drawn through five points of the cubic curve.

It is then shown as for the point 6" and the line 6' through it, that through each

new point there can be drawn a line denoted by the same number and meeting each

of the lines which it ought to meet, and hence lying on the cubic surface : the

twelve points are thus the intersections of the plane of the cubic curve by the twelve

lines of the double-sixer; and it follows that the six points which ought to lie in

a conic (in every case where such conic has not been used in the plane construction)

do actually lie in a conic.

I was anxious to construct such a double-sixer of points on a cubic curve; for

this purpose I take the equation of the curve to be y2 = (l J (l— t) (1 )> or

say for shortness y2 = X ; where, to fix the ideas, a, b are supposed to be positive,

a greater than b ; and c to be negative.

The cubic curve is thus a parabola symmetrical in regard to the axis of a, and

consisting of a loop and infinite branch ; and I take upon it the points 1, 2, 3, 1', 4', 5'

o
as shown in the figure, viz. the coordinates of these points are as stated in the

Table, where m is the x coordinate, and Vilf =a/(1 J (1 — -j-J (l j and so in

other cases, Vl4 = 3*74165.

C. VIII. 48
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x y x y

1 m V^ 6 VT4 = 3-742

2 0 1 0 1

3 0 -1 0 -1

4 (9 V©

75

2-1369 = 1-945 -(37)Vn^-168

5 4> V?

75

-1+3-6T = -°-792
^9)3 ^="606

6 -V^
y = 4-333

~|Vl4 = - 1-641m2

r -V5r 6 -Vl4 = - 3-742m

1560(14-VT4)

(31 \/l4-5)2

2' o- VI 1-299 .. = + -676

1560(14 + Vl4)

3' Vt 1-887 . . = + -247
T

(31 VI4 + 5)2

4' c 0 -1 0

5' 6 0 2 0

6' mx V5;' ^ = 4-333 ~Vli= 1-641.

The numerical values belong to the curve y2 = (l —-) (l —~) (l+an and to m = 6.

Starting with the points 1, 2, 3, 1', 4', 5' we have to find the remaining points

6', 6, 4, 5, 2', 3'.

Point 6' by means of the conic 1234'5'6', as follows.

The equation of the conic is

(a)-b)(w-c)-bcy2 + kxy = 0, (2, 3, 4', 5'),

and making this pass through the point 1 (x = m, y = VJf) we find

(m - b) (m -c) + ka \/M = 0. (1),

Hence taking the coordinates of 6' to be mly *JMu we have

Oi - 6) (m, -c)+ka 47MY = 0, (6'),

and thence

iMl - (mi - &) (™i - c) _ -Mi (m - a)

V3f (^ —b)(rn — c) M (n^ - a) '
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that is,

Vikfi _ (m1 — b) (mx — c) _m1 — a

\fM (m —b)(m — c) m —a'

We have thus for m, a quadric equation satisfied by m=m1, so that throwing out the

factor m — ra1} the equation is a linear one, viz. we find

ma — ab — ac + bc

mx = ,

m — a

or, what is the same thing,

(a — b) (a — c)
mx — a = '-+-. - ,

m — a

and thence also

(m — a)2

viz. \,M1 is determined rationally in terms of m, VDT; this is of course as it should

be, since the point 6' is uniquely determinate.

Point 6 by means of the conic 2361'4'5'.

In precisely the same manner the coordinates are mly — *JMU where mly */MlT

denote the same quantities as before.

Point 4 by means of the conic 2341'5'6'.

The equation of the conic is

FX+Gy + H=^~t, (2,3),

dj

where

Fb +#=4> (so

(60

(10

Fm.+ O *JMX + H = -—-1,

m^

Fm -^Vi^+g^1""^,

m

which give without difficulty

abcF=-a — c + P,

*>/MabcG = (m-b)(-m + P),

abcH— ab + ac + bc — bP,

, do 2 (a — c) (b — c)
where r = Za — c —— —— , a quantity which will presently be expressed in

terms of m only.

And then

48—2
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or say

,— 1 — © 1
F (0 -b) + G V© = ^—- J

that is,

viz. that is,

= _ (0 _ b) (— - - —

(0-6) (a&c .F + a + c - 0)+Gabc V© = 0,

(6>-6)(P~6>) + (m-6)^E(P-7?i) =0

nM

or, rationalising and throwing out the factor 0 — b, this is

^^b){6^P)^{m^b)(m-Py^a\^~hl = 0,

v 7 v 7 v ' v 7 (m — <x) (m - 6)

which is a cubic equation satisfied by 0 = m and 0 = m1; so that throwing out the

factors 0 — m, 0 — m1 we have for 0 a linear equation.

Putting for shortness

A = (m - a)2 - (a - b) (a - c),

5-(m-6)2~(6-c)(6-a),

(7 = (m - c )2 - (c - a) (c - 6),

the value of 0 may be expressed in the forms

a B2 / \ a -l A2 , N n 4 (m - a) (m - 6) (m - c) (b - c) (a - c)
61 - a = £i (c - a)> e-h = Q-AG-h)> 0-c = -^ ^ ^ ^ ^_—^ .

We have moreover

P ^ _ 2(a-c)(m-6)(m-c) p _ (m-c) J.

equations which express P in terms of m only ; also

f) _ p _ ^ 2 (a — c) (m — b)(m — c)B

and then

m-or-m

whence

V® = 2Vif (6 - C)(c- a)^f ,

so that 0, V® are now determined.
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Point 5 by means of the conic 2351'4'6'.

The conic is

Fx+Gy + H^1—^, (2, 3)
OS

where

Fc. +H=-, (4')

c

Fm-G</M + # =—-, (1').

Everything is the same as for the point 4 except that b, c are interchanged :

hence writing Q instead of P, and using A, B, G to denote as before, we have

abcF = -a-b + Q,

*/Mabc G=(m-c)(-m+ Q),

abc H = ab + ac + bc — cQ>

and

^ BP '

, , 4 (m — a) (m — b) (m — c) (c — b)(a — b)

<*>-&
=

^
>

D 7 _ 2 (m — 6) (m — c) (<x — &)

«-*
-

^
,

n J. (m - b)

tf>-Q = -

and

B

2(m-b)(m-c)C(a-b)

B2

A fl

V<S> = 2>JM(c-b)(b-a)~,

which determine 0, V<f>.

Point 3' by means of the conic 1263'4'5'.

The conic is

Fx + Gy + H = (X~b^(x~C\ (4', 5')
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and we have

G + H = bc, (2)

Fm + G<s/M+H=(m-b)t-c}, (1)

Vi/ v ;

%-gVI +gJ^-^^), (6).

Eliminating F, we have

which is easily reduced first to

(t ,——- + H (m — mj = (m + Mi) - '-^ '- ,

and then to

G {aA +2m(a-b)(a- c)} - H^^^

and combining herewith G -\- H=bc, we have

^ _ 2&c m [a (m — a) + (a — 6) (a - c)]

a n / 7 \ / x (m — a)A '

aA + 2m (a - b)(a - c) +- ._

£ = &<?-#;

and we have then

F(m + m2) + © (VF- V3£) + 2# = 0,

that is,

F{2m(m-a)-A} + G^^+2H(m-a) = 0,

or, what is the same thing,

F \2m(m- a)- A =- be H \2(m-a) \ .c x } m — a { m — a)

We then have

Fio + H = y(-G + (a;-b){X-c)

f

that is,

_ i ~ a&c \ _ 2/ {Ha 4- 6r#)

^ ' x — a) x — a '

{Fx + Hy = -(* 6)(* °) (jffa + ^)2
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or

abc (x - a) (Fx + Hf + (x - b) (x - c) (Gx + Fa)2 = 0.

Developing and throwing out the factor x, this is

£2#3

+ {2aGH-(b + c)G2 + abc F2\ x2

+ {a2 H2- 2a (b + c) GJff + fcc G2 + a&c (2FH-aF2)} x

+ {-(b + c) a2 H2 4- 2abc GH + a&c (#2 - 2oJPH)} = 0.

This must be satisfied by %=m, x=m1; hence the left hand must be = G2(x—m)(x—m1)(x—or),

or equating the constant terms we have

G2 mmY a = aH {- 2abc F+2bc G + (be -ab- ac) H],

which gives cr; and we then have

but I have not attempted the further reduction of these expressions.

The numerical values for the example are

OET -140 + 62VI4 n -10 + 62VI4 „ -10Wl4

5+21V14 5 + 21V14 5+V14

whence cr as in the Table.

Point 2' by means of the conic 1362'4'5'.

The equation of the conic is

Fw+Gy +H= (gzfofr-0) > (4^ 5'}

where

-G + H = -bc, (3)

^m + gV¥+ g^^m-6;im-c>, (1)

Fm1-GVW1 + HJmi-b)^-c\ (6),

- Vifj

which are the same as for point 3', if only we reverse the signs of F, H and V3f, V3?7
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Hence the formula are

H= -
2bc m[a(m — a) + (a—b)(a — c)]

aA + 2ra (a - b)(a - c)-- j=J-—

G = 6c + -ff,

JF{2m(m-a)-4} = -&c—-~H\2(m-a) + A

on — a { m — a)

G2 mm1 T = aH{- 2abc F -2bcG + (be -ab- ac) iZ],

which gives t; and then

which are also unreduced.

The numerical values are

OE1 140 + 62VT4 n -10-62VI4 ^ -104VT4
j/i — 1=9 ^r = 1=^ > -U- = — 7= >

5-2lVl4 5-2lVl4 5 -21 a/14

whence r as in the Table.
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522.

NOTE ON THE THEORY OF INVARIANTS.

[From the Mathematische Annalen, vol. in. (1871), pp. 268—271.]

If two binary quantics {a, . .) (x, y)n, (a', . .) (x\ y')n are linearly transformable the

one into the other, and if for the first of them P, Q are any two invariants whatever

of the same degree, and P', Q' are the like invariants for the second of them, then

we have

P : Q = P' : Q',

(or, what is the same thing, the absolute invariants have the same values for the two

functions respectively) ; and the entire system of these equations constitutes only a

(n — 3) fold relation between the two sets of coefficients. But the converse theorem,

viz. that if the entire system of equations is satisfied, the two functions are linearly

transformable the one into the other, is only true sub modo.

For instance, considering the two binary sextics

(0, 0, 0, d, e, f, g)(x, y)° and (0, 0, 0, d\ e\ /', g')(x\ y%

or, what is the same thing,

(20c£, 5e, % g){x, yj f and (20c?', 5e\ 2/', g')(x\ yjy'\

the invariants of the two functions respectively are each and all of them = 0, and yet

the two functions are not in general linearly transformable the one into the other.

For they can be transformable only by the substitution

x=\x+fj,y', y = py';

or, what is the same thing, only if the cubic functions are transformable by the substitution

x = xf -f- ay', y — y' \ and forming for these the seminvariants ac — b2 and a2d — Sabc + 2¥

for the cubic (a, 6, c, d)(w, y)*, we have as the necessary condition for the transformability

(8df- 5eJ : (8d*g - 12def+ 5eJ = (Mf - be'J : (Sd'2g - Ud'e'f + 5e'3)2.

C. viii. 49
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To deduce this result from the theory of the sextic function, I observe that

denoting by A, P, G, A, the values of the quadrinvariant, the sextinvariant, and the

discriminant, as given in Salmon's Higher Algebra, Ed. 2, pp. 202—211, then in the

particular case a = 0, 6 = 0, we have

A = 0,-10d2 P = d* C=- 8d«

+ 15ce, -3cd2e + 36 cd4e

+ c2e2, - 39 c2d2e2

I the new invariants

- 8c3e3,

B= 100 5 -A%

r = 10000 -1200^P+4^13,

the values of these in the same particular case a = b = 0 are

B= 25 c2 (8 df-5e2) T=-2500c3( 8 d2g- 12 def+ 5e3)

- 100 csg, + 3000 c4 (10 eg - 9/2).

Taking now i, 5, (?, A as the invariants of the sextic, one of the conditions for the

transformation is BB : C2 = B's : G'2.

In the particular case a = b = c = 0 and a —V = c = 0, the invariants vanish and

the equation is satisfied identically. But if we assume in the first instance only

,<x = b = 0, d = V — 0, then the terms contain the common factors c6 and c'6 respectively ;

and throwing these out, and then writing c = 0, c' = 0, we obtain the condition

previously found in a different manner.

It will be observed that the condition is of the original form P : Q—P' : Q',

but with the difference that P, Q and the corresponding functions P', Q', are not

invariants. As possessing the foregoing property these functions may however be called

"imperfect invariants/, it being understood that an imperfect invariant is not an

invariant, and is not in any case included in the term " invariant " used without

qualification.

And we may now establish the general theory as follows : Consider the similarly

constituted special forms (a, . .) (#, y, z, . .)n and (a', . .) (V, y\ z\ . .)n : to fix the ideas

the coefficients (a, . .) may be regarded as homogeneous functions of the elements

{a, /3, . .) which are either independent, or homogeneously connected together in any

manner ; and then the coefficients (a\ . .) will be the like functions of the elements

{«', /37, . .) which are either independent or (as the case may be) homogeneously connected

in the like manner.

The entire series of functions P, Q, . . . of (a, /3, . .), which are such that P, Q being

of the same degree, and P;, Q' being the like functions of (a', /3'), we have for the

linearly transformable functions (a, . .) {%, y, zy . .)n and (a!, . . .) {xf, y} z\ . .)?l the relation

P ■ Q = -P : Q',
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may be called the " perfect and imperfect invariants " of (a, . .) (at, y, z, . .)n ; and the

relation in question be briefly referred to by the expression that the perfect and

imperfect invariants are proportional.

We have then the theorem that if the two functions (a, . .) (x, y, zy . .)n and

(a\ . .) (x\ y\ z', . .)n are linearly transformable the one into the other, the two functions

have their perfect and imperfect invariants proportional ; and conversely the theorem,

that two functions which have their perfect and imperfect invariants proportional, are

linearly transformable the one into the other.

There is thus a wide field of inquiry in regard to the imperfect invariants, even

of a binary function, but still more so as to those of a ternary or quaternary function

representing a curve or surface possessed of singularities.

We have in what precedes the explanation of an error into which I fell in my

paper " On the transformation of plane curves," Proc. Lond. Math. Soc, vol. I. No. 3,.

Oct. 1865, [384], see Arts. Nos. 27—30. Considering a given curve of deficiency D and,

by means of a system of D — 3 points chosen at pleasure on the curve, transforming this

into a curve of the order D -f 1 with deficiency D ; then for any two of the transformed

curves (that is, two curves obtained by means of different systems of the D — 3 points)

I showed that these had the same absolute invariants—or in the language of the

present paper, that they had their invariants proportional, and I thence inferred that

the two transformed curves were linearly transformable the one into the other—whereas,

to sustain this conclusion, it is necessary that the two curves should have their perfect

and imperfect invariants proportional ; and this was in no wise proved. That the two

transformed curves are not in fact linearly transformable the one into the other has

since been shown a posteriori by Dr Brill in the particular case D = 4. Biemann's

conclusions, with which my own were at variance, are thus correct.

I remark that if a binary function of an odd or even degree n = 2p + 1 or

= 2p, has p + 1 equal factors, then the invariants all of them vanish ; but the equality

of the p -f 1 factors implies only a _p-fold relation between the coefficients ; that is,

the vanishing of all the invariants gives only a jp-fold relation between the coefficients,

viz. the relation is ^ (n — 1) fold or Jw-fold according as n is odd or even. Thus for

a sextic function the equations A = 0, B — 0, (7=0, A = 0 constitute only a 3-fold

relation between the coefficients.

Similarly if the function has p equal factors, then every invariant is a mere

numerical multiple of a power of one and the same function © ; so that the vanishing

invariants can be at once formed. And we have thus only a (p — 1) fold relation

between the coefficients, viz. the relation is ^ (n — 3) fold or ^ (n — 2) fold according as n

is odd or even.

Cambridge, 4 August, 1870.

49—2
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523.

ON THE TRANSFORMATION OF UNICURSAL SURFACES.

[From the Mathematische Annalen, vol. in. (1871), pp. 469—474.]

I consider the question of the transformation (Abbildung auf einer Ebene) of

unicursal surfaces. Taking (x9 y, z, w) for the coordinates of a point on the surface,

{x'} y\ z') for those of the corresponding point on the plane; then if X', Y, Z\ W

denote each of them a function (x\ y\ z')n\ the equations of transformation are

x : y : z : w = X' : Y' : Z' : W:

and assuming that each of the curves

X = 0, Y' = 0, Z' = 0, W' = 0

(or, what is the same thing, the general curve

passes once through each of ax points, twice through each of a2 points, ... , r times

through each of ar points (for convenience I write ar instead of a/); and writing also

(where © is = 0 or positive except in the case of special relations between the positions

of the fixed points al9 a2, ...,ar), which equations give

then the order of the surface is = n, and the order of the nodal curve is b=^(n—2)(n— 3).+®.

I assume that the nodal curve has h apparent double points and t actual triple points,

but no stationary points, so that q being the class, we have q = b2 — h — 2h— 6t; and

I endeavour to find these numbers q, t, h.
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For this purpose, imagine through the nodal curve a surface of the order k, which

therefore meets the surface besides in a curve of the order nk — 2b\ this curve I call the

A-thic residue of the nodal curve, or simply the " residue/' The projection (Abbildung) of

the complete intersection hi is a curve of the order kn! passing kr times through each

of the points ar : this is made up of the projection of the nodal curve once, and of

the projection of the residue. But as shown by Dr Clebsch the projection of the

nodal curve is of the order (n — 4) n' + 3, and it passes (n — 4) r + 1 times through each

of the points ar\ hence the projection of the residue is of the order (k — n+ 4) ??' — 3,

and it passes (i-w+4)r-l times through each of the points ar. I assume that

the projection of the residue is the general curve which satisfies the foregoing con

ditions, viz. that the residue, and its projection as denned by the foregoing conditions,

depend each of them on the same number of constants. The necessity for this is I

confess by no means obvious : but take as an illustration Steiner's quartic surface as

transformed by the equations x : y : z : w ==x2 : y'2 : z'2 : (a/ -f- y' -f z')2 : the nodal curve

consists of three lines meeting in a point, the quadric residue is the remaining inter

section of the surface by a quadric cone passing through the three lines ; and the

projection thereof is a line ; the quadric cone, and therefore the conic, each depend

upon 2 constants ; and the line which is the projection of the conic depends upon

the same number (2) of constants: at all events I make the assumption provisionally.

Now in the projection of the residue, we have twice the number of constants

= [(k-n+4<)n' -3](k-n + 4)?/ -2 [(& -n+ 4) r - 1] (k — n + fyroir,

viz. this is

= (k - n + 4)2 O'2 - lr2ar) + (lc - n + 4) (- 3n' + 2rar),

or, what is the same thing, it is

= (k - n + 4)2 n + (k - n + 4) (n - 6 - 2@),

viz. reducing, and replacing © by its value = — -J- (n— 2)(n — 3) +6, the number in

question is

= k2n + A?(— n2 + 4m -2b) + 2(n- 4) b.

Now k being = or > n — 3, the curve of intersection of a given surface n by a

surface k depends on

J(& + l)(Jfe + 2)(fc + 3)-4(A?-w + l)(&-w+2)(i-w + S)-l

constants ; and making the surface k to pass through the curve b we have to subtract

herefrom (k + 1 ) b — \g — 2t ; that is, for the residue, twice the number of constants is

= l(k + l)(k + 2)(k + 3)-±(k-n + l)(k-n + 2)(k-n + 3)-2-2(k+l)b + q + 4t,

viz. this is

= k2n + k(- n2 + 4& - 26) +±(n - 1) (n- 2) (n - 3) - 26 + q + 4£.
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Hence comparing the two expressions in question we have

2(n-4)'& = £(w-l)(rc-2)(ri-3)- 26 + 0 + 4$,

that is,

0 = i (n - 1 ) (n - 2) (n - 3) - 2 (n - 3) 6 + q + 4*,

or, as I prefer to write it,

0 = i (w - 1) (w - 2) (rc - 3) - (n - 3) 6 + Jg + 2* ;

which agrees with a more general formula in my " Memoir on the theory of Reciprocal

Surfaces/' Phil. Trans, vol. clix. (1869), [411], see p. 227, [Coll. Math. Papers, vol. vi.

p. 356]. I consider any two residues, a &-thic residue and a J-thic residue ; to each

intersection of these there corresponds an intersection of their projections : or the number

of intersections of the two residues must be equal to that of the two projections. Now

the projections being (as above)

order (k — n + 4) nf — 3 passing (k — n + 4) r — 1 times through each point ar,

„ (I -n+4i)n'-3 „ (Z-w+4)r-l

the number of the intersections in question is

= [(&-7i+4)w/-3] [(l-n+4<)n-3]-X[(k-n + 4>)r--l] [(Z-ra + 4)r-l]ar+©,

where for a reason which will be afterwards explained I have added the term w : this is

= (k - n + 4) (I - n + 4) (V2 - Zr2ar) + (k + Z - 2n + 8) (- 3n' + 2rar) + 9 -(2«r - ©),'

viz. it is

= (& - w + 4) (I - w + 4) n + (& + Z - 2n + 8) (rc - 6 - 2©) + 9 - (Zar - ©),

viz. substituting for © its value, = — \ (n — 2) (w — 3) 4- b, and reducing, the number is

= kin - 2 (& + 0 6 - ns + 8n2 - 16n + 9 + 4 (n - 4) 6 - (lar - ©).

But the surfaces w, A, Z, having in common the curve b which is a nodal curve on n,

besides intersect in

kin - b (n + 2k + 21 - 4) + 2q + gtf

points (Salmon's Geometry of three Dimensions, 2nd Ed. p. 283, except that in the

formula as there given the singularity t is not taken account of) ; that is, the number

of intersections of the two residues is

= kin - 2 (k + I) b - (n - 4) b + 2q + 9t,

which is equal to the number of intersections of the two projections (*) : or comparing

the numbers in question we have

_ n* + 8?^ - l6n + 9 + 4 (n - 4) 6 - (2ar - ©) = - (n - 4) b + 2q + %

that is,

2q + 9£ = 5 (n - 4) & - ns+ 8n2 - 16n + 9 - (2ar- ©).

I remark that ?i + X being positive or not less than n-S, two (71 + X)-thic residues meet in

n (X + 4) (X + 6) - 12X - 39 - 4 (X + 4) - (2ar - w) points : in particular, two (n - 3)-thic residues meet in

3ti-3-40- (2ar- w.) points; and two (11 - 2)-thic residues meet in 8?i - 15 - 80 - (2ar - w) points.
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But we have already found

2q + 8t = 4 (ft - 3) b -fft3 + 4ft2 - -%2-?i + 4,

and we have therefore

t = (n - 8) b - ±ns + 4ft2 - %§-n + 5 - (2a, - ©),

and

9 = - 2 (ft - 13) b + ft3 - 14n2 + 31ft - 18 + 4 (2ar - ©).

I obtain these results in a different manner by investigating expressions for the

deficiency (Geschlecht) of the nodal residue nk - 2b and for that of its projection.

First for the projection, we have

Twice Deficiency = [(k - n + 4) ri - 4] [(k - n + 4) n - 5]

- 2 p- ft + 4) r - 1] P- ft + 4) r - 2] a, + 2®,

where I have added the term 2co, as afterwards explained: this is

= (k - ft + 4)2 (w'a - 2r2a,) + (k - n + 4) (- 9ft' + 32rar) + 20-2 (Zar - ©),

viz. it is

= (Jc -n + 4<y n+ (k- n + 4) (3ft - 18 - 6©) + 20 - 2 (2<*r - ©),

or substituting for © its value — -J- (ft — 2) (ft — 3) 4- 6 and reducing, it is

= k2n + k (ft2 - 4ft - 66) - 2ft3 + 16ft2 - 32ft + 20 + 6 (ft - 4) b - 2 (2ar - ©).

Next as regards the residue, the number h! of its apparent double points is obtained

in terms of h and t by the formula

8h+6t-2h' = (lm-4!b)(k-l)(n-l)-2b(k-l),

(Salmon, 1. c, p. 284, except that the singularity t is not there taken account of) ; and

we thence have

Twice Deficiency = (Jen — 1) (kn — 2) — 2Ji

= fc(& + ft-4) + 462 + 6(~4ft-6^+12) + 2-8A-6^

or introducing q instead of h by the formula 462 — Sh = 4q + 46 + 24$, this is

= kn(k + n-4>) + 6(-4ft-6&+ 12) + 4g + 4&+2.+ 18$,

viz. it is

= k2n+k (ft2 - 4ft - 66) - 4 (ft - 4) 6 + 4? + 18$.

So that comparing with the deficiency of the projection we have

- 2ft3 + 16ft2 - 32ft + 20 + 6 (ft - 4) b - 2 (Zar - o>) = - 4 (ft - 4) b + 4g + 2 + 18$,

that is,

2g -f 9$ = 5 (ft -4) b -ft3 + 8ft2 - 16ft + 9 - (%ar - ©),

the same result as before.



392 ON THE TRANSFORMATION OF UNICURSAL SURFACES. [523

The necessity for the term co appears by the consideration that if we apply to

the plane figure a Cremona-transformation, thus obtaining a new transformation of the

surface, the value of 2ar will in general be altered ; whereas the expressions for q, t

should it is clear remain unaltered ; and it arises as follows, viz. for certain transfor

mations of the surface the curve of the order (k — n + 4) n! — 3, passing (k — n ■+- 4) r — 1

times through each point ar and assumed to be the projection of the residue, is not

an indecomposable curve but contains a certain number co of factors (each belonging

to a unicursal curve definable by means of the number of its passages through the

several points ar), which factors are to be rejected in order to obtain the equation of

the proper residue. Thus reverting to the transformation

x : y : z : w = x'2 : y'2 : z2 : (x' -f y' + z')2

of Steiner's surface, the projection of the quadric residue was (as already remarked) a

line; applying to the plane figure the ordinary quadric (or inverse) transformation we

introduce three fixed points, (a2=3), say these are A, B, G; viz. in the new trans

formation of the surface the projection of any plane section is a quartic curve having

a node at each of the fixed points : the projection of the residue ought clearly to be

a conic through the three points ; but according to the general formula it is a quintic

having at each of these points a triple point : the quintic is in fact made up of the

lines BC, CA, AB and of the conic which is the proper residue; viz. in the case in

question there are 3 factors thrown out, or we have co = 3. To apply this to the

second investigation of 2q + 9t, by comparison of the two deficiencies, observe that in

general if a curve is made up of o> + 1 indecomposable curves, the deficiency of the

compound curve is equal to the sum of the deficiencies of the component curves — co ;

hence if co of the curves are unicursal, the deficiency of the compound curve is equal

to that of the remaining curve — co ; or, what is the same thing, the deficiency of the

remaining curve is = that of the compound curve -f co ; and the addition of the term

•i- co to the expression for the deficiency is thus accounted for. It is easy to see that

a like explanation applies to the first investigation of 2q + 9t.

I further remark, reverting to the equations

x : y : z : w = X^ : Y' : Z' : W

of the transformation, that the product of the co factors is given as the common factor

(if any) of the Jacobians

J(Y\ Z\ W), J(Z\ W\ X% J(W\ X\ T) and J(X\ Y\ Zf).

Such common factor exists whenever wTe can by a Cremona-transformation of the plane

figure reduce the number of the points aT upon which the transformation of the

surface depends ; viz. for any given transformation of the surface, co is equal to the

excess of Sar above the minimum value of 2ar, or, what is the same thing, 2ar — co

is equal to the minimum value of 2ar, and is thus independent of the particular trans

formation. And of course if %ar has this minimum value, viz. if the transformation

is such that the number of the points ar cannot be reduced by any Cremona-trans
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formation of the plane figure, then we have co = 0. I presume that for the most

simple transformation, that is, when n has its least value, 2ar has also its least value,

and consequently that co is =0.

Recapitulating, the results obtained are

2 = -2(w-13)6+ n3-Un2 + 31n- 18 + 4(2^-©),

t= (n- 8)6-iw3+ 4>n2-ifn+ 5- (So,.-©),

where it will be recollected that

6=£(w_2)(n-3)+©;

the formulae are verified in the several cases :

n' ai < n e <i) b 0 *

2 2 0 2 0 1 0 0 0 Quadric surface

2 1 0 3 1 0 1 0 0 Cubic scroll

2 0 0 4 2 0 3 0 1 Steiner's quartic surface

3 6 0 3 0 0 0 0 0 Cubic surface

3 5 0 4 1 0 2 2 0 Quartic with nodal conic

2 8 1 4 0 0 1 0 0 Do. with nodal line

2 7 1 5 1 0 4 8 0 Quintic with nodal quadriquadric

2 11 0 5 0 0 3 4 0 Do. with nodal skew cubic

2 12 2 5 -1 0 . 2 0 0 Do. with two non-intersecting nodal lines

which are the transformations chiefly as yet examined : but the first-mentioned case

(quadric surface, generalised stereographic projection), although as stated the formulae

are verified with the value co — 1, does not really come under the foregoing theory. It is

interesting to see that they are verified in the last-mentioned case, belonging to a

negative value of ©, that is, to a special system of fixed points.

Cambridge, Dec. 5, 1870.

C. VIII. 50
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524.

ON THE DEFICIENCY OF CERTAIN SURFACES.

[From the Maihematische Annalen, vol. in. (1871), pp. 526—529.]

If a given point or curve is to be an ordinary or singular point or curve on a

surface of the order n, this imposes on the surface a certain number of conditions,

which number may be termed the " Postulation " ; thus " Postulation of a given curve

qua i-tuple curve on a surface n" will denote the number of conditions to be satisfied

by the surface in order that the given curve may be an i-tuple curve on the surface.

The " deficiency " (Flachengeschlecht) of a given surface of the order n is

= ^(n — l)(n — 2)(?2 — 3) less deficiency-value of the several singularities; viz. as shown

by Dr Noether, if the surface has a given i-tuple curve, the deficiency-value hereof is

= Postulation of the curve qua (i — 1) tuple curve on a surface n — 4;

and if the surface has an i-conical point, the deficiency-value hereof is

= Postulation of the point qua (i — 2) conical point on a surface n — 4 ; viz. this

is = %i (i — 1) (i — 2), and is thus independent of the order of the surface.

I remark that if the tangent-cone at the ^-conical point has 8 double lines and

k cuspidal lines, then the deficiency-value is

= Jf(i-l)(i-.2) + (i-2)(w-*-l)(S + iB).

In the case of a double or cuspidal curve i is = 2, and the deficiency-value is

= Postulation of given curve qua simple curve on a surface n — 4;

and so for an ordinary conical point i is =2, and the deficiency-value is = 0 : results

which were first obtained by Dr Clebsch.
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I found in this manner the expression for the deficiency of a surface n having

a double and cuspidal curve and the other singularities considered in my " Memoir on

the Theory of Reciprocal Surfaces," Phil. Trans, vol. CLIX. (1869), [411, Coll. Math,

Papers, vol. VI. p. 356] ; viz. this was

2) = J(n-l)(w-2)(n-3)-(w-3)(6 + c) + i(3 + r)+2* + Ji8 + 4y+i-ift

where we have

b, order of double curve,

qy class of Do.,

c , order of cuspidal curve,

r, class of Do.,

/3, number of intersections of the two curves, stationary points on b,

y , number of intersections, stationary points on c,

% , number of intersections, not stationary points on either curve,

0, number of certain singular points on c, the nature of which I do not com

pletely understand; it is here taken to be =0.

Before going further I remark that

Postulation of right line qua i-tuple on surface n

= \i (i +l)n- %i (i + 1) (2i - 5),

Whence if a surface n has an i-tuple right line, the deficiency-value hereof is

= j.i(i-l)(3w-2i-5),

or we have

I)=^(n-l)(n-2)(n-S)-^i(i-l)(Sn-2i-5)

= i(i-n+l)(i-n+2)(2i+n-3);

so that D = 0 if either i = n — l or i = n — 2 ; the former case is that of a scroll

(skew surface) with a (n — 1) tuple right line, the latter that of a surface with a

(n — 2) tuple line : whence (as shown by Dr Noether) such surface is rationally trans

formable into a plane.

For a surface of the order n with an i-conical point where the tangent cone has

8 double lines and k cuspidal lines, we have

D = J(n-l)(w-2)(w-3)-{^(i-l)(i-2) + (i-2)(w-i-l)(S + «)}

= ±(n-i-l){n2 + n(i-5) + i2-4<i + 6-6(i-2)(8 + fc)}]

viz. for i — n—1 this is I) = 0 (in fact, a surface n with a (ft — 1) conical point is at

once seen to be rationally transformable into a plane) : and for i = n, that is, for a

cone of the order n, we have

i) = -4(w-l)(w-2)+(n-2)(8 + #c)-(w-3)(S + #c),

where the last term —(n — 3)(8 + tc) is added because in the present case the surface

has the S double lines and the k cuspidal lines.

50—2
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The formula therefore gives

jD = -i(rc-l)(w-2) + 8 + *,

viz. this is equal to the deficiency of the plane sections taken negatively.

I find that the same property exists first in the case of a scroll (skew surface)

having only a double curve ; and secondly in the case of a torse (developable surface)

having a cuspidal curve with the ordinary singularities; and this being so there can

I think be no doubt but that it is true for any scroll or torse whatever—viz. that

for any ruled surface whatever the deficiency is equal to that of the plane section

taken negatively.

First, for the scroll, we have

D = £(tt_i)(w_2)(n-3)-(w-3)& + £g + 2«,

which should be

==_i(^_l)(n_2) + &.

Salmon's equations give in the case of a scroll

3t = (n-4<){2b-n(n-2)},

q =n (n - 2) (n - 5) - 2 (n - 6) 6,

and with these values the relation is at once verified.

Secondly, for the torse ; changing the notation into that used for the singularities

of the curve and torse, we have

D=i(r-l)(r-2)(r-3)-(r-S)(x + m) + ±(q + r)+2t + %{3+%r/ + a,

which should be

= - 4 (m - 1) (m - 2) + h + /3.

We have q = r (n — 3) — 3a, and substituting this value and expressing everything in

terms of r, m, n by means of the formulae

# = i(r2— r — n — 3m),

a — m — 3r + Sn,

P = n - Sr + 3m,

t =i{r3_3r2_58r _ 3r (h, + 3m) + 42?i + 78m},

7 = rm -f 12r — 14m — 6n,

h=% (m2 - 10m - Sn + 8r),

we have after all reductions

D = -±(m + n) + r-l = -%(m-l)(m-2) + h + j3.
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We have thus a class of surfaces of negative deficiency ; viz. any rational trans

formation of a cone for which the plane section has a given (positive) deficiency pro

duces such a surface : and I think it may be assumed conversely that a surface of

negative deficiency is always the rational transformation of a cone for which the

deficiency is equal to that of the surface taken with the reverse sign. As an instance,

take a quintic surface having a nodal conic and two 3-conical (cubiconical) points (this

of course implies that the line joining the two cubiconical points is a line on the

surface) ; the formula for the deficiency is (n = 5, 6 = 2, q — 2, r=0, £ = 0)

(viz. a term — 1 for each of the cubiconical points)

= 4-4+1 -2, =-1.

Such a surface can be obtained as the quadric inverse of a cubic cone ; viz. taking

for the vertex the point x : y : z : w = a : /3 : y : B and the cone to pass through the

point x = 0, y = 0, z — 0, the equation of the cone is

(Sx — aw, Sy — fiw, Sz — <yw)3 — 0;

where (a, /3, 7)3 = 0.

Taking Q a quadric function (x, y, z)2, the transformation in question consists in

the change of x, y, z, w into xw, yw, zw, Q ; viz. the new equation, rejecting the factor

w which divides out, is

— (Bxw — aQ, Syw — /3Q, 8zw — yQ)3 = 0,

which is a quintic surface, having the two cubiconical points % = 0, y=0, z = 0 and

x : y : z : w=a : ft : y : -kQo (where Q0 is the value of Q on writing therein a, ft, y

in place of xy y, z) : and having the nodal conic w = 0, Q = 0.

Cambridge, 5 Jan. 1871.
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525.

AN EXAMPLE OF THE HIGHEE TRANSFORMATION OF A

BINARY FORM.

[From the Mathematische Annalen, vol. iv. (1871), pp. 359—361.]

The quartic

(1) (a, 6, c, d, e)(x, yj

is by means of the two quadrics

(2) (a, ft y)(x, yf and (a\ f3', y/)(x, yf

transformed into

(3) (a1} b1} c1} d1} e1)(x1} y^,

that is, eliminating x, y from

(a, b, c, d, e)(x, y)4 = 0,

we obtain

(ox, &!, cl5 d2, <X>l3 yi)4==0.

It is required to express the invariants of (3) in terms of the simultaneous invariants

of (1) and (2).

Write

P, Q, R = our! + a'y1} (3xx + /3Vi, 7^ + y'^ ;

the equations from which (x, y) have to be eliminated are

(a, b, c, d, e)(x, yy = 0} (P, Q, £)(«, y)» = 0,
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and the result of the elimination therefore is

a, 46 , 6c , 4<d, e = 0,

a, 46, 6c , 4<d, e

P, 2Q, R

P, 2Q, R

P, 2Q, R

P, 2Q, R

viz. this determinant is the transformed quartic (ax, 61; clt dlt e1)(w1, y^f.

The developed expression of the determinant is

a2R* - 8abQR3

+ (" \l ™) PR? - 24 acQ>R> + (_ H ^) PQR* - 32 adQ*R

I 2ae\

+ ( -32bd \P*R*+(

\+36c2/

— 16 ae

.+ 64 bd.
PQ*R + 16 aeQ*

H b;d) P'QR - 32 bePQ* + (~ H £) P3i? + 24 otf^

so that writing for P, Q, R their values, we have the transformed function

(<h> bi> Gi> di> ^i)(^i? ViY, the coefficients being of the forms

Oj = (a, 6, c, d, ef (a, /3, y)4

&x=( „ )2(«, A 7)3K P, i)

*=( „ )2 • • • («'- £', 7')4-

Writing J, J for the invariants of the quartic (1), and

A = 4 (a/3' - a'/3) (#/ - /3'<y) - (t«' - 7'«)2.

£ = («, c, a, b, c, d)(a/3'-a'/3, yct-y'a, /3y' - /3'yf,

we have /, J, A, B simultaneous invariants of the forms (1) and (2). Putting more

over V =/3 — 27J"2, and writing Ilt Jlt Vx, for the like invariants of the form (3), I find

I, = 4 (4 IB? + 12 JAB + 1 PA"),

J, = 8 {8 JB? + fPA&+ 2 IJA'B + (2J2 - £■ Is) A%

and thence

Vx = 256 (4 5s - IA*B - JA*) V.
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As a verification, suppose (a, b, c, d, e)(x, y)i = w^ + y4' (whence 7=1, 7=0). And take

xx (x + y)2 — yx (x — y)2 = 0 for the transforming equation, that is, (a, /S, ry) = (l, 1, 1) and

(a', /3', ry') = (— 1, 1, —1). We have P = R = x1 — yl and Q = #i + yi, and thence

Det. = (P2 + R2)2 - 16 PQ2R + 16 Q4

= (2P2 - 4Q2)2 = (- 2^2 - 12^ - 2y12)2,

that is,

(«!, ftj, (?!, rfj, OOi* yiY = * fa2+ 6atyi+ yi*?,

whence

4096 _2^ ^ _ 262144 _ 218

1_~ 3 ' ~ 3 ' 1_ 27 ' ~~"27;

also

4 =-16, J5=8,

and the equations for 72, 72 become

40Qfi

^P =4(4.64 + 1256),

989144

--%^ = 8(t--16-64 + ^4096)>

which are true. More generally, assuming

(a, 6, c, d, e) (a?, y)4 = #4 + 6©#y + y\

(whence 7= 1 4 3©2, 7=© — ©3), and the same transforming equation, we have

(a1} bXi d, ^, ^)(^, y1Y=4{(l+3@)x12 + (3--3®)2x1y1 + (I + m)y2}2,

whence

912 Ol8

i^-ii-my, ^=-^(1-30)3;

also

A = -16, 5 = 8(1-©).

Substituting these different values in the equations for Ilt J1} we obtain

16 (1 - 3©)2 = 12(1 + 3©2) (1 - ©)2 - 72 (© - ©3) (1 - ©) + 4 (1 + 3©2)2,

and

- 8 (1 - 3©)3 = 27 (© - ©3) (1 - ©)3 - 9 (1 + 3©2)2 (1 - ©)2

+ 27 (1 + 3©2) (© - ©3) (1 - ©) - 54 (© - @3)2 + (1 + 3©2)3,

which are in fact satisfied identically.

Cambridge, 26 July, 1871.
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526.

ON A SURFACE OF THE EIGHTH ORDER.

[From the Mathematische Annalen, vol. IV. (1871), pp. 558—560.]

I reproduce in an altered form, so as to exhibit the application thereto of the

theory of the six coordinates of a line, the analysis by which Dr Hierholzer obtained

the equation of the surface of the eighth order, the locus of the vertex of a

quadricone which touches six given lines.

I call to mind that if (a, /3, 7, S), (a', ft', 7', S') are the coordinates of any two

points on a line, then the quantities (a, b, c, f, g, h), which denote respectively

O/ -/3V, 7a' -7'a, a/3'-a'/3, aS'-a'S, 08' - ffS, y$'-y'S),

and which are such that af+bg + ch = 0, are the six coordinates of the line (x).

Consider the given point (x, y, z, w) and the given line (a, b, c, f, g, A), and write

for shortness

P — hy — gz + aw,

Q =z — hx +fz + bw,

R= g%-fy +cw,

S = — ax —by — cz ,

then taking (X, Y, Z, W) as current coordinates, the equation of the plane through

the given point and line is

PX + QY+RZ + SW=0.

Considering in like manner the given point (x, yy z, w) and the three given lines

(au &!, Ci, /1, gly Ai), (a2, ...), (a3, ...), then we have the three planes

P1X + Q1Y+E1Z+S1W = 0,

P2X + Q2Y+B2Z + S2W=0,

PsX + Q3Y+R3Z + S3W = 0,

1 Cayley, " On the six coordinates of a line," Gamb. Phil. Trans, vol. xi. (1869), [435], pp. 290—323.

c. vin. 51
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and if these planes have a common line, the point (#, y9 z, w) is in a line meeting

each of the three given lines; that is, the locus of the point is the hyperboloid

through the three given lines. It follows that the equations

-Pi> Q\> Ri> $1 = o

JTz, y2j -ti<2, &2

•*3> V3J J-Hi &3

reduce themselves to a single equation, that of the hyperboloid in question.

I write for shortness

(000) = (agh) x2 + (bhf ) f + (cfg) z2 + (abc) w2

-f [(dbg) — (oak)] xw

+ [(bch)-(abf)]yw

+ [(bfg) + (chf)]yz

+ [(cgh ) + (afg )] zx

+ [(ahf) + (bgh)]xy}

viz. (123) will mean (ai#A) x2 + etc. where (a1g2h3) etc. denote as usual the determinants

0/2} ^2>

etc.;

then the equations in question are found to be #(123) = 0, ;?/(123) = 0, £(123) = 0,

w(123) — 0, reducing themselves to the single equation (123) = 0, which is accordingly

that of the hyperboloid through the three lines (2).

Proceeding now to the above-mentioned problem, we have the point (x, y, z, w),

and the six lines (al5 b1} clt fl9 g1} Ax), (a2, ...) etc., say the lines 1, 2, 3, 4, 5, 6: the

six planes

PXX + Q1Y+RlZ+S1W = 0, etc.

must be tangents to the same quadricone ; that is, considering the sections by the

plane W = 0, the six lines

P1X + Q1Y+R1Z=0, etc.

must be tangents to the same conic, and the condition for this is

[1 2 3 4 5 6] = 0,

1 This equation is given in the paper above referred to, § 54.
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where the symbol stands for the determinant

A2, QS, ^2, Q1Bl, BlP1, P1Q1

P22...

But as is well known this equation may be written

(*) (126) (346) (145) (235) - (146) (236) (125) (345) = 0,

where (126) etc. denote the determinants

P1; Qu B, etc.

•* 2j *%2> ^2

-^3 y V3 > -"8

or, what is the same thing, they denote the functions above represented by the like

symbols (126) = (a1g2h6)oc2 + etc. The equation (*) just obtained is Hierholzer's equation

for the surface of the eighth order, the locus of the vertex of a quadricone which

touches six given lines.

I remark that in my "Memoir on Quartic Surfaces," Proc. Lond. Math. Soc. vol. III.

(1870), [445], pp. 19—69, I obtained the equation of the surface under the foregoing

form [123456] = 0 or say [(P, Q, R)2] = 0, noticing that there was a factor w4, so that

the order of the surface is = 8 ; and further that the equation might be written

w* exp. - [cc (gdc - hdb) + y (hda -fde) + z (fdb - gda)} [{a, b, c)2] = 0,

where exp. © (read exponential) denotes e®, and [(a, b, c)2] denotes

a\i &i2> ci2> &1C1, Gi<h> <hJ>i

a,2, . .

Also that the equation contains the four terms

x* [(a, - h, gf\ + f [(h, b, -/)2] + z* [(- g, f, c)2] + yfi [(a, 6, c)2] = 0.

Cambridge, 12 September, 1871.

51—2
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527.

ON A THEOREM IN COVARIANTS.

[From the Mathematische Annalen, vol. v. (1872), pp. 625—629.]

The proof given in Clebsch "Theorie der binaren algebraischen Formen" (Leipzig, 1872)

of the finite number of the covariants of a binary form depends upon a subsidiary

proposition which is deserving of attention for its own sake.

I use my own hyperdeterminant notation, which is as follows: Considering a

function U = (a, . .)(#, y)n, (viz. U1 = (a>. .)(w1} y^f* &c), and writing 12=3^3^-3^3^ &c,

then the general form of a covariant of the degree m is

Jfe(12a 13*23^.0^10;.. Um)

where k is a merely numerical factor, the indices a, /3, y,. . are positive integers, and

after the differentiations each set of variables (oslt yx), . . , (atm, ym) is replaced by (#?, y).

I say that the general form of a covariant is as above; viz. a covariant is equal to

a single term of the above form, or a sum of such terms.

Attending to a single term : the sum of the indices of all the duads which

contain a particular number 1, 2, . . as the case may be is called an index-sum ; each

index-sum is at most =n; so that, calling the index-sums a1} cr2, ..., am respectively, we

have n — a1} n — <r2, ... , n — <rm each of them zero or positive: the term, before the

several sets of variables are each replaced by (a, y), is of the orders n — al9 n — a2, ..., n — am

in the several sets of variables respectively.

The term may be expressed somewhat differently: for writing V1 = xdXj+ydy1,

V 2 = xdx% + ydy2 &c.—then (except as to a numerical factor) it is for a function

(*) (#!, y-^f the same thing whether we change (xlt y±) into (os, y), or operate on this

function with V f} and so for the other sets : the term may therefore be written

V^ ... Vm— k (12a 13* 23y . . 0 U, U2 . . . Um%

being now in the first instance a function of the single set (%, y) of variables.
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We may omit the operand U1U2....Um) and consider only the symbol

&(12al3^23V ...) or V/-^ ... Vm^<Hfe(12a 13* 23*...),

which, under either of the two forms, I represent for shortness by [12...m]: observe

that this is considered as a symbol involving the m symbolic numbers 1, 2, 3 ... m,

even although in particular cases one or more of these numbers may be wanting from

a

the actual expression of the symbol: thus [123] may denote 12, but the operand to

be supplied thereto is always TJJJJJs.

A sum of symbols is not in general equal to a single symbol : but a single

symbol can be expressed in a variety of ways as a sum of symbols : the most simple

transformation-formulae relate to three or four symbolic numbers; viz. for three such

numbers, say 1, 2, 3, we have

V2.23 + V2.31 + V8.12 = 0,

showing that in a symbol, which written with the V 's involves V 1 . 23, this may be

replaced by its value V2.13 — V3.12; and so in other cases.

For the four numbers 1, 2. 3, 4 we have a group of the like formulae

- V2.34 + V3.24- V4.23 = 0,

Vj.34 . - V8. 14- V4.31 = 0,

-V1.24+V2.14 . -V4.12 = 0,

V1.23+ V3.23+ V3.31 . =0,

leading to

23.14 + 31.24 + 12.34 = 0,

which is a form not involving the V's and consequently is applicable to the trans

formation of invariant-symbols where the numbers

n — o-j, n — <72, . . . , n — <rm

are all = 0.

I establish the following definitions :

A symbol [12... m] is proximate when each index-sum is <n; otherwise it is

ultimate; viz. this is the case when any one or more of the index-sums is or are

= n. We may say that the symbol is ultimate as to 1 if gx — n ; and that it is

ultimate as to 1, 2 if c^ and a2 are each = n : and so in other cases.

A proximate symbol which has any one index-sum thereof < \n is said to be

inferior : thus if o-! < ^n the symbol is inferior in regard to 1 ; and so if a^ and o-2

are each < \ny it is inferior in regard to 1 and 2 : and the like in other cases.

Observe that if a symbol is inferior then in the covariant the order exceeds the
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degree by a number which is greater than \n — \\ in fact, suppose it inferior in

regard to 1, then the order is

(n - <Ti) + (n - <ra) + . . + (n - <rm),

where each term after the first is at least = 1, that is, the order is at least

= 7i — Oi-f-m— 1; hence order — degree is at least = n — crx — 1 ; viz. <jx being less than

\n, this is greater than \n— 1.

Conversely, if for any symbol order-degree is >^-w — 1, then the symbol is not

inferior.

A symbol [12...m] is sharp when any index is >hn> otherwise it is flat; viz.

this is so when each index is < \n. The symbol is sharp as to any particular duad

or duads when the index or indices thereof is or are each of them > \n.

The subsidiary theorem is now as follows : " A symbol is inferior or sharp : or it

can be expressed as a sum of symbols each of which is inferior or sharp"—or what

is the same thing, the only symbols which need to be considered are those which

are either inferior or sharp.

Thus for the degree 1 the symbol is [1] (which is simply unity) ^ = 0, and the

symbol is inferior.

—fc

For the degree 2 the symbol is [2], = 12 ; if h<\n the symbol is inferior, if

k ^ %n then it is sharp.

a 0 y

A proof is first required for the degree 3, here [123] = 12 13 23 (/3 + y, y + a,

a + /3 each = or < n) which may very well be neither inferior nor sharp ; for instance, if

2 2 2

n=5, we have 12 13 23, where each index being =2, the symbol is not sharp; and

each index-sum being = 4 the symbol is not inferior. But writing the symbol in the

2 2 2

form V1V2V312 13 23, then by means of the relation

Vx.23+ Va.31 + V8.12=0,

(or, what is the same thing, V2 . 23 == V2 . 13— V3. 12), the symbol becomes

V2 V3122132232(V2.13- V3.12),

= V22V312213323- V2V32l3312223,

where each term, as containing an index 3, is sharp. To complete the reduction,

observe that calling the expression 21 — 33, then in the term 21 interchanging the

numbers 2 and 3 we obtain 21 = — S3, and thence 21 — 23 = 221 ; so that the whole is

2 V22V312213823, viz. it is a multiple of Ti'l^ia

I prove the general case, substantially in the manner used by Dr Clebsch, as

follows. We assume that the theorem is proved up to a particular degree m: that

is, we assume that every symbol belouging to a degree not exceeding m can be
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expressed as a sum of terms each of which is sharp or inferior: and we have to

prove this for the next following degree m + 1, or writing for convenience p in place

of m + 1, (say for the degree p); that is, for a symbol

[12... mp], = pl p2 ...pm [12 ... m]

= P [12 ... m] suppose.

I write as before cr1, <r2,...,<rm for the index-sums of [12... m] : those of [12... mp] are

therefore e^ 4- Xx, or2 + X2, • •> ^m + Xm, and (for the duads involving p) <rp = Xx + X2 • • • + Xm.

If [12.. m] is sharp, then [12.. mp] is sharp, and the theorem is true.

If ap<\ni then [12... mp] is inferior in regard to p\ and the theorem is true.

The only case requiring a proof is when [12... m] is not sharp (being therefore

inferior) and when <rp is >%n. And in this case if any one of the indices X1?...Xm

is S \n (or say if P is sharp) then the theorem is true.

Consider the expression

A.j A.2 —:—ATO

pl p2 . .pm [12 ... m],

where <r1} <x2, . . , crm are as before the index-sums for [12.. m] and therefore the numbers

n - o-j - X2 , . . , n - <im - \m

are none of them negative.

Assume that when [12...m] is inferior, and when X^-.X^ have any values such

that their sum is not greater than a given value ap — 1, the expression is a sum of

terms each of which is inferior or sharp : we wish to show that when \ + X2 . . . 4- Xm

has the next succeeding value, =<rp, the case is still the same.

For this purpose, introducing the V's I write

Q = V^"^ . . Vmn-am-Xm Vpn-appl ' p2 2 . . . pm * [12 . . . m] ;

then supposing for a moment that \ is not = n — <rx and X2 not = 0, the expression

contains the factor V1#jp2, which is equal to and may be replaced by — V2.j9l + V^.12:

we have thus

where omitting the V's

—* A|+l A2—1 A3 Km

Q'=jp\ p2 pS ..pm [12... m],

n = hpl1 p**"1 p§* . .pm m 12 [12 ... m].

Now for II the sum of the indices X1? X2 — 1, X3 . . Xm is crp— 1, so that by hypothesis

O is inferior or sharp : that is, the difference Q — Q' is inferior or sharp : so that to

prove that Q is inferior or sharp, we have only to prove this of Q', where Q is

derived from Q by increasing by unity the index of pl, at the expense of that of p2



408 ON A THEOREM IN COVARIANTS. [527

which is diminished by unity. Such change is possible so long as the index \ has

not attained its maximum value, w — o^ or crp as the case may be, and there is any

other index \2, ...,\m which is not =0: that is, we may pass from Q to Q', from

Qf to Q" and so on ; and it will be sufficient to show that the last term of the

series is inferior or sharp. We thus pass from Q to R, where

Tl—(Tj 'A.2—a2 Km—a-m

R=pl p2 ...pm [12. ..m]

and cc2 + 0LB.. + am = n — (r1-\1; or else to

-<Tp

R=pl [12... m],

according as n — o^ is not greater or is greater than <rp.

Now let [12...m] be inferior; suppose it to be so in regard to 1, that is, let <r1

be less than \n or n — al greater than \n. Then if orp be less than ^n it is less

than n — <rl9 that is, we have for R the last-mentioned form which is inferior in

regard to p> viz. R is inferior; if <tp is equal to or greater than \n, then R, whichever

its form may be, is sharp as to pi, viz. R is sharp. Hence in either case Q is a

sum of terms which are inferior or sharp; that is, assuming the theorem for a form

for which Xx + A,2 . . . + \m does not exceed a given value <rp — l, bhe theorem is true

for the next succeeding value ap ; or being true for the case cr^ — 1 = 0, it is true

generally.

Cambridge, 24 April, 1872.
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528.

ON THE NON-EUCLIDIAN GEOMETRY.

[From the Mathematische Annalen, vol. v. (1872), pp. 630—634.]

The theory of the Non-Euclidian Geometry as developed in Dr Klein's paper

" Ueber die Nicht-Euklidische Geometrie " may be illustrated by showing how in such

a system we actually measure a distance and an angle and by establishing the

trigonometry of such a system. I confine myself to the " hyperbolic " case of plane

geometry; viz. the absolute is here a real conic, which for simplicity I take to be a

circle ; and I attend to the points within the circle.

I use the simple letters a, A,. . to denote (linear or angular) distances measured

in the ordinary manner ; and the same letters, with a superscript stroke, a, A, . . to

 

I\--£

denote the same distances measured according to the theory. The radius of the

absolute is for convenience taken to be = 1 ; the distance of any point from the centre

can therefore be represented as the sine of an angle.

c. viii. 52
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The distance BG, or say a, of any two points B, 0 is by definition as follows :

Radius of circle = 1 :

In A ABC, sides are a , b , c :

angles „ A, B, G:

OA , OB , OG are = sin p, sin q, sin r :

OA! , OB' , 0C „ „ sin a, sin 6, sin c:

^£0(7, 004, 405 „ „ a, A 7-

_ . , BI .CJ
a=^l0%BJJJI>

(where /, J are the intersections of the line BG with the circle) ; that is,

lBT~Ol bi.cj+bj.c

Bi.or ^BTBj^mTcj'

- 0 ,_ IBI.GJ , /BJ.OZ" BI.CJ+BJ.CI

V BJ.OI V BI.CJ' dm rtjdnr ar

where the numerator is

BI(BJ-BC) + CI(BC+CJ), = BI.BJ+CI.CJ+BC(CI-BI),

= BI.BJ+GI.CJ+BC\

Hence taking a for the distance 50, and sing, sinr, for the distances OB, OG respec

tively, we have BI . BJ= cos2 q, 01. GJ= cos2r ; and the formula is

, _ cos2 q 4- cos2 r+ a2
cosh a = —^ ,

2 cos q cos r

or, what is the same thing, taking a for the angle BOG, and therefore

a2 = sin2 q + sin2 r — 2 sin # sin r cos a,

we have

, _ 1 — sin a sinr cos a
cosh a = .

cos q cos r

In a similar manner, if sin a is the perpendicular distance from 0 on the line BG

(that is, a sin a = sin q sin r sin a) it can be shown that

. , _ a cos a
smh a =

cos # cos r

the equivalence of the two formulae appearing from the identity

cos2 q cos2 r = (1 — sin q sin r cos a)2 — a2 -f a2 sin2 a,

which is at once verified.

Next for an angle; we have by definition

j 1, sin BAI . sin GAJ

% g sin GAI. sin BAJ '
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where AI, AJ are the (imaginary) tangents from A to the circle ; or writing for

shortness 57 &c. instead of BAI, &c. (the angular point being always at A),

j 1 , sin BI . sin 07

2i g sin CI. sin BJ'

consequently

eiA _ e~iA == 2i sin A

/sin BI . sin GJ /si

V sin07.sin57~ V si

sin (7/ . sin 5J sin 57 sin 07— sin 57. sin CI

sin 57 . sin GJ ' Vsin 5/ . sin BJ Vsin 07 . sin GJ '

where the numerator is

sin BI sin (57 - BG) - sin 57 sin (57 + 5C) = sin BC sin 77,

or say = sin J. sin 77. Moreover taking the distance OA to be = sin^, and the

perpendicular distances from 0 on the lines AB, AG to be sine and sinb respectively,

then if for a moment the angle 77 is put = 2co, we have sin jp sin co = 1 : moreover

sin 57 sin 57= sin (w - BO) sin (co + BO) = sin2 co - sin2 BO ;

I sm2 c cos2 c
and sin p sin BO = sin c ; that is, sin 57 sin 57 = ——0 , = -r-r— : and similarly

r sm2jp sm2_p

sin (77 sin 07^ = 4——- ; also

sm2_p

. rr . _ a : 2 icosp
sm 1J = — sm zco = 2 sm co cos co = -— —-.—-- ;

smp snip

whence the required formula

sin .4 =

cos p sin A

cos b cos c

In the same way, or analytically from this value, we have

-r cos A -f sin 6 sin c

cos A = t ,
cos b cos c

and thence also

cos p sin A
tan A =

cos A + sin b sin c '

In particular, taking the line AC to pass through 0, or writing in the formula b = 0,

we have tan 50 = cosp tan 50 = cosp tan #; that is, BO = tan-1 . cosp tan # ; and similarly

00 = tan-1 cosp tan 0' ; we ought to have A=B0 + CO, that is,

A = tan-1 cosp tan 0 + tan"1 cosp tan &

which, observing that sin p sin 6 = sin c and sin p sin & — sin b, also .4 = c9 + c9', is in fact

equivalent to the above formula for tan .4.

Observe in particular that when A is at the centre, p is =0, and the formula

becomes A — 6+ 6f, =A, or say for an angle at the centre, 0 = 0.

52—2
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I return to the expression for cosh<x; in explanation of its meaning, let the

distances OB, OG be q, r respectively and let the angle BOG be a; to find q we

have only to take O at 0, that is, in the formula for cosh a to write r = 0, we thus

find cosh q = —— : and similarly cosh r = , whence also
* cos q J cos r

cos q = sech q, sin q = i tanh q,

cos r = sech r, sin r = i tanh r,

also, as seen above, a = a ; the formula thus is

, _ 1 + tanh q tanh f cos a
cosh a- = r~= r-=

seen q sech r

— cosh q cosh r + sinh q sinh r cos a,

or, what is the same thing, it is

cosh a — cosh q cosh r
cos a = .,-.,_ ,

smh q smn r

viz. as will presently appear, this is the formula for cos BOG in the triangle BOG.

From the above formulae

, _ 1 — sin q sin r cos a
cosh a = ~ ,

cos q cos r

and

. -r cos » sin A -j- cos A + sin b sin c

sin A = —^ , cos A = z ,
cos b cos c cos b cos c

and the like formulae for b, c, B, G, it may be shown that in the triangle ABC we have

, _ cos A + cos B cos G
cosh a = :—=—-—= .

sin B sin G

In fact, substituting the foregoing values, this equation becomes

(1 — sin2 a) (cos A + sin h sin c) + (cos B + sin c sin a) (cos C + sin a sin 6) _ 1 — sin q sin r cos a

sin B sin G cos b cos c cos q cos r

that is,

cos A + cos B cos G— sin2 a cos J. + sin a sin b cos B + sin a sin c cos G + sin b sin c

= sin B sin 0(1 — sin q sin r cos a),

or, what is the same thing,

sin2 a (cos B cos G— sin 5 sin G) + sin a sin b cos i? + sin a sin c cos G+ sin b sin c

= — sin B sin (7 sin g sin r cos a,

that is,

(sin a cos J5 + sin c) (sin a cos G 4- sin b) = sin 5 sin (7 (sin2 a — sin y sin r cos a),

a relation which I proceed to verify.
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We may, from the formula

a? — sin2 q -f sin2 r — 2 sin q sin r cos a, a sin a = sin q sin r sin a, &a,

but, more simply, geometrically as presently shown, deduce

sin a cos 5 -f sin c = - sin B sin q (sin a — sin r cos a),

a * *

sin a cos G + sin b = - sin G sin r (sin r — sin q cos a),

and thence

,. n • x/. ^ • *\ 1 • -n • ^ • • (sing sin r(l + cos2 a)'
(sin a cos jtf + sin c) (sin a cos GT + sm t>) = — sm i* sin G sinasmr a 7 . 0 . . :

' v y a2 r~ cos a (sin ? + sm r).

= 2 sin B sin (7 sin g sin r (sin g sin r sin2 a — a2 cos a)

CL

= sin 5 sin G (sin2 a — sin q sin r cos a),

which is the equation in question. For the subsidiary equations used in the demon

stration, observe that the four points 0, X, A', B lie in a circle, and consequently that

GO.CX=CA'.CB; or multiplying each side by sin 0, then CO .GX ,smC = A'K .CB,

that is,

sin r (sin r — sin q cos a) sin G = a (sin a cos G + sin b),

and the other of the equations in question is proved in the same manner.

From the formula for cosh a we find

sinh a = ——=—m—- A,

sin B sin C

where

A2 = - ( 1 - cos2 A - cos2 B - cos2 G - 2 cos A cos B cos 6),

whence also

sinh a : sinh b : sinh c = sin A : sin B : sin (7 ;

and we can also obtain

—r cosh a — cosh & cosh c 0
COS ^ = ; =—m = &C.

sinh b sinh c

So that the formulas are in fact similar to those of spherical trigonometry with only

cosh a, sinh a &c. instead of cos a, sin a &c. The before-mentioned formula for cos a in

terms of a, q, r is obviously a particular case of the last-mentioned formula for cos A.

Cambridge, 11 May, 1872.
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529.

A "SMITH'S PKIZE" PAPER (x); SOLUTIONS.

[From the Oxford, Cambridge and Dublin Messenger of Mathematics, vol. iv. (1868),

pp. 201—226.]

1. Find the form of a function of a given number of letters, which has two and

only two values.

It is required to find the general form of a function <f) (a, b, c, . . . , k), rational and

integral, which for all permutations whatever of the letters has two and only two values.

Suppose that any particular permutation of the letters changes <f>(a, b, c, ... , k) into

fa (a, b, c, ...,&); then any permutation of the letters will either leave the functions

<$>, fa each of them unaltered, or it will change <£ into fa, and fa into $. Hence

<j> + fa is a symmetrical function of all the letters, say

(j>— fa is a function which by any permutation of the letters is either unaltered, or

simply changes its sign ; and it is to be shown that, writing for shortness V to denote

the product (a — b){a — c) ... (b — c)... of the differences of the letters, and denoting by

2M a symmetrical function of the letters, we have

<f>-fa = 2VM.

These equations give

<f>=L+VM,

which is the general form required ; viz. the function <j> has then only the two values

L+VM, L-VM.

To prove the subsidiary theorem, observe that there is at least one interchange of

two letters which changes <\> — fa (for otherwise <f> — fa would be a symmetrical function);

1 Set by me, for the Master of Trinity, Thursday, January 30, 1868.
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let this be (a, b). Then </> — fa, changing its sign for the interchange in question, must

vanish for a = b, that is, <f> — fa must contain the factor (a — b) ; let it contain it

in the power (a — b)s ; then the quotient <f> — fa -f- (a — b)s, not vanishing for a = b,

cannot change its sign by the interchange in question, and as by supposition <jb — fa

does change its sign, it appears that the exponent s must be odd. But <fi — fa} con

taining the factor (a — b)s, must contain every other like factor (a — c)s or (c — d)s ; in

fact, writing <j> — fa = K (a — b)s, then if the interchange (a, c) alters K into Kl9 we have

K (a — 6)s = 4 ifx (a — c)s. and if consequently contains the factor (a — c)s ; it does not

contain any higher power (a — c)s+s\ for if it did, by reversing the process it would

appear that $ — fa contained (contrary to supposition) the factor (a — b)s+s'. Similarly

cj> — fa contains the factor (c — d)s, but no higher power (c — d)s+s\ Hence <j> — fa con

tains the product of all the factors (a — b)s, that is, it contains Vs, and writing

<f> — fa = 2 VsM, the quotient if does not contain any such factor as (a — b) ; it therefore

does not change its sign for any interchange whatever (a, b) ; and in consequence it

remains unaltered for any such interchange, that is, if is a symmetrical function.

Observing that any even power of V is a symmetrical function, we may without loss

of generality include "P-1 in the symmetrical function if, and write therefore

cj)-fa = 2VM>

which is the subsidiary theorem in question.

x7 — 1
2. Express as the product of tivo cubic factors ; and show generally that, for

any prime exponent p, the function may be broken up into two factors each of the

order J- (p — 1), by means of a quadratic equation.

Let r be any root of the given equation, then

r6 4- r5 + r4 + r3 + r2 4 r 4- 1 = 0 ;

the roots of this equation are r1, r2, r3, r4, r5, r6.

Hence

xQ + x5 4- x* 4 xs 4 x2 4- x 4- 1 = (x — r1) (x — r2) (x — r4) . (x — r3) (x — r5) (x — r6),

and denoting the two cubic factors by yly y2, or writing

y-l = (x — r1) (x — r2) (x — r4),

y2 = (x — r3) (x — r°) (x — r6),

we have

y1 — xz — x2 (r1 4- r2 + r*) + x (r3 4- r5 4- r6) — 1,

y2 = x2 — x2 (rs + r5 + r6) + x (r1 4- r2 + r4) — 1,

and thence

y\ + }h = %%*-{• x2 — x— 2.

Hence yl3 y2 are the roots of the quadratic equation

y2 - y (2x* 4- x2 - x - 2) 4- x6 + x5 + x4 + xz + x2 + x + 1 = 0.
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Solving the equation, observing that the quantity under the radical sign must of

necessity be a square, and that its value is

(2#3 + x2 - x - 2)2 - 4 O6 + x5 4- x4 + x3 + x2 + x + 1),

which is in fact

= - 7 (x2 + x)\

we find that the roots y1} y2y that is, the required cubic factors, are

\ {2x* + x2 - x- 2 ± V(- 7) (x2 + x)\.

Generally for any prime exponent p, denoting any root by ry and writing

V\—{p — va") (j® — ^2) • • • >

y2 = (x — T&i) (# — rb*) . . . ,

where a1? a2... are the quadratic residues, and bl9 b2... the quadratic non-residues of

p, we find

f-yP + Q = o,

where P is a function of x of the order \{p — 1), and Q is = x?'1 + xp~2 ... + x + 1.

Hence

2/ = |{P±V(P2-4Q)},

where P2 — 4Q is a perfect square, = epZ2, Z a rational function of a degree less than

\ (p — 1), and e = + or — according as p is = 1 or = 3 (mod. 4). Hence the required

factors are

\{P±^ep)Z\.

3. In a Map of the World, wherein the meridians are projected into right lines

meeting in a point, the inclination of any two of the lines being equal to that of the

two meridians, and the parallels into circles about the point as centre, the radius of

the circle being a given function of the colatitude : compare on the sphere and in the

map (1) the corresponding elements of area, (2) the azimuths of corresponding linear

elements ; and explain what conveniences may be obtained by proper determinations of

the above-mentioned function of the colatitude.

Let the longitude and colatitude be

on the sphere ly c,

in the map l\ c'',

then the projection is such, that l'=l, c' —f(c), a given function of c.

The lengths of corresponding linear elements in the direction of a meridian, and

perpendicular to it, are

dc , sin c dl,

dc, ddl :
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whence, elements of area are

tangents of azimuth are

dc . sin c dl ,

dc. c'dl\

do -r- sin c dl,

dd -r- ddl ;

and substituting the values l — I, c=f(c), we have dl' = dl, dc =f (c)dc; and thence

elements of area are as sin c : f{c)f (c),

tangents of azimuth as 4- : ■££>

° sin c /(c)

By proper determinations of the function /(c), we can make

(1) The ratio of the elements of area to be constant ; this will be the case if

f(c)f (c) = k sin c, that is, /2 (c) = const. — 2k cos c

= 2k(l -cose),

since /(c), = c , must vanish for c = 0 ; that is,

/(c) = 2V(£)sin4c:

(2) corresponding azimuths to be equal; this will be the case if

/, v, / _ __— that is, log /Yc) = const. + log tan A-c,
/(c) sine > z>j \ / & ^

or say

/(c) = &tan -J-c.

This is in fact the stereographic projection, in which (as is known) any indefinitely

small figure is in the map represented without distortion.

4. Explain the general configuration of the contour and slope lines in a tract of

Lake and Mountain country.

A contour line is the locus of points having a given altitude.

To fix the ideas, consider an island forming a two-headed mountain. The contour

line at the sea level is a closed curve ; at a sufficiently great altitude the contour

line consists of two closed curves surrounding the two summits respectively ; the

transition from one form to the other takes place at the altitude of the pass between

the two summits, the contour line then having a node at the top of the pass, and

being in form a figure of eight. At the altitude of the lower summit one of the

closed curves is reduced to a point, and for greater altitudes it disappears, the contour

line being then a single closed curve surrounding the higher summit ; and at the

altitude of the higher summit this reduces itself to a point. (See fig. 1.) If there is-

on the breast of the mountain a lake, the contour line at the lake level is (as in

c. viii. 53
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the case of the pass) a curve with a node, being however here a closed curve with an

interior loop as shown in the figure. The contour line for an altitude below the lake

level includes as part of itself a closed curve lying within the contour of the lake,

Fig. 1.

 

and which for the altitude of the lowest point (or " imit ") of the lake reduces itself

to a point, and for smaller altitudes disappears.

The contour lines in the immediate neighbourhood of a summit are in general

ellipses (geometrically, the indicatrix is an ellipse) ; they may however be circles (viz.

if the summit be an umbilicus).

A slope line is a line of greatest inclination, and it is consequently an orthogonal

trajectory to the series of contour lines. A slope line may be considered as always

terminated in a summit or an imit ; there is through each summit (or imit) an infinity

of slope lines, and in general these all touch there ; if, however, the contour lines in

the immediate neighbourhood are circles, then the slope lines, instead of touching,

pass from the point in all directions. Through the node at the top of a pass, or

outlet of a lake, there are two intersecting slope lines, one ascending each way from

the node, and being in general a " ridge-line " ; the other descending each way, and

being in general a " course-line," viz. in the case of a pass, it is in each direction

the course of the principal stream of the valley ; and in the case of a lake- outlet, it

is in the direction away from the lake, the course of the out-flowing stream. The

slope lines which thus pass through the several nodes mark out distinct regions, and

so facilitate the tracing of the intermediate slope lines.

5. Find the differential equations corresponding to the three integral equations

respectively (i) (y + c)2 = x (x — 1) (x — 2); (ii) (y + c)2 = x2(x — 1) ; and (iii) (y + c)2 = x3:

and discuss geometrically the singular solutions.

Generally, for the equation (y + c)2— X= 0} the derived equation is 4X (-—) — X'2 = 0.

\dx)

If from the integral equation, differentiating in regard to c, wTe attempt to find the

singular solution, we obtain (y + c) = 0 ; and thence X — 0 for the singular solution. It

is however to be observed that, if X contain single and multiple factors,

X = (x + a) (x + /3) . . . (x + y)m. . . ,
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then it is only the single factors # + a = 0, # + /3 = 0, ..., which are solutions of the

differential equation when expressed in its proper form free from extraneous factors.

To explain how this is, write the differential equation in the form

X'8(|)-4Z=0;

for a single factor x + a, X' does not contain the factor x + ol, and there is no

division by x-h a. The equation x + a = 0 gives -y- = 0, X = 0, and the equation is

thus satisfied ; and by what precedes x + a = 0 is a singular solution. Contrariwise, for

fdx\2
the multiple factor (x + y)m, X' will contain (x + y)m~l, and the equation X'2 f-y-j —4Z=0,

will divide by (x + 7)™, and divested of this factor it will be of the form

X'2 rdx\* 4Z

(x + y)m\dyJ (x + y)

X; X
where — contains the factor (x + y)m~2 (index is 0 or positive) but

(x + y)m \ // \ r / (x + y)m

dx
does not contain x ■+■ y ; hence the equation # + 7 = 0, gives -v- = 0, and therefore

-7- j =0, but it does not give ^— = 0, and consequently fails to satisfy the
(x + y)m\dyj ' ' 8 (x + y)"

differential equation. Eeverting to the integral equation (y -\-c)2=(x-\-a)(x+ /3) . . .(x+y)m . ,. ,

we see that x + a = 0 touches each of the series of curves, and is thus an envelope

thereof: that # + 7 = 0 is not an envelope, but is the locus of a singular point on

the series of curves.

Applying the foregoing considerations to the proposed question,

(i) The differential equation is (fig. 2),

Fig. 2.

 

(3^2 _ 6x + 2)2 fpj -4>x(x- 1) (x - 2) = 0,

having the singular solutions x=0, # — 1 = 0, #—2 = 0.

53—2
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(ii) The differential equation is (fig. 3),

(Sx-2)2(^J-4(x-l) = 0,

Fig. 3.

 

having the singular solution # — 1 = 0. But x = 0 is not a solution ; it is the locus

of the series of conjugate points of the curves (y + c)2 = x2(x — 1).

(iii) The differential equation is (fig. 4)

which has no singular solution. But x — 0 is the locus of the cusp of the curves

(y 4- c)2 = x3.

Fig. 4.

 

6. Show that the curve parallel to the parabola is of the order 6 and class 4 ;

explain the reduction of class ; and trace the system of parallel curves.

The curve parallel to the parabola is the envelope of a circle of constant radius,

having its centre on a parabola; taking the equation of the parabola to be y2=4<x,

the coordinates of any point thereon may be taken to be a2, 2a, and the equation of

the variable circle is

(x - a2)2 + (y- 2a)2 - r2 = 0,

that is,

a4 + a2 (— 2x + 4) + a (— 4y) + x2 + y2 - r2 = 0 ;

or multiplying by 6, this is

where

(a, 0, c, d, e$a, l)4 = 0,

a = 6,

c = — 2x + 4,

d = - 6y,

e = 6 (x2 + 2/2 - r2).
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The equation of the envelope is obtained by eliminating a between the equation

in a and the derived equation ; or, what is the same thing, by equating to zero the

discriminant of the equation in a ; we thus obtain

(ae 4- 3c2)3 - 27 (ace - ad2 - c3)2 - 0,

which, substituting for a, c, d, e their values, is an equation in (x, y) of the order 6 :

the order of the curve is thus = 6.

The class is most easily obtained by geometrical considerations. Seeking the

tangents which can be drawn from a given point, it at once appears that, describing

about this point a circle radius r, then to each tangent through the point to the

parallel curve, there corresponds a common tangent of the circle and the parabola, and

reciprocally ; whence the class of the curve is equal to the number of common tangents

of the circle and the parabola, that is, it is = 4.

To the order 6 corresponds in general a class =30, and the reduction from

30 to 4, = 26, is caused by the cusps and nodes of the curve.

The cusps are given as the points of intersection of the curves ae + 3c2 = 0,

ace — ad2 — c3 = 0, which being respectively of the orders 2 and 3, give 6 cusps ; it

may be added that these cusps (2 real and 4 imaginary, or else all 6 imaginary) are,

in regard to the parabola, the centres of curvature for those points at which the radius

of curvature is =r.

There is on the axis a single point (always real) whose normal distance from the

parabola is =r. Such point is a node of the parallel curve, viz., according to the

value of r, either an acnode (conjugate point) or a crunode : we have thus 1 node.

The parallel curve at infinity coincides with the two parabolas obtained by the dis

placement of the given parabola parallel to itself through the distances + r, — r along

the axis of y. Two such parabolas have at infinity on the axis of x a contact of the

second order, equivalent to three coincident intersections ; and the parallel curve has

thus at infinity on the axis of x, a singular point equivalent to 3 nodes ; the number

of nodes is thus =4; and the 4 nodes and 6 cusps give the required reduction

2.4 + 3.6, =26.

The parallel curve is most easily traced geometrically; there are two branches, one

outside, the other inside the parabola, equidistant from it. The outside branch is a

curve of continuous curvature, the form of which requires no explanation. As regards

the inside branch, when r is small, this is also of continuous curvature, but there is

on the axis of x inside the branch a real acnodal point (the node above referred to):

when r becomes = radius of curvature at vertex (or twice the focal distance), the acnode

coincides with the branch ; and the point on the axis, although presenting no visible

singularity, is really in the nature of a triple point composed of two cusps and a node ;

when r is greater than this limiting value, instead of the acnode we have a crunode;
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and two real cusps present themselves; viz. the form of the inside branch is as shown

in fig. 5.

Fig. 5.

 

7. Show that a curve of the order n has at most %(n—l)(n — 2) double points ;

and that in any curve having this maximum number of double points, the coordinates

(%, y, z) may be taken to be proportional to rational and integral functions of a variable

parameter.

A curve of the order n cannot have more than \ (n — 1) (n — 2) double points ; for

suppose it had one more, say

\ (n - 1) (n - 2) + 1, = \ (n2 - 3ri) + 2, double points ;

then since a curve of the order n — 2 can be drawn through

\ (n - 2) (n + 1), = J (n2 - n) - 1 points,

suppose it drawn through the

\ (n2 - 3n) + 2 double points ;

and besides through n — 3 points on the curve,

together -| (n2 — n)—l points,

it will cut the curve of the order n in the double points considered as

?i2 — Sn + 4 points,

and besides in n — 3 points,

together n2 — 2n + 1 points,

that is, we should have a curve of order n — 2 meeting the curve of the order n in

n (n — 2) + 1 points, which is of course impossible.

Consider now a curve of the order n with %(n — l)(n — 2) double points; draw a

curve of the order (n — 2) through the double points

J (n2 — Sn) + 1 points,

and besides through n — 3 points on the curve,

together i <y - n) - 2 points ;
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this imposes on the curve \ (n2 — n) — 2 conditions ; but as the curve might have been

determined to satisfy J (n2 — n) — 1 conditions, its equation will contain an indeterminate

parameter X : it meets the curve n in the double points considered as

n2 — 3^+2 points,

in the n — 3 points,

and besides in 1 point,

altogether n2 — 2n points.

Hence since for any value whatever of X, there is only one remaining inter

section, the coordinates of this point must be rationally determinable in terms of the

parameter X; that is, the coordinates of any point on the given curve will be rational

functions of A,; or using trilinear coordinates, the coordinates x> y, z of any point on

the given curve will be proportional to rational and integral functions of A.

8. Show that three bodies attracting each other according to the law of gravitation

may move in a line in such tuise that the mutual distances are in a constant ratio the

value of ivhich depends on the masses.

Taking the masses m1} m2, ra3, to be arranged in this order at distances ocl9 x2) x3

from a fixed origin, the equations of motion are

d2xY m2 m*

(Xiv \X2 *^1/ \ «3 X*J\)

d2x2 mY m,

i +
dt2 (X-O2 (x3-x2)2

d2x3 mY m2

whence

dt2 (x1 — x3)2 (x2 — x3)2 '

d2 (x2 — x±) m1-\-m2 m3 m:

Assume

and therefore

dt2 (x2 — x^f (x3 — x2)2 (x3 — Xi)2 '

d2 (xs — x-j _ m1 + m3 m2 m2

av \X3 ~~~ x-^j \x3 "~~" x2j \X2 ~~ x^j

X3 —~ X± —— OL \X2 — X-^jy

X3 ~~ X2 —' X3 ■"*" X-^ ~~ [ X2 —• X\\ ~~ [OL ~~"■ J- ) \X2 ~~~ tX'2 / j

then the equations become

d2(x2-x1) ( m3 m3

- \-m1-m2 +
dt2 'I "01 "°2^(a-l)2 a2\(x2^x1)2'

and

d? (x3 — ^i) _ [ rnl + m3 m2

df \ v? (a-lf 2j O2-O2'
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which equations will be one and the same equation if only

an equation which (multiplying out) is of the fifth order, and gives at least one real

value of a : and a being thus determined, we may from either equation obtain an

d2(% — oc) G

equation of the form 2 —— = ^ , which determines x2 — #, in terms of t, and

then oo3 — a)1} = a (#2 — a^), is also known; that is, the relative motions of the three bodies

are determined.

9. Write down the integral equations for the elliptic motion of a planet; and if

r, s, v1 denote the radius vector, tangent of the latitude, and reduced longitude respectively,

shoiv that

explaining the significations of the constants a1} elf /ar1.

Write

a, the mean distance,

n , the mean motion = -~^~ ,

a"

e , the eccentricity,

0 , longitude of node,

-st, longitude of pericentre in orbit,

(f>, the inclination,

v , the longitude in orbit.

The position in the orbit is determined in terms of the time by means of an

auxiliary quantity u, viz. writing

nt+c = u — e sin u.

We then have the radius vector r, and the true anomaly /, given as functions of the

time by the equations

cos/=y
cos u — e

• e cos u

. r v(l — e )sm u
sin / = —^

e cos u

a (1 - e*)
r — _^ l. — a(l — e cos u).

1 + ecos/ v
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Take z, xy y the hypothenuse, base, and perpendicular of the right-angled triangle

NPP\ base angle = (/> (see fig. 6), in which NP is the orbit, N the node, K the

pericentre, P the planet ; then

Fig. 6.

 

T N

z = -u? — 8 +f gives z ; and x, y are given in terms of z, <f>, by the formulae relating

to the spherical triangle, so that we have

longitude in orbit = z + 8 (= w +/),

reduced longitude = x + 8,

latitude = y.

The expression for r, writing for f its value, = -y — -ar, gives

1 1

r a (1 — e2)

V(i + *2) l

{1 + ecos(v — vr)},

r a (1 — e2)

v — v? = v — 8 — (/si — 8),

{V(l + s2) + V(l + s2) e cos (v - ot)}.

and we have thence

But we have

and thence

cos (v — ot) = cos (t; — 5) cos (vr — 8) + sin (a — 8) sin (ot — 0).

Consequently

V(l + s2) cos 0 - ot) = V(l + s2) cos (*r - 8) cos 0 - 0)

+ V(l + s2) sin (w - (9) sin 0 - 0) ;

but by the right-angled triangle, we have

sin (v — 8) sin <j> = smy

and thence

sin (^ — 0) = cot <£ tan 3/ = s cot $,

V(l + s2) sin 0 - 8) = -
sin <£ cos <£

1 sin (^ - 8)

scot<p ——
cos$

that is,

C. VIII.

/ n\ / a\ COS (^-(9)

cos (v — u) = cos (?! - v) cos y = ' 2, ,

V(l + s2) cos (v - 8) = cos Oi - 8).

54
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The formula thus becomes

a (1 - e1)

1

V(l + s2) 4- e jcos (tfj - 0) cos (tar - 0) + sin {vY - 8) Sm ^ '

V(l + s2) + e cos y"" "" j |cos ^ _ ^ cos (OT _ 0) + sin ^ _ ^) sin ^ _ 51)

' a V(l - e2) L cos («rx - 0)

1

where

'^(1-tf)

1

{V(l +s2) + ^cos(^- 0)},

tan (w — 0) = tan (^ — 0), gives vsl,

cos$

COS (-CT — 0)

ei = e-—7 m, gives el5
cos {tjt1 - 0) °

ax (1 — e^) = a (1 — £2), gives aa.

The first equation shows that, drawing the arc KK' at right angles to NP, then

zt1-8 = NK'>

and therefore

The other two equations then give e1 and aY : it may be added, that from the

right-angled triangle NKK' we have cos {tff1 — 0) = cos (ot — 0) cos JOT", and consequently

that ex is = e -r- cos jOT'.

10. JPmd £/ie differential equations for the motion of a material line acted upon by

any forces and moving in a given rtded surface.

If a, b are the coordinates of the point of intersection of any line of the ruled

surface with the plane of xy ; a, ft, y the cosines of the inclinations of the line to

the three axes respectively ; then writing

x— a y — b z , x
^r=V=7(=r)'

and considering a, b, a, ft, y as given functions of a variable parameter 0, where

a, ft, y satisfy the relation a2 4- /52 + y2 = 1, the equations in question, exclusive of the

equation (=r), determine the particular line on the surface; and taking account of the

equation (= r), they determine in terms of the parameters r, 0, the coordinates of a

particular point in this line.

The motion of the material line is such that it comes successively to coincide with

the several lines on the ruled surface ; consider on the material line a fixed point,

say its centre of gravity G, and imagine that in the course of the motion the material

line comes to coincide with the line determined as above by the parameter 0, and the

point G with the point determined as above by the parameters r, 0\ consider on the
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material line any other point P whose distance from G is ~s; the parameters of P

will be r + s, 6 ; and the coordinates will consequently be given in terms of the variable

parameters r, 9 by the equations

x — a y — b z

a /3 7

that is,- we have

x = a + (r + s) a, y = & + (r + s) /3, z = (r + s) 7,

where a, 6, a, /3, 7 are given functions of 0; r, 0 are parameters varying with the

time, and s is a constant in regard to the time, but varies with the point under

consideration.

Hence, writing as usual T to denote the Vis Viva function

= ±ldm (x'2 + y'2 + z'2),

where dm is the element of the material line, and x\ y\ z' are the velocities of the

element, it only remains to express T as a function of r, 0; and the equations of

motion will be

dt W dr " '

ddT__dT_

dt dff d0 ~ •

Using a\ &', a', /3', 7' to denote the differential coefficients ^ , &c, but, as above,

x\ y, z\ r, & to denote differential equations in regard to ty we have

x' = [a + (r + s) a' ] ff + ar\

y> = [b' + (r + s)/3']0' + (3r'y

Z' =[ (r+S)r/']0'+yr',

and thence

a/2 + y'2 + z2 = A0'2 + 2Br'0' + r'2,

if for shortness

A=a'2 + V2 +2(r + s) (a'a' + /3'6') + (r + s)2 (a2 + /3'2 + 72),

B=a'a+b'/3+(r + s)(acL' + /3/3' +77),

= a'a +b%

since

CLot + Pfi' + yy' = 0.

Hence we have

T = \0'2%Adm + r'&^Bdm + \r'2tdm,

and, observing that in the sum SAdm, the terms involving 2sdm vanish in consequence

of G being the centre of gravity, we have

%Adm = \_d2 + b'2 + 2r («V + ffV) + r2 (a'2 + $'2 + 72)] 2dm + (a'2 + /3'2 + 7'2) l^dm.

54—2
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Or writing ScZm = M, 2<s2dm = Mk'\ (M being therefore the mass of the line, and MIc2

its moment about the centre of gravity), we have

XAdm = \M [a'» + V2 + 2r (aV + ffV) + (r2 + #) (a'2 + /3'2 + 7'2)].

Moreover

%Bdm = M(a'oL + b'{3)}

and hence we have

T=\M\ff* [a'2 + 6'2 + 2r (aW + £'&') + (r2 4- &2) (a'2 + /3'2 + 7'2)] 4- 20V (a'a -1- &'/3) 4- /4 ,

a given function of r, 0, r', 0' ; and the differential equations are therefore given as

above.

11. Explain the mutual connexion of the three theorems in conies: (1) the theorem

ad quatuor lineas ; (2) Pascal's theorem; (3) the theorem of the anharmonic relation of

four points.

The theorem ad quatuor lineas is that the locus of a point, such that the product

of its distances from two given lines is always in a given ratio to the product of

its distances from two other given lines, is a conic.

Consider the lines as forming a quadrilateral ABCD. Then A, B, G, D are points

on the conic, and writing TAB to denote the perpendicular distance of a point P

from the line AB, and so in other cases, the theorem is that the expression

PAB. PGP

PAG.PBD

has a constant value for any point P whatever on the conic. Now the perpendicular

distance PAB is = 2APAB ■*■ AB} or, what is the same thing, it is = PA . PB sin PAB 4- AB ;

transforming the other perpendicular distances in the same manner, the distances PA,

PB, PC, PD divide out and the foregoing expression becomes

AC.BD sin PAB . sin POD

~AB.GD sin PAG . sin PBD '

viz. omitting the constant factor, it appears that the expression ——p ah ^~P7?n *s

constant for all points P on the conic; or, what is the same thing, that the anharmonic

ratio of the pencil P(A, B, G, JD) is constant for all points P on the conic. This is

the anharmonic property of the points of a conic.

Pascal's theorem is that for any six points 1, 2, 3, 4, 5, 6 (fig. 7) on a conic, the

intersections of the lines 12 and 45, the lines 23 and 56, the lines 34 and 61 lie in a

line. Marking the points a, /3, 7, 8 as shown in the figure, it appears by the theorem

that we have the two lines (65/3S), (a547) meeting in 5, and such that the lines through

the corresponding points 6 and a, ft and 4, § and 7 meet in a point. Hence the

ranges (65/38) and (a547) have the same anharmonic ratio ; or, what is the same thing,

the pencils 3 (65/38) and 1 (a547) have the same anharmonic ratio ; that is, the pencils

3.(6542) and 1(6542) have the same anharmonic ratio; or, considering 1 as a variable
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point, but 2, 3, 4, 5, 6 as fixed points on the conic, the pencil 1 (6542) of lines from

the point 1 to the four points 6, 5, 4, 2 has the same anharmonic ratio for all

Fig. 7.

 

positions whatever of the variable point 1 ; which is the above-mentioned anharmonic

property of the points of a conic.

12. Show that any line through the centre of either of two orthotomic circles cuts

the two circles harmonically ; and connect this result luith the theorem that the Jacobian

of three circles is made up of the line infinity and the orthotomic circle.

Drawing through the centre of the circle A, (fig. 8) the line a/3a'/3', it appears by

the figure that we have

A/3 . A/3' = square of tangential distance of A from the circle B,

= Aa'2 since the circles cut at right angles,

= Aa.Aa!\

Fig. 8.

 

that is, the points /3, /3' are inverse points in regard to the circle on the diameter aa ;

and the points a, a! ; /3, /3' are thus harmonically related to each other.

Hence the polar of a, in regard to the circle B, passes through the point a , which

is the opposite of a in regard to the circle A ; and is consequently a fixed point for

all the circles B orthotomic to the circle A. That is, considering any three circles

orthotomic to the circle A, the circle A is a locus of points a such that the polars

of a in regard to the three circles meet in a point.
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Moreover, all circles meet the line at infinity in two fixed points I, J, the circular

points at infinity : hence for any point a on the line infinity, the polar of a in regard

to any circle whatever meets the line infinity in a fixed point, the harmonic of a in

regard to the two points 2", J"; whence the line infinity is also a locus of points a

such that the polars of a in regard to the three given circles meet in a point.

The Jacobian of any three conies is the locus of the points a, such that the polars

of a in regard to the three conies meet in a point; and it is in general a cubic

curve. Hence by what precedes it appears that the Jacobian of three circles is the

cubic curve made up of the orthotomic circle and the line infinity.

18. If five given lines have a common transversal, then taking the remaining

transversal of each four of the given lines, show by statical considerations or otherwise

that the five transversals have a common transversal.

Consider the line 6' (fig. 9) meeting each of the lines 1, 2, 3, 4, 5, and take

V the remaining transversal of (2, 3, 4, 5),

2' „ „ (3, 4, 5, 1),

3'

it is to be shown that the lines 1', 2', 3', 4'.

(4, 5, 1, 2),

(5, 1, 2, 3),

(1, 2, 3, 4);

5' have a common transversal 6.

Fig. 9.

 

Consider the line 6 as a line determined so as to meet the lines 2', 3', 4' and 5' ;

and take any line 6 meeting each of the lines 6, 6'; since the six lines 1, 2, 3, 4, 5, 0

have a common transversal 6', then considering the lines as fixed lines in a solid

body, it is possible to find along the lines 1, 2, 3, 4, 5, 6 forces which will be in

equilibrium. Suppose for a moment that the line 6, determined as above, does not

meet the line T; then we have the lines I', 2', 3', 4', 5r, 6 and 6 such that the

line 6 meeting the lines 2', 3', 47, 5', and 6, does not meet the line 1. The six lines

V, 2', 37, 4r, 5y, and 6 would be independent lines, such that there do not exist along

them forces in equilibrium, and a force acting in any line whatever may be resolved
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into forces acting along the lines V, 2!, 3', 4', 5', and 6. Hence the original forces

along the lines 1, 2, 3, 4, 5 can be each of them so resolved; and combining with

the resolved forces the original force along 6, we have a system of forces along the

lines V, 2', 3', 4', 5', 6 in equilibrium with each other; which is impossible if the lines

in question are related as above; that is, the line 6 meeting the lines 21, 3', 4', 5', 0

must also meet the line 1 ; which is the required theorem.

The statical principles assumed in the above demonstration are as follows:

(1) Six lines may be such that there exist along them forces in equilibrium ;

or say, for shortness, the six lines may be in involution.

(2) For any seven lines, no six or any less number of which are in involution,

there exist along the lines forces in equilibrium ; or, what is the same thing, given

any six lines not in involution, and a seventh line; then a force along the seventh

line may be resolved into forces along the six lines.

(3) Six lines which have a common transversal are in involution (remark in

passing that it is not conversely true that if the six lines are in involution they have

a common transversal), but if five of the six lines have a common transversal not

meeting the sixth line, then the six lines are not in involution.

14. In the theory of the variation of the arbitrary constants of a mechanical problem,

state and explain the results obtained by Lagrange and Poisson respectively ; and point

out the peculiar advantage of Poisson s theory, in regard to the consequences which follow

from the coefficients of his formulce being independent of the time.

In the theory of the variation of the arbitrary constants of a mechanical problem,

it is assumed that the forces consist of principal and disturbing forces, each of them

depending on a force function, say there is a principal force function and a disturbing

function ; (the assumption of a force function however in regard to the disturbing

forces, though usual and convenient, is not essential); and that, when the disturbing

forces are neglected, or say in the undisturbed problem, the equations of motion can

be completely integrated; the theory consists herein that the same integral equations,

taking the arbitrary constants to be variable, may be made to satisfy the disturbed

equations of motion.

Suppose that the number of the coordinates xyy,... is =p, then since the differential

equations are of the second order, the number of arbitrary constants (a, b, c, ...) will

be = 2p. In Lagrange's solution it is assumed that the coordinates x, y, . . . (and con

sequently also the derived functions x, y', ...) are each of them given in terms of t

and the 2p constants; the disturbing function fl is given in the same form; and the

expressions for the variations -j- , &c. are obtained by the solution of a system of linear

equations

dR , 7.db , .dc 0

Cm Of d Of

where the coefficients (a, b) are functions involving -j- , -7-, &c. ; these coefficients are
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thus prima facie functions of the 2p constants and of the time; but it is a result

of the theory that they are in fact functions of the constants only, the time dis

appearing of itself.

In Poisson's theory it is assumed that the integrals of the undisturbed problem

are obtained in the form

a = <j>(x, y, ...of, y\ ..., t\ &c,

viz. that each constant is given in terms of the coordinates, their derived functions,

and the time (so that, if all the integrals are known, this is equivalent to Lagrange's

assumption). The expressions for the variations of the constants are given in the form

da r 7 n dR r n dR 0

where each coefficient [a, b] is given as a function of -j- , -j~f , &c, -y- , -7-7 , &c. :

these coefficients are thus in the first instance expressed as functions of the coordinates

x, y, ..., the derived functions x', y\ . . . , and the time ; but it is a result of the theory

that the coefficients [a, b] are really constant ; viz. that, if x, y, ..., x\ y'}... were

expressed in terms of the 2p constants and the time, then that the time would dis

appear of itself and the coefficients [a, b\ &c. would be found to be functions of the

constants only.

The formation of the value of any coefficient [a, b] requires only the knowledge of

the expressions of a, b in terms of x, y, . . . , x\ y\ ...,£, or say the knowledge of the two

integrals a, b. We thence obtain the expression of [a, b] as a function of x> y, . . . , x\ y'} ...,t,

say [a, b]=f(x, y,..., x\ y',...,t). But, as already mentioned, fa, b] is in fact a constant;

calling it c, we have c=f(x, y,..., x', y',...,t); that is, we have an integral of the

equations of motion of the undisturbed problem. It may happen that the value of

[a, 6] is found to be =0; or to be a function of w, y> ..., x', y\...yt, which in virtue

of the given values of a, b in terms of these same quantities reduces itself to a

function of (a, b) ; in either of these cases we obtain no new integral ; but if (as may

be) neither of the foregoing cases happen, then the equation c=f(x, y,..., x\ y\ ...,t)

is actually a new integral of the equations of motion (in the undisturbed problem)

obtained by mere differentiations from the two given integrals a, b. There is nothing

analogous to this in Lagrange's theory.

15. Write a short dissertation on the transformation of coordinates {rectangular in

space of three dimensions) ; and in particular explain under what restriction it is true

that two sets of rectangular axes about the same origin may be made to coincide by

means of a rotation of either set about a certain axis; and from the formulae of

transformation obtain expressions for the position of this axis and the amount of the

rotation.

Two sets of rectangular axes about the same origin (each axis considered, not as

a line extending in two opposite senses, but as drawn from the origin in one sense

only) are or are not displacements the one of the other; viz., making the axis of

id to coincide with that of x; and the axis of yx to coincide with that of y, then
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either the axis of zx will coincide with that of z, or it will be in the opposite

direction; in the former case the two sets are, in the latter case they are not,

displacements one of the other. The restriction referred to in the question, is that

the two sets shall be displacements one of the other

In the problem of transformation, the two sets of axes, if not displacements, can

always be made so by simply reversing the direction of one of the axes (writing for

example — z for z) ; and there is thus no real loss of generality in considering the

two sets as displacements the one of the other; and it is in general convenient to

make this assumption.

The transformation between two sets of rectangular axes is at once given by the

diagram

X y z

xl a P y

Vi
a P y

*1
a ' pr

y

where a is the cosine of the inclination of the axes x, x1\ and so for the rest of the

nine quantities. The relation between the two sets of axes is obtained at pleasure by

reading the diagram horizontally xx = ax + j3y + yz, &c. ; or by reading it vertically

x = axj + a,y1 + a"z1 , &c.

We must have identically x2 + y2 + z2 = x-f + y^ + z-f ; and we thus obtain the two

equivalent sets of equations

ol2 + a'2 + ct"2 =1,

/32 + /3'2 + /3"2 =1,

72 + 7'2 + 7"2 =1,

ata." + Z373" + y'y ' = 0, /3y + /3'y' + /8"y'' = 0,

a a + /3"/3 + y"y =0, ya + yV + yV = 0,

aa' +/3/3' +yy' =0, a/3 + a!$ + a"£" = 0.

Either set leads to the relation

a > ft , y 2 = 1, consequently a , /3 , y — + 1,

a, ff, 7 *'

«", £", y" . «"

a2 + /32
+ y2 = 1,

a2 + /3'2
+ 7-

1 '9

= 1,

a"2 +/3"2 + 7"'2
= 1,

/3 , 7

/3', 7'

/3", 7"

C. VIII. 55
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the distinction between the two cases + 1, — 1 being that above explained ; viz. if

the axes are not displacements the one of the other, the sign is — ; if they are,

(and in all that follows this is assumed to be the case) then the sign is +. The

equations give further a = /3'y" — @"y, &c. (nine equations).

It is easy to see geometrically that, as stated in the question, two sets of axes

(being as above mentioned displacements the one of the other) can be made to

coincide by means of a rotation of either set about a certain axis ; inasmuch as the

position of the axis itself is not altered by the rotation, it is clear that for any

point of the axis, the coordinates x, y, z and xl9 yly zl must be respectively equal ;

we thus have

(« - 1) X + fry + J Z = 0y

a'^ + OS'-l) y+ y'z = 0,

Ct"x + &'y + (y" - 1) * = 0,

equations which must be equivalent to two equations; we in fact have

a-1, /3 ,7

«' , £'-1, i

a" , /3" , 7"-l

= 0,

as is easily verified by means of the foregoing relations between the coefficients.

Any two of the three equations will then determine the ratios x : y : z; taking the

second and third, we have

x:y: z = (/3' - 1) (y" - 1) - /3"7' : y'<x" - «'(7"-l) : «'/3" - a" (? - 1),

reducible to

x : y : z = 1 + a - j8'-Y' : /3 + a' : 7 + a'7,

and treating in the same way the third and first, and the first and second equations

the system of formulae is

0=1 + a -ff-y" : /3 +a' : y + a"
: y

«' +/S : 1 - a + P - 7" : 7+/3"

Cc" + y : /S" + 7 : l-«-/3'

equations equivalent to each other; they determine the position of the axis in question,

or resultant axis. The foregoing equations may also be written

x> : f : z> : x* + y* + z2 = 1 + a-/3'-y" : l-a + jS'-ry" : l-a-/3' + 7" : S-a-^-y,

and hence, if A, B, C be the inclinations of the resultant axis to the axes of x and

ocu y and yly z and zx respectively, we have

l + tt-ff-y
cos2 A =

3-a-^-y
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and thence also

2(1 -a)

sin2 A = ^ —
S-a-^'-y"

3 - a - p - 7

Let 0 be the amount of the rotation about the resultant axis; we have a spherical

triangle the two sides whereof are A, A, the included angle 6, and the opposite side

cos"1 ol ; that is, we have

„ a — cos2 A

COS 0 = ^—r— ,

sm2 A

and thence

Wjfl = 2(l+cosfl) = 2(aTH2A)
z v y sm2J.

= 1 + a + /3' + 7",

that is, the amount of the rotation is given by the formula

4cos2i0 = l+a + /3'-f 7".

The nine cosines a, 0, 7, &c» may be expressed in terms of the inclinations A, B, G,

and the rotation 0, or putting \ jjl, v equal to tan |-0cos^L, tan ^0 cos .B, tan|#cos(7,

in terms of the three quantities \, fi, v; but the resulting formulae for the trans

formation of coordinates can be more readily obtained by other methods.

55—2
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530.

SOLUTION OF A SENATE-HOUSE PROBLEM.

[From the Oxford, Cambridge and Dublin Messenger of Mathematics, vol. v. (1869),

pp. 24—27.]

The Problem, proposed January 7, 1869, is "If 61 and 82 are two values of 6

which satisfy the equation

cos 6 cos </> sin 6 sin <£ _

cosJ a sirr a

show that 01 and #2, if substituted for 6 and </> in this equation, will satisfy it."

That is, writing

cos #x cos cj> sin 61 sin <fi _ n

tf + P +1-0,

cos #2 cos 6 sin #2 sin 0

a> + P + 1 = °'

where a2 + b2 = 1, it is to be shown that

cos dj cos 02 sin ^ sin 62

a* + V + 1 = 0,

From the given equations, we have

cos 6 sin d> _, . n . n n n • /d n\
-—f- : ——- : l=sm^- sin <92 : cos 02 — cos 61 : sin (02 — #i),

which are

= cos J (ft + ft) : sin $ (ft + ft) : - cos J (ft - ft).



530] SOLUTION OF A SENATE-HOUSE PROBLEM. 437

Whence eliminating </>, we have

a4 cos2 1 (01 + 02) -f ¥ sin2 £ (0X + 02) - cos2 1 (<9X - 02) = 0,

that is, ,

a4 {1 + cos (0, + 02)} + 64 {1 ~ cos (0, + 02)} - {1 + cos (0, - 02)} = 0,

or, what is the same thing,

a4 + ¥ - 1 + (a4- 64- 1) cos 0a cos 02+ (- a4 + 64- 1) sin 02 sin (92 = 0.

But from the equation a2 + ¥ = 1, we have

a4 + &4 _ i = _ 2a262,

a4 _ &4 _ x = __ 262,

- a4 -f ¥ - 1 = - 2a2,

and the equation is thus

cos 02 cos 02 sin 0± sin #2 __

a2 o2

which is the required equation.

Stopping at the result obtained previous to the use of the relation a2 + ¥ = 1,

but making some obvious substitutions in the formulae, the theorem may be presented

in a more general form as follows ; viz. :

If we have

a2 + ¥ '

a2^ ¥ '

where

_ + --l_0, -+__i_o, ^ + ^-i-o,

a relation, the geometrical signification of which is : If (cct y) be a point on the conic

/y>2 qp, ^ rjnh tji2

—, + -%> — 1 = 0, and if the polar hereof in regard to the conic — + ~ — 1 = 0 meet the
a2 p2 ° a2 ¥

first-mentioned conic in the points (xlt yx) and (#2, y2)> then these points are harmonics

in regard to the conic

a4 64 ,\ fa4 ¥ a ^2 /a4 64 A?/2 A

and since the theorem is projective, it is seen that the first two conies may be any

conies whatever, the third conic being a conic having with the other two a common

system of conjugate points.

then
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If to fix the ideas we write a = /3 = c; then the theorem is, if the polar of a

point on the circle x2 + y2 = c2 in regard to the conic — + -^ — 1=0, meet the circle

in two points, these are harmonics in regard to the conic

This last conic will be similar to the conic — + 7- — 1 = 0, if c4 = (a2 + b2)2 ; viz. if
a2, bz

x2 1/2

& = a2 + 62, then the conic is — -f f- -j- 1 = 0 ; but if c2 = — a2 — 62, the conic is not only

a2 b2

similar to, but is the conic — + ~n — 1 = 0. Considering the given conic — -f ^ — 1 = 0
a2 b2 ° ° a2 bz

to be an ellipse, the first case (c2 = a2 + b2) gives the two points (xL, y^, (x2i y2)

harmonics in regard to the imaginary conic — -f j-2 + 1 = 0, but this is at once trans-

ct 0

formed into a real theorem, for we have (— x1} — y^) and (x2y y^), or, what is the same

thing, (xl3 2/x), (— x2i —y2) harmonics in regard to — + ^- — 1 = 0; and the theorem is:

Ct" 0

x2 y2
" Given the ellipse — + ^ — 1 = 0, and the circle x2 + y2 = a2 + b2 (which is the locus of

the intersection of a pair of orthotomic tangents of the ellipse), if the polar in regard

to the ellipse of a point on the circle meet the circle in the points Q, R, and if

the opposite points to these be Qlf R1} then (Q, JRj), or what is the same thing (Q1; R)

are harmonics in regard to the ellipse. "

The second case (c2 = — a2 — b2) gives a real theorem if b2 be negative; viz. writing

— b2 for b2 we have the hyperbola — — ~ = 1, b2 = a2 + c2, an obtuse-angled hyperbola ;

Ct" 0

the circle x2 + y2 = ct2 — b2, which is the locus of the intersection of a pair of orthotomic

tangents of the hyperbola, is consequently imaginary; but the concentric orthotomic

circle hereof, viz. the circle of the theorem, x2 + y2 = b2 — a2, is a real circle ; and the

theorem is : " Given the hyperbola — — ~ — 1 = 0 (b2 > a2) and the circle x2 + y2 = b2 — a2
Ct 0"

(the concentric orthotomic circle of the imaginary circle which is the locus of the

intersection of a pair of orthotomic tangents of the hyperbola), if the polar in regard

to the hyperbola of a point on the circle meet the circle in two points Q, R, then

these are harmonics in regard to the hyperbola."

Of course, if reality be disregarded, the two theorems may each of them be stated

of a conic generally ; and observe, that in the first theorem the circle is the locus

of the intersection of orthotomic tangents, and we have the opposites of the points

Q, R\ in the second theorem the circle is the concentric orthotomic circle of the

circle, which is the locus of the intersection of orthotomic tangents, but we have the

points Q, R themselves.
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531.

A "SMITH'S PRIZE" PAPER (*); SOLUTIONS.

[From the Oxford, Cambridge and Dublin Messenger of Mathematics, vol. V. (1869),

pp. 40—64.]

1. If sj{(x — a)2 + (y — b)2}, *J{(x — a')2 + (y — b')2}, c, are respectively real and positive,

shoiv that in the equation ± ^{{x — a)2 + (y — b)2} ± V{(# — a')2 + (y — V)2} = c, considered as

representing a curve, the signs cannot either of them be assumed at pleasure to be + or

to be — : and distinguish the cases of the ellipse and the hyperbola.

Writing the equation in the form + V($) ± V($0 == c> we ^lIi^

±2c*s/(S) = c2 + S-S/,

±2c*J(S') = c2-S + S',

and thence

4c2S =(c2 + S- S')\

4<ftS'= (<?»--£ + #')>,

either of which equations is the rational equation of the curve (the equation being

of the second order, inasmuch as S — S' is a linear function of the coordinates). But

writing the rational equation under these two forms respectively and passing back

to the last preceding forms, it is clear that for any given point of the curve,

cP + S — S' and c2— $+$', qua rational functions of the coordinates, have each of them a

completely determinate value ; the ambiguous sign therefore cannot be assumed at

pleasure, but in the equation + 2c V($) = c2 + $ — S' it must be taken to be + or to

be — according as the value of c2 + S — S' is positive or is negative; and the like for

the other equation. It is with the signs so determined that the two irrational

equations hold good, and inasmuch as from them we deduce the original equation

± V($) ± V($') = °> the signs in this equation are not arbitrary, but each of them has,

at a given point of the curve, a determinate value, fixed as above.

1 Set by me for the Master of Trinity, Feb. 3, 1869.
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The condition for an ellipse is that the given length c shall be greater than the

distance *J {{a — a')2 + (b — b')2} between the two foci; for a hyperbola that it shall be

less. In the former case, for any real point of the curve, it is obvious that the

relation mast be *J(S) + *J(S') = c ; in the latter case, for any real point of the curve

it mast be either V(S) — *J(S') = c or — *J(S) + *J(S') = c, viz. one of these equations

holds for one branch, the other for the other branch of the hyperbola. To see this

a posteriori, observe that in the ellipse, starting from the equation

± V{0 - aef + y2\ ± V{(> + ae)2 + y2} = 2a,

we find

+ *J{(x — ae)2 -\-y2} = a — ex,

± V{(^ + aef + y2} = & + ex,

but here, e being less than 1, and for every real point of the curve x being less in

absolute magnitude than a, we have a — ex, a + ex each positive for any real point

whatever of the curve ; the two signs are therefore each of them + , or we have

\/{{x — ae)2 + y2\ + *J{(x + ae)2 + y2} = 2a ; and a like verification applies to the hyperbola.

2. In a system of curves defined by an equation containing a variable parameter,

investigate at any point the normal distance between two consecutive curves ; and deter

mine the form of the equation for a system of parallel carves.

Consider the system of curves fix, y, c) = 0; then if the point x, y belongs to

the curve f(x, y, c) = 0, and the point x + Sx, y + By to the curve f(xt y, c+Sc) = 0,

we have

ax ay J ac

and if the point x + Sx, y + By be on the normal at (x, y) to the curve f(x, y, c) = 0,

we have

Sx -r- -f- — By -r -y- ,
ax d ay

Sx = h -— , By = k~- ,
ax ° ay

dx) \dy) ) dc '

k=-fsc+\m+^'

or writing

we have

wherefore

dc ^ ' | \dxj ^ \dy)

and the normal distance at (x, y) of the curves c and c + Be is = V (Sx2 + By2), viz., it is

=±V{(IHf)]'"Mi3':tis

=4W{(DMf)).

where, if the distance in question be regarded as positive (that is, if we attend only

df
to its absolute value), the sign is to be taken so that ±-4- Be shall be positive.
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If the system be given in the form V— c = 0 (V a function of (x, y)\ we have the

normal distance

+ Sc
/((dV\2 fdV\2\

: \/\{dx) +\dy))'

fdV\2 fdV\2
For parallel curves, the normal distance is everywhere the same, that is, f -y— J + f -r- J

must have a constant value for all values of (x, y) satisfying the relation V—c, viz.

fdV\2 [dVX2
we must have identically ( -y— j + ( 7 ) = <f> ( V), $ arbitrary, a partial differential

equation to be satisfied by V in order that V—c may be the equation of a system

of parallel curves. Assuming the equation to be satisfied for any particular form of <£,

we may, it is clear, find U a function of V, such that f -y— J + f -,- J = 1, and inasmuch

as the equation f(V) = Const, is the same thing as V = Const, it follows that the

equation of the system of parallel curves may be taken to be F= c, where

\dx J \dy )

3. Two cannons {each free to recoil) differ only in weight and in the weight of

the hall ; and it is assumed that at any instant during the explosion the explosive force

depends only on the space occupied by the vapour of the gunpowder: compare the

emerging velocities of the balls ; and also the emerging velocities of balls fired from the

same cannon when it is free to recoil, and when it is absolutely fixed.

Consider a single cannon.

Take M for its mass, m for that of the ball, S, s for the spaces described, back

wards by the cannon and forwards by the ball, at the time t during the explosion.

Then by hypothesis the explosive force, forwards on the ball and backwards on

the cannon, is a function of s + S, = $ (s -f S) suppose, or we have

mdi ==(M5-|->Sf)>

-fi+i)*<'+«-

and thence

d2(s + S)

dt2

Multiplying each side by 2 ^ _ —- , integrating from s 4- 8 = 0, to s + S = a, where a

is the length of the tube, and observing that the initial velocities are each = 0, we find

{^F-*(s+i)J>+«><*+**
c. viii. 56
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where ji > -ji ar^ the velocities of the ball and cannon respectively at the instant of

fa

emergence ; <j>(s + S) (ds + dS\ is a constant (that is a quantity independent of the

Jo

weights of the ball and cannon), and putting it =^C, the equation may be written

where v9 V are the velocities at the instant of emergence.

But from the equation

d2s nrd2S

(the initial values of the velocities being each = 0), we have

mv = MV\

and hence from the foregoing equation we obtain

' M v , _ M </(M + m) n . . x/(i/) /rn_ V(Q)

V~ M + mK + V' ~M+ m J(Mm) V(l ; ~ V(«0 J(M + m) VV ' IV m

or say

,/ n V(C)
»V(m) -

a/

m

1 + x

And similarly for the other cannon, if m1} M1 be the mass of the ball and cannon,

Vi the velocity of the ball, we have

V(O)

whence

vT + W

v V(m) : Vl VK) = ^/(l + g) : ^/(l + j) .

If m1 = m> M1 = od, then #, ^ may be taken to be the velocities of the same ball fired

from the cannon, mass M, when it is free to recoil and when it is absolutely fixed;

and we have

viz. the velocity in the former case is equal to that in the latter case divided by

1 + ¥"
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4. If X : F :£=<-*/?: &'-£%'.&'-%*)> where ? + V2+ £2 = 0, f2 + V2+ £'2 = 0,

show that %%', ?/?/, ££", 97f -f rf%, tg + f'f, £?/ + £'?7 arg proportional to quadrio functions

of X, Y, Z.

We have

= r(v + (?) + r (V2 + n - a?r (v + ?r),

which, in virtue of the equations

p + ^ + ^ = o, p + V2 + ra = o,

is

=-2ffs-2£r(w'+(r)

And again

which, in virtue of the same equations, is

= W h)K' + v'S) + ??£ to" + D + vT 0?2 + r2)

and, forming the analogous equations by symmetry, the factor (ff' + ryrf + £"£") divides

out, and we have

Y* + Z* : Z* + X* : X'+Y3 : -2YZ : -2ZX : - 2XY

which is the required theorem.

5. Two tangents of a conic are harmonically related to a second conic: find the

locus of the intersection of the two tangents.

In plane geometry the angle in a semicircle is, in spherical geometry it is not, a

right angle : show hoiv these conclusions follow from the solution of the above problem.

Let the equation of the first conic be x2 + y2 + z2 = 0 ; its equation in line

coordinates is therefore u2+v2i-iv2=0; or what is the same thing, the line ux + vy+wz=0

will be a tangent of the conic if only u2 + v2 + w2 = 0. Hence the equations of the

two tangents being

% x + rjy + £z = 0,

fff + i/y + g^O,

we have £2 + rf + £2 = 0, %2 + v'2 + £"2 = 0 ; and using X, Y, Z for the coordinates of

the point of intersection of these tangents, we have

X : F : Z=t£-riK : &-?%:&-?,,,

56—2



444 a "smith's prize" paper; solutions. [531

and thence, by the last question,

= F2 + Z2 : Z2 + X2 : X2-f F2 : -2YZ : - 2£X : -2XF

Suppose that the equation of the second conic in line coordinates is

(a, b, c, /, g, h) (u, v, w)2 = 0 ;

the condition in order that the two lines f*x -f rjy + £# = 0, fa? + 77'y + §"# = 0, may be

harmonically related to this conic is

(a, b, e,f,g, A)(f, ^ t)(f, V, 0 = 0;

or, what is the same thing, it is

afr + bm> + c^r +/« + vv + ^ (rr + r?) + * (&' + r*?) = o,

and by what precedes we have

a(F2 + ^2) + 6(Z2 + X2) + c(X2+F2)-2/,FZ-2^X-2AZF=0,

or, what is the same thing,

(a + & + c)(X* + Fa + £»)-(a, 6, c, /, #, A)(X, F, Z)2 = 0,

as the locus of the point of intersection of the two conies; the required locus is

therefore a conic.

It is to be observed that the locus is that of a point which is such that the

pairs of tangents from it to the two given conies respectively form a harmonic pencil ;

viz. if the equations of the given conies (in line coordinates) are

u* + v2 + w2 = 0,

(a, 6, c, /, g9 h) (u, v, w)2 = 0 ;

then the equation of the required locus, or say the equation of the harmonic conic, is

(in point coordinates)

(a+b + c) O2 4- f + z2) - (a, 6, c, /, g, h)(x, y, z)2 = 0.

In particular, if the second conic be a point-pair or, say, if its equation be

(au -f fiv + 7^) (ol'u + yS'fl + 7'w) = 0,

then the equation of the harmonic conic is

(ataC + /3/3' + 77) (x2 + 2/2 + 22) - (a# + /%/ + ys) (a'a? -I- /Sfy + y'z) = 0,

which is satisfied by writing (x, y, #) = (<*, /3, 7), or = (a'» ft', y)\ viz. the harmonic

conic passes through the two points of the point-pair. And so, if the first conic is also

a point-pair, the harmonic conic passes through the four points of the two point-pairs.



531] a " smith's prize" paper; solutions. 445

The equation of the first conic in point coordinates is x2 -f y2 4- z2 = 0 ; hence,

supposing as above, that the second conic is a point-pair, the intersections of the first

conic with the harmonic conic are given by

x2 + y2 + z2 = 0, (ax + /3y + yz) (o!x 4- $'y + yz) = 0 ;

whence the harmonic conic has double contact with the first conic, only if each of

the lines ax + /3y 4- yz, a'x 4- fi'y 4- yz = 0, touches the first conic ; or, what is the same

thing, if each of the points (a, /3, 7), (a, /3\ y) lies on the first conic.

In plane geometry, we have (in the plane) a point-pair, the two circular points

at infinity ; any conic through these points is a circle : the two lines harmonic in

regard hereto are at right angles. Hence, by what precedes, taking one of the given

conies to be the circular points at infinity, and the other conic to be any two points

P, Q ; the locus of the intersection of lines through P, Q, cutting each other at right

angles, is a circle ; this is evidently the circle standing on PQ as diameter, or the

angle in a semicircle is a right angle.

In spherical geometry we have (on the sphere) an imaginary conic x2 + y2 4- z2 = 0,

called the absolute; any conic having double contact herewith is a circle (small circle

of the sphere); two lines (arcs of great circles), harmonic in regard hereto, are at right

angles. Hence, taking one of the conies to be the conic x2 4 y2 4- z2 = 0 and the other

to be the two points P, Q; the locus of the intersections of the lines (arcs of great

circles) through P, Q, which cut at right angles, is a spherical conic; but it is not a

circle unless the points P, Q, are each of them on the conic x2 4- y2 4- z2 = 0, viz. it is

not a circle for any two real points whatever : that is, in spherical geometry, the

angle in a semicircle is not a right angle.

6. A mass M attached to the end A of a chain AG is placed (with the chain)

on a horizontal plane, in such wise that a portion AB of the chain forms a straight

line, the remaining portion BG being heaped up at B: the mass M is then set in

motion in the direction B to A ivith a given velocity, and so moves in a straight line,

dragging the chain : determine the motion ; and explain the peculiarity of the dynamical

problem.

The mass attached to the end of the chain is taken to be M, and the mass of

a unit of length of the chain to be = m ; suppose also that at the commencement

of the motion the distance GA is = a, and that at the end of the time t this distance

is =a + #, so that the length of chain then in motion is =a + #, (x < I — a, if I be

the whole length of the chain). Suppose also that the velocity at the time t is =v;

then we have a mass = M + m (a + x) moving with a velocity v ; and, in the element

of time dt, this sets in motion with the velocity v a length of chain dx = vdt, or mass

of chain =mvdt; if then the impulse backwards on the mass M'-\-m(a + x), and

forwards on the element mvdt be =JR, we have

{M + m(a + aJ)}dv = -R,

mvdt ,v=Rj



446 a "smith's prize" paper; solutions. [531

that is,

[M + m (a + x)} dv + mv2dt = 0 ;

or, observing that vdt — dx, this may be written

(M+ ma) dv + md . xv = 0,

that is,

[M + m (a + x)} v = constant,

= (M+ma)V,

if F be the velocity at the commencement of the motion. The equation gives, in

terms of the space x, the velocity v at any time t before the whole chain is set in

motion: writing it in the form

{M + m (a + x)} J = (M + ma) V,

we have

(M + ma) x + \mx* = (M.+ ma) Vt,

and putting herein x — l — a, the equation gives the value of t at the instant when

the whole chain is set in motion : after this epoch, the mass and chain will (it is

clear) move on with a uniform velocity

__ (M+ma) V

~~ M+ml '

The foregoing equation

[M + m (a + x)} v = (M + ma) V

might have been obtained at once by the consideration that the momentum is constant

throughout the motion; but the method employed puts more clearly in evidence the

peculiarity of the dynamical problem ; viz. it is, so to speak, a problem of continuous

impulse : in each element of time dt an infinitesimal element of mass has its velocity

abruptly altered (in the present problem from 0 to v), but, for the very reason that

it is an infinitesimal element of mass which undergoes this abrupt change of velocity,

the effect is a continuous, not an abrupt, change of velocity of the whole finite mass

which is then in motion.

7. Show hoiu an ellipse may be constructed as the envelope of a variable circle

having its centre upon either of the axes ; and examine the geometrical peculiarities which

occur according as the major or the minor axis is made use of.

Considering the ellipse

the equation

(x-af + f^ry*,

where a and y are in the first instance arbitrary parameters, represents a circle having

its centre on the major axis: in order that this may touch the ellipse, a relation

must be established between a and y. When this is done we obtain a variable circle
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(the equation of which contains a single arbitrary parameter), and this circle has the

ellipse for its envelope. (On account of the symmetry in regard to the axis of x, the

circle will, it is clear, touch the ellipse in two points, situate symmetrically in regard

to this axis.) Now to make the circle touch the ellipse, eliminating y, we have

(fl!_a). + 6.(l_g_7. = 0)

that is,

x2 (l - -\ - lax + a2 - 72 + 62 = 0,

which equation, considered as an equation in x, must have equal roots ; that is, we

must have

(l-Q(a2-r + ^)-^ = 0;

or, what is the same thing,

-62a2 + (a2~&2)(62-72) = 0;

consequently

a2 — b-

or the required equation of the circle is

b2
(x — a)2 + y2 = b2 —-r- a2 ;
v / j a2-b2

or, as this may also be written

(x - a)2 + y2=(l- e2) (a2 - ~\ .

It is to be observed that at the points of contact of the ellipse and circle, we have

a2OL _ a

a) = a?Zrfr-e2-

By simply interchanging a and b, it appears that when the centre is on the minor axis,

the equation of the variable circle is

a* + (y-l3y = a* + ^-pp,

and that at the points of contact of the ellipse and circle we have

¥§
y~ a2-b2'

In the case where the centre is on the major axis, then attending to positive

values of a, the circle remains real so long as a is ^> ae, but if a is = ae, that is,

if the centre be at the focus, the radius of the circle is =0. But from the formula

x = — , we have x = a for a = ae2, and when a is greater than ae2, x>a, and the points

of contact are imaginary. That is, as a passes from 0 to ae2, the circle is real, and
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has real contact with the ellipse ; for a = ae2 the circle becomes the circle of maximum

curvature, touching the ellipse at the extremity of the major axis; as a increases from

ae2 to ae, the circle is still real but its contact with the ellipse is imaginary; for

a—ae, the circle reduces itself to the focus considered as an evanescent circle; and

for greater values of a, the circle is imaginary.

When the centre is on the minor axis it appears in like manner that the circle

is always real ; but, attending to negative values of @, the circle has real contact

a2
with the ellipse only so long as /3 ^> b — . ; for this value of /3, the circle touches

the ellipse at the extremity of the minor axis, being in fact the circle of minimum

curvature ; and for greater negative values of j3, the contact is imaginary.

8. Shoiv that the number of ways in which n things can be arranged so that no

one of them occupies its original position is of the form (n — l)An; and that we have

J1 = 0, A2=l, An = (?i~-2)An_1 + (n—3)An_2: show also that

An = (n - 1) An^ -^ \An^ + (-)«-» 1}.

Supposing the n things arranged as required, we may by a single transposition of

two things bring a given thing, say n, into its original place (the last place): and

conversely every arrangement of the required form can be obtained from an arrangement

in which n occupies the last place, by a transposition of n with another of the

things. Now in the arrangement which thus gives rise to an arrangement of the

required form, either all the things 1, 2, 3,..., (n — 1) are out of their original places;

and we can then transpose n with any one of the things 1, 2, 3,..., n — 1: or else

only one thing is in its original place ; say 1 is in . its original place, and we can then

transpose 1 and n; or 2 is in its original place, and we can transpose 2 and n; ...

or n—1 is in its original place, and we can transpose n — 1 and n. And these are the

only ways in which an arrangement of the required form is obtained. Hence if for

n things we denote by Un the number of arrangements in which no one thing

occupies its original place, we have, by what precedes,

Un = (n-l)(Un_1+ Un_2),

and it thus appears that TJn is of the form (n — l)An; and writing accordingly

Un = (n — 1) An, and therefore

?7?w = O - 2) An_lf Un_2 = (n - 3) An_2,

we have

An = (n - 2) An_Y + 0 - 3) A n_2 ;

which is the required equation for An ; we have, it is clear, Ax = 0, A2 — 1, and the

successive values A3 = 1, A4 = 3, &c. can then be calculated. But the equation of

differences of the second order may be integrated into one of the first order, viz

writing the equation in the form

{(n - 1) An -n(n- 2) An^} + {(n - 2) An_, - (n - 1) (n - 3) An_2] = 0,
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the integral is

(n - 1) An - n (n - 2) An^ = (-)™ G,

and writing ?i=2, we have t7 = — 1, wherefore

(n - 1) 4n = w (7i - 2)^ - (-)»-1 1,

or, what is the same thing,

An = (n - 1) A^ - -\ [A^ + (-^ 1},

which is the other equation for An.

The foregoing very elegant proof of the equation

Un = (w - 1) ( Um + U^) = (n - 1) A

was unknown to me ; but was given in the Examination ; my own proof of the

equation Un — (n — 1) An was derived from the well-known formula

un=i. 2...Ji-U-L .. + (-)» x
ri.2"'TV y 1.2.3...WJ '

The theorem itself, and the two equations of differences for An are due to Euler, see

his memoir, "Sur une espece particuliere de Carres Magiques," Gomm. Arith. Coll., t. I.,

p. 359.

9. If in any covariant of a binary form {a, b, c, ... , k) (x, y)n the coefficients

a,b, ... , k are replaced by ax + by, bx + cy, ... , kx 4- ly respectively, show that the result is

a covariant of the next superior form (a, b, c, . . . , I) (x, y)n+1 : and determine the covariant

obtained by thus operating on the discriminant of the cubic form {a, b, c, d) (x, yf.

A covariant of the binary form U, = (a, b, ... , k) (x, y)n, is either given by a single

symbolical expression of the form 12 13 ...23 . .. TJJIJJ3 ..., or it is the sum of a

number of such expressions, each multiplied by a constant (numerical factor): in the

latter case each of the expressions in question is a covariant of U. Any such

expression is at once seen to be a function of U and of its differential coefficients

(i.e. it may contain the differential coefficients of each or any of the orders 0, 1, 2, ..., n),

homogeneous as regards the differential coefficients of the same order. But writing

U/ — (a, b, c, ..., l)(x, y)n+1, the differential coefficients of any order of U are by the

change of a, b, ... , k into ax + by, bx -f cy, ... , kx + ly, converted into the differential

coefficients of the same order of U', each multiplied into the same merely numerical

coefficient; the result (disregarding numerical factors) is thus the same derivative

a 0 y

12 13 ...23 ... U1U2U3 ... of U' \ viz. it is a covariant of U' ; and making the like

change in any sum of such expressions (each into a numerical factor), the result is a

like sum of expressions referring to JJ' ; that is, making the change in any covariant

of IT, the result is a covariant of U'.

c. viii. 57
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Or the same thing may be otherwise proved thus; if to fix the ideas we write

U = (a, b, c, d) (x, y)z ; any covariant © of U is reduced to zero by each of the

operations a8b + 2b8c + Sc8d — y8x ; Sb8a + 2c8b + d8c - x8y ; and, conversely, any function ©

which is thus reduced to zero is a covariant of U. Attending to the first operator,

we have for any covariant © of U,

(a8b+2b8c + 3c8d-y8x)® = 0;

write ax-\-by — a\ bx + cy — V, ex + dy = c', dx + ey — d\ and let ©' be the function

obtained from © by changing a9 &, c, d into a', b\ c\ d'. We ought to have

(a8b + 2b8c + Sc8d + 4d8e - y8x) ©' = 0,

or considering ©' as a function of a!, b\ c', d', x, y this is

{a (y8a> + x8b>) + 2b (y8b> + x8c>) + 3c (ySj + x8d) + 4dy8d> - y (a8a> + b8b> + c8c> + d8d>) - y8x] ©' = 0,

or, what is the same thing,

{(ax + by) 8V + 2(bx + cy) 8& + 3 (ex + dy) 8cV - y8x) ©' = 0,

that is,

{a!hv + 2V8, + 3c'8d> - yK) ©' = 0,

an equation which, ©' being .the same function of a\ &'> o\ d\ x, y that © is of

a, by c, d, x, y} is satisfied identically; and thus ©' is reduced to zero by the operation

a8b + 2b8c + Sc8d + 4<d8e — y8x ; and similarly it is reduced to zero by the operation

4fb8a -f Sc8b -f 2d8c + e8d — x8y ; and it is thus a covariant of (a, &, c, d, e$x, y)4.

The discriminant of (a, b, c, d^x, y)3 is

= a2d2 + 4ac3 + 4<bsd - 6abcd - Sb2c2 ;

making the substitution in question, it is

= (ax + by)2 (dx + ey)2 -f- &c,

viz. it is

= (a2d2 + 4ac3 + *b3d - Qabcd - 3&2c2) x4 + &c.

But there is no such irreducible covariant of the quartic function (a, b, e, d, e\x, y)4\

and observing that we have identically

(ae - 4>bd + 3c2) (ae - b2) - (ace - ad2 - b2e - c3 + 2bcd) a = a2d2 + 4ac3 + ^bhl - Qabcd - 362c2,

the covariant in question must be

= (ae — 4ibd + 3c2) [(ac — b2) x4 4- &c] - (ace — ad2 - b2e — c3 + 2bcd) (a, b, c, d, e\x, y)4,

where (ac — b2) x4 + &c. is the Hessian of the quartic function (a, b> c, cl, e\x^ y)4.

10. From the equation of the curves of curvature of an ellipsoid, or otherwise,

determine the curves of curvature of a paraboloid : show also that for the paraboloid xy = cz

(the parallel sections z — Const being rectangidar hyperbolas) the curves of curvature are

the intersections of the paraboloid by the system of surfaces

h = sj(x2 + z2) ± s/(y2 + z2).
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The curves of curvature of the ellipsoid

a2 b2 c2

are given as the intersection of the surface with the confocal surface

a2 y2 z2

a2 + X b2 + X c2 + X "

transforming to the vertex, or writing z — c in place of z, these become

Xl 4. £ . S8-2** -0

a2 + 62 + c2 '

a* + \ b2 + \ c2 + \

a2 b2 \
or multiplying by c and writing — = I, - = my - = 0, the equations are

c c c

£+£ + *- 2, =0,
I m c

_^_,_f_ z2 2z + 0 _

l+0 + rn, + 0*c + 0 0~ '

c

or, putting herein c = oo , the equations are

x" + ^! -2* =0,

^+-^-2^-^= 0,
l + o m + 0

viz. these equations, where 0 is a variable parameter, determine the curves of curvature

x2 y2
of the paraboloid y + -— 2# = 0. The second equation may be replaced by

■ + —7* 7K + 1=0.

1(1 + 0) m(m + 0)

Write in the equations l — — m — c\ they become

x2 - y2 - 2cz = 0,

x2 y2

+ ,o + o=0;
c + 0 c-0

or, substituting herein —-f- for x, and —-^ for y, the equations are

xy - cz = 0,

c + 0 c — 8

57—2
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the second of which is

c (x2 + y2) - 20xy -f c (c2 - 62) = 0,

which is the equation for determining the curves of curvature of the surface xy — cz = 0.

Writing in this equation 6 = \/(h2 + c2), it becomes

c (x2 + y2) - 2xy *J(h2 + c2) - ch2 = 0,

or, as this may be written,

(c2 + x2) (c2 + y2) - afy2 - 2cxy V(A2 + c2) - c*2 - c4 = 0,

that is,

and thence

that is,

± V(c2 + os2) V(c2 + y2) = «y + c V(^2 + c2),

c%2 = (c2 + ^2) (c2 + y2) + #y - c4 + 2#y V(c2 + #2) VO2 + y2)

= #2 (c2 4- 2/2) + 2/2 (c2 + x2) + 2#y V(c2 + cc2) V(c2 + 2/2),

cA = x V(c2 + y2) ± y V(c2 4- ^2) ;

or combining with the equation xy — as = 0 of the paraboloid, this is

A = V(#2 + £2) + vV + *2);

or the curves of curvature are given as the intersections of the paraboloid by the

series of surfaces represented by this equation.

11. Explain for a surface such as the ellipsoid the form of the curve of given

constant slope; and in an ellipsoid having one of its principal planes horizontal deter

mine the limits within which the curve is situate.

At any point of a surface, the direction of the line of greatest slope is evidently

at right angles to the level curve, or, what is the same thing, to the trace of the

tangent plane on the horizontal plane ; and the inclination of the element of the line

of greatest slope is equal to that of the tangent plane to the horizontal plane. The

line of given constant slope must therefore lie entirely on that portion of the surface

for which the inclination of the tangent plane has a value not less than the given

constant slope of the curve ; viz. on a closed surface such as the ellipsoid, it will lie

upon a certain zone of the surface, included between two boundaries, which boundaries

are the curves such that at any point thereof the inclination of the tangent plane is

equal to the given constant slope; and by what precedes, the direction of the line of

given constant slope, at any point where it meets the boundary, is coincident with

the direction of greatest slope ; viz. it will in general meet the boundary at a finite

angle ; this implies that the point is a cusp on the curve of given constant slope,

and the curve in question will be a curve as shown in the figure, passing continually

from one boundary to the other, and when it reaches either boundary, turning back

cusp-wise to the other boundary ; the curve may in particular cases, after making a

circuit, or any number of circuits of the zone, re-enter upon itself, forming a closed
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curve; but in general this is not the case, and the curve will go on as above between

the two boundaries, ad infinitum.

 

In the case of the ellipsoid, the plane of xy being as usual horizontal, and the

equation being

x2 y2 z2

then if \ be the given constant inclination, the boundaries are the series of points

at which the inclination of the normal to the axes of z is =\; that is, we have

or, what is the same thing,

z2 (x2 y2 z2\

c4 \a4 b4 °4}

(x2 y2\ 0 ^ z2 . n ^ ~
i + fc cos-\--sin-\ = 0,

a4 b4J c4

the boundaries are thus two detached ovals, meeting the principal sections x = 0, y = 0,

in the points given by

- = ± To cot X ; - = + — cot X,
y b2 x ~ a2

and the general form is thus at once perceived.

12. To every point of space there corresponds a plane, viz. considering the several

points as belonging to a solid body which is infinitesimally displaced in any manner,

the plane which corresponds to a point is the plane drawn through the point at right

angles to the direction of its motion; determine the plane which corresponds to a given

point: and connect the result with any general geometrical theory.

The displacements, in the directions of the axes, of a point whose coordinates are

{x, y, z) are given by the ordinary formulae

Sx = a -f- qz — ry,

Sy = b + rx — pz,

hz = c +py — qx,
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where a, b, c, p, q, r are constants which determine the particular displacement ; hence

if X, Y, Z are current coordinates, the plane corresponding to the point (x, y, z) is

the plane through this point at right angles to the line

X — x _ Y—y _Z — z

8x 8y 8z '

viz. it is the plane

(X-x)8x + (Y-y)8y + (Z-z)8z = 0,

or, substituting for 8%, 8y, 8z their values, reducing and arranging, this is

X ( . — ry + qz -f a)

+ Y( rx . — pz + b)

+ Z (-qx+py . +c)

+ (— ax — by — cz . ) = 0 ;

that is, the equation of the plane corresponding to the point (x, y, z) is an equation

linear in regard to the coordinates (x, y, z) of this point; and such that arranging as

above in the form of a square, the coefficients which are symmetrically situate in

regard to the dexter diagonal are equal and of opposite signs; or say that the

coefficients form a skew symmetrical matrix.

More generally, corresponding to the point (x, y, z) we may have the plane

AX + BY+CZ+D = 0,

where A, By G, D are any linear functions whatever (= ocoo + fty + yz + 8, &c.) of the

coordinates (oo, y, z)\ this is the general relation which is the analytical basis of the

theory of duality ; it in fact appears that if the point be a variable point situate in

a line or a plane, then the corresponding plane is a variable plane passing through a

line or a point, &c, &c. In the general case, to a given point there corresponds a

plane not in general passing through the point ; the case above considered is distin

guished by the circumstance that for any point whatever the corresponding plane does

pass through the point.

13. Write down the Lagrangian equations of motion, explaining the notation, and

mode of applying them; and by way of illustration deduce the equations of motion of

three particles, connected so as to form an equilateral triangle (of variable magnitude),

moving in a plane under the action of any forces.

The Lagrangian equations of motion are

d dT dT dU

dt " d%~ d% =~~ df '

d dT dT _ dU

dt
■dv'~

dt) = dv'

&c.,



531] a "smith's prize" paper; solutions. 455

f, 77,... are here any independent coordinates (in the most general sense of the word)

which serve to determine the position of the system at the time t; T is the vis-viva

function, or half-sum of the mass of each particle of the system into the square of

its velocity, expressed in terms of the coordinates £, 77, ... and of their differential

7 «- 7

coefficients £', =^; rf, =~n, &c. ; T is thus a </wm function of £, 77,... £', 77', .••,

homogeneous of the second order as regards the quantities £', rj', . . . ; -^ , -=-- , &c,

dT dT
to ? 7— 5 &c. are the partial differential coefficients of T in regard to £, 77, . . . £', 77', . . .

respectively, and they are thus given functions of £, 77, . . . £', 77', . . . ; U is the force-

function or sum

2dm f (Xdx + Ydy + £efe)

(it being assumed that Xdx + Ydy + iTd# is a complete differential, that is, that there

exists a force-function U) expressed in terms of the coordinates £, 77, . . . and being

thus a given function of these coordinates ; to , -,- , &c. are the partial differential

coefficients of U in regard to £, 77,... respectively; and are thus given functions of

d dT
these coordinates. The terms ~r to, contain, it is clear, (and that linearly) the second

differential coefficients £", = -~ , &c. . . . , the equations thus establish between the

coordinates £, 77, ... , and their first and second differential coefficients in regard to the

time a system of relations, the number of which is equal to that of the coordinates,

and which therefore would by integration lead to the expression of the coordinates

£, 77,... in terms of the time.

It has been tacitly assumed that T, U were functions of f, 77, . . . £', 77', ... , and of

£, 77, ... , not containing the time t ; this is the ordinary case, but there are cases in

which T and U or either of them may also contain the time t.

In the proposed case of the three particles, if m1} m2, m3 be their masses, r the

side of the equilateral triangle, xly y± the coordinates of ml9 0, 0+60° (or write for

convenience # + a) the inclinations of m^n.^ mxm^ to the axis of x, then the coordinates

of m2, m3 will be

x + r cos 0, x + r cos (0 + a),

y + r sin 0, y + r sin (0 + a).

We have

T^lm^ + y'*)

+ \m.2 [(x + / cos 0 - r sin 0 . 0')2 + (y' + / sin 0 + r cos # . <9')2]

+ \mz [{of + r' cos (0 + a) - r sin (5 + a) . 0'}2 + {y + r' sin (0 + a) + r cos (0 + a) . <9'}2]

= I (wj + m2 + m3) (x2 + t/2)

+ m2 [#' (r' cos 0 — r sin 0 . ff) + 7/ (/ sin # -f r cos 0 . 0')]

-f m3 [>' {/ cos (0 + d)-r sin (0 + a) . 0'} + yf \r' sin (5 + a) + r cos (0 + a) . 0r)~\

+ J (m2 + m3) (r'2 + r^'2),
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a given function of x, y, r, 0, x', y', r', ff ; also

U=m1 J (Xdx + Ydy) + &c.

will be a given function of x, y, r, 0; and the equations of motion will be

d^dT_dT_dU

dt dx dx dx '

dL dT __dT=dU

dt dy' dy dy y

dLdT_dT__dU

dt dr' dr dr '

d dT_dT dU

dt d0f d0 ~ d0 '

14. From the integrals x = a cos t + a' sin t, y = b cos t + V sin t, of the dynamical

lions

equations

u2/V (l2rU

equations -^—- = — x, j~ = — y, deduce a simultaneous solution of the two partial differential

£**{©,+®'i~*<"+*

Writing U= — ^(x2 + y2), we have

x — a cos t + a! sin £,

?/ = b cos £ + &' sin t,

as the integrals of the equations of motion

d?x_dU d2y__dUt

dt2 dx ' dt2 dy '

moreover

x' = — a sin £ -f a' cos £,

y' — — b sin £ + 6' cos £,

where a, 6, a!, bf are the initial values of x, yy x\ y' respectively (x' = ~j- , y' = -j-, as usual) .

dt' u dt

Hence the Principal Function

S=\%{T+U)dt

J 0' 0

rt

= i / (X2 + y'2 - ^ - y2) dt,

Jo

expressed as a function of x, y, a, b, t, will satisfy simultaneously the proposed partial

differential equations.

We have

x'2 + y'2 -x2-y2 = (a!2 + V2 -a2- ¥) cos 2£ - 2 (ad + 66') sin 2t.
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Hence

But

Hence

4flf = (a'2 + b'2 - a2 - b2) sin 2t + 2 (ad + bb') (cos 2* - 1)

= (a'2 + 6'2) sin 2t - (a2 + b2) sin 2£ - 4 (aa7 + bb') sin2 £.

a sin t = a? — a cos £,

&' sin t — y — b cos &

(aa' + 66') sin t = a# + by — (a2 + &2) cos £,

(a'2 + 6'2 ) sin2 t = #2 + y2 - 2 (cm? + %) cos * + (a2 + 62) cos2 $,

and substituting these values

4S=^^^^{x2+ y2^2(ax-hby)cost + (a2 + 62)cos2*}

- (a2 + b2) 2 sin t cos £

— 4 sin £ { ax + by — (a2 + ft2) cos t)

= t(a* + tf)^-*(<Uc+ by) +2(a» + 6»)?£-';
v * 7 sin £ sin t v ^ sin £

or, what is the same thing,

S = \(x2 + y2 + a2 + 62) cot £ - 2 (aa? + by) cosec t,

which value of 8 satisfies the two partial differential equations.

More generally, the two equations are satisfied by

8 = c + foregoing value,

(c an arbitrary constant) which new value, considered as a solution of the first equation,

contains the three arbitrary constants c, a, b, and is thus a complete solution; and

similarly considered as a solution of the second equation, it contains the three arbitrary

constants c, x, y, and is thus a complete solution.

I venture to add a few remarks in illustration of what is required in the papers

sent up in an Examination.

In the latter part of question (2) (form of the equation for a system of parallel

curves) it is worse than useless to say j + \\j) + \j) \ [p* 441] must be constant:

a good and sufficient answer would be that it must be constant in virtue of the given

equation f(x, yy c) = 0. So in question (13) (the Lagrangian equations of motion), it is

quite essential to explain [p. 455] that T, U are given functions of £, t], ..., £', 77',... and of

£, 7j, . . . respectively ; but for this the equations might be partial differential equations

for the determination of T, U, or nobody knows what : it is natural and proper to

explain further that T is homogeneous of the second order in regard to the derived

functions £', rj', .... In question (14) the answer [p. 456] that S = ^\ (x2+y'2-x2-y2)dt

Jo

expressed as a function of x, y, a, b, t will satisfy simultaneously the proposed equations—

would be, not of course a complete answer, but a good and creditable one; without

the words "expressed as a function of x, y, a, b, t" it would be altogether worthless.

A clear and precise indication of a process of solution is very much better than a

detailed solution incorrectly worked out.

c. viii. 58
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532.

NOTE ON THE INTEGRATION OF CERTAIN DIFFERENTIAL

EQUATIONS BY SERIES.

[From the Oxford, Cambridge, and Dublin Messenger of Mathematics, vol. v. (1869),

pp. 77—82.]

There is a speciality in the integration of certain differential equations by

series, which (though evidently quite familiar to those who have written on the

subject—Ellis, Boole, Hargreave) has not, it appears to me, been exhibited in the

clearest form. To iix the ideas, consider a linear differential equation of the second

order integrable in the form y — Axx 4- BxK+1 + ... ; X is determined by a quadratic

equation, and for each value of X the coefficients B, G, ... are given multiples of i;

we have thus the general solution

B ,, \ .. ^ / 0 L
y = A(xa + -r x**1 ...)+K (afi+ ~ x^+1 + &c.

The speciality referred to is, when the two roots differ by an integer number;

suppose a is the smaller root, and /3 = a-\-k (k a positive integer) the larger. Then,

inasmuch as the series

y = Axa + Bxa+1 + &c.

is identical in form with the general solution as above written down, it is clear that,

starting with the root X = a, the coefficients beginning with that of aP, — xa+Jc, ought

not to be any longer determinate multiples of A, but should contain a new arbitrary

constant K, and thus that the series derived from the root X = a should be the

general solution containing two arbitrary constants. The most simple case is when

the substitution of the series in the differential equation leads to a relation between

two consecutive coefficients of the series. Here the values -r , -j-, &c. are fractions

A A
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the numerators and denominators of which are factorial functions of a such that, for

some coefficient -j preceding ~. (if K is the coefficient of wa+k), and for all the

c
succeeding coefficients A , &c. there is in the numerators one and the same evan

escent factor; this being so, it is allowable to write F=0, G = 0, &c. giving for the

differential equation the finite solution

y = A [®a + -A-#a+1 ••• + -r00a+e

but if, notwithstanding the evanescent factor, we carry on the series, then in the

coefficient of ocaJrh there occurs in the denominator the same evanescent factor, so

P 0
that the coefficient of this term presents itself in the form A j~ . - , = an arbi-

trary constant K (since the ^ is essentially indeterminate), and the solution is thus

obtained in the form

y = A (^a + ^- ^a+1 ... +-t %a+e) + K (coa+k + -^xa+k+1 + &c.

viz. there is one particular solution which is finite.

Take for example the equation

d2y dy 2 „ /xx

mentioned Cambridge Math. Journal, t. II. p. 176 (1840). If the integral is assumed

to be

y = Ax" + Bx«+1 + Gcca+2 + &c,

then we find

(a + l)(a-2)A=0,

(a-l)(a + 2)B + qaA = 0,

a(a + S)G + q(a + l)B = 0,

(a + l)(a + 4)i) + g(a+2)C = 0,

&c.

Hence a = — 1, or else a = 2 ;

B= ~qa A

r= g2.«Q+i) A

(a-l)a(a + 2)(a + 3) '

-g.gfo + !)(« + 2)

(a-l)a(a + l)(a + 2)(a + 3)(a + 4) '

&c.

58—2
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Here taking a = — 1, we are at liberty to make G and all the following coefficients

= 0 : in fact, if we commence by assuming

y = Axa + Bxa+1,

the equations

(a + l)(a-2)ii = 0,

(a-l)(a + 2)B+ qaA = 0,

are all satisfied if only a = — 1, B = -, ~~. ^; and we have thus the finite
J (a-l)(a + 2)'

solution y = A ( ^J ; but if we continue the series, retaining D to represent the

indeterminate quantity / -r—, .,w 4Vt t^s 1\ &•> we have the solution
H J (a-l)a(a+l)(a + 2)(a.+ 3)(a + 4)

y = A(±-iq)+D(a?-$qa? + bo.),

the second member of which is in fact the series derived from the root a = 2.

This series is expressible by means of an exponential, viz. we have

«?-\q

and the complete integral is thus

y-4(I-fc)+*g+fc)^.

but this result is not immediately connected with the investigation. It may however

be noticed that, writing z — yeqx, the equation in z is

d?z__ dz_ 2
dx* qdx x*Z~ '

which only differs from the original equation in that it has — q in place of q :

there is consequently the particular solution z = - + \q, giving for y the particular

x

solution y=[- + \q)e~qx, and we have thence the complete solution as above.

Consider, secondly, the differential equation

d*y

(derived from the equation (I) by writing therein ye~qx in place of y)\ this equation

is satisfied by the series

y = Axa + Bxa+2 + Cxa+* -f &c.
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Then a = — 1 or a = + 2, but here the series belonging to a = — 1 contains only odd

powers, the other contains only even powers of x\ hence the two series do not

coalesce as in the former case, and the first series is obtained without the indeter

minate symbol ^ in any of the coefficients. We have in fact

(a + l)(a-2)jl = 0,

(a + 3) (a )B-ltfA = 0,

(ct + 5)(a + 2)C-iq2B=0,

and there is not in the series in question (or in the other series) any evanescent

factor, either in the numerators or in the denominators.

But consider, thirdly, the differential equation

g+ to-^| + (^-^-|)y-o (in),

(derived from (I) by writing therein ye~6x in place of y). This is satisfied by the

series

y = Axa + Bxa+1 + Gxa+2 + Dxa+3 + &c,

where a = — 1 or a = -f 2 as before ; in the series belonging to a — — 1, the coefficient

D should become indeterminate. The relation between the coefficients is here a

relation between three consecutive coefficients, viz. we have

(a+l)(a-2)J. = 0,

(a + 2)(a-l)5 + (?-20)( a )A = 0,

(a + 3)( a )C + (?-20)(a + l)5 + (#-20)ii=O,

(a + 4)(a+l)D + (g-2tf)(a + 2)a + (^-^)S = 0,

(cL + 5)(a+2)E + (q-2e)(a + 3)I> + (02-q6)G = O,

&c.

It is to be shown that in the series for a = - 1, the expression (q - 20) (a + 2) 0 + (02 - qff) B

contains the evanescent factor (a + 1), and consequently that D is indeterminate ; we

have in fact

«-_ (g-2g)« a

"~ (a + 2)(a-l)*'

and thence

1 {(q- 20)* «(«+!) .(
c-^+3)| («+2)(«-i) (* ^r

(g-26>)(« + 2)C + (6>2-g0).B

1 f (g-2^g(a + l)(g + 2) gm(K|ga4_(^-gg)(g-^)»

¥(aT3)l (a + 2)(a+l) (? 2")(" SW«+^ (a + 2)(«-l) '
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and then

g+2 a 2a3 + 6a2-- 4__ _ 2 (a + 1) (a2 4- 2a - 2)

a(a + 3) (a + 2)(a-l) (a- l)a(a + 2) (a + 3) (a- l)a (a + 2)(a+ 3)'

so that the whole expression contains the factor a + 1. But observe that in the

present case, if (as is allowable) we write D = 0, the next coefficient E (depending

not on D only, but on D and G) will not vanish; so that the solution obtained on

the assumption D = 0 will go on to infinity : and if instead of assuming D — 0, we

assume D = an arbitrary quantity D'} then E and the subsequent coefficients will

contain terms depending on D'; and the complete form of the series belonging to

a = — 1 will be

y = A (x-1 + j + ^% + ^w2 + -joe3 + &c?\ + D' ^2 + jr)7^8+ &c.V

where the second member is in fact the series belonging to a. = 2. It is hardly

necessary to remark that the solution thus obtained can be expressed by means of

exponentials, viz. that the solution is

y

=A{l-^)e6*+lylj{{l+^)e-qx-{l-^
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533.

ON THE BINOMIAL THEOREM, FACTORIALS, AND DERIVATIONS.

[From the Oxford, Cambridge, and Dublin Messenger of Mathematics, vol. v. (1869),

pp. 102—114.]

The following was part of my course of lectures in the year 1867.

The proof commonly called "Euler's" of the binomial theorem is as follows: the

theorem is assumed to be true for positive integer indices ; that is, it is assumed that

for any positive integer m we have

m(m — l) n 0(1 + x)m = 1 + mx + v —^ x2 + &c.

J- . Zi

This being so, since (1 -\- x)m . (1 + x)n = (1 +xyn+1\ the equation

m (m — 1) 0 0 ) L n(n — l) „ , 0
1 + mx h y~9 x +k 1+ nx +-y— x2 -f &c.

m + n (m -f ?&) (m 4- w — 1 ) , 0

= 1+ -y- X + ^ ^-g V + &C.

is true for any positive integer values whatever of the indices m, n ; the equation is

therefore true identically ; and it is consequently true for all values whatever of the indices

m, n. But any function <fim of m, satisfying the functional equation <f>m.<j)n=<l>(m + n),

is an mth power, = Gm suppose ; that is, we have

si™ i m(m — 1) ^ 0

where G is a constant, viz. it is independent of m ; but the value of G will of course

depend upon x\ and if, in order to determine it, we write m — \, the equation gives

C — 1 + x ; that is, we have

ato ( nyi __ j\

(1 + x)m = 1 + m# + \ 0 tf2 + &c,

which is the binomial theorem in its general form.
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It is to be observed that there is not in the demonstration any employment of

the so called "principle of equivalent forms," we do not from the truth of an equation

for positive integer values of m, n, infer the truth of it for any values whatever of

m, n ; there is the intermediate step, that being true for integers, it is true identically ;

and this identical truth of the equation depends on the circumstance that comparing

on the two sides of the equation the coefficients of the successive powers x°, x\ x2, &c.,

these coefficients are in every case finite, rational, and integral functions of m, n.

For instance, comparing the coefficients of x2> we have

(m -f n) (m + n — 1) = m (m — 1) + 2mn + n (n — 1),

and any such equation, being true for all positive integer values of m, n, will be

true identically ; developing the two sides, the equation is in fact

m2 + 2mn + n2 — m — n=m2 — m + Imn + n2 — n.

The reasoning is thus perfectly good ; but I remark that it is quite as easy to prove

the general equation of which the last mentioned equation is an example, as it is to

prove the binomial theorem for positive integer indices ; and consequently that we can

without the aid of the binomial theorem for positive integer indices prove the fundamental

equation

m(m — 1) _ p ) fi . . n(n — l) _ t p )+ mx + —K J x2 + &cN 1 + nx + v ' x2 + &c. \

m + n (m-\-n) (m + n — 1) 0 0
= 1 H — x + -. 2 x2 + &c.

To show this I introduce the factorial notation and write

m (m — 1) . . . (m — r + 1) = [m]r ;

this being so, the equation obtained by comparing the coefficients of xr is readily found

to be

[m + n]r = [m]r + j [mf-1 [n]1 + ^ -T"! [m~\r~2 [n]2 + &c,

and I say that this, the factorial binomial theorem for a positive integer index r, is

proved as easily and in the same manner as the binomial theorem for a like value

of the index ; or say as the equation

(m + n)r = mr + j mr~Y n1 + ? ^~ ' mr~2n2 + &c.

To show how this is, I form the values of [m + n]1, [m + n]2, [m + n]*, &c. successively,

by what may be termed the process of varied multiplication: we have

[m + n]1 = m + n;
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to obtain [m + n]2 we have to multiply this by m -f n — 1 ; in regard to the first term

m, I write the multiplier under the form (m — l)+n, and in regard to the second

term to, under the form m 4- (n — 1) ; the process then stands

[m + to]1 = ru + ?l

m + n — 1 = (m — 1) + n i ?to + (n — 10

m (m — 1) -f- to?-to

+ mn + ?i(to- 1)

[m + iif = m (m — 1) + 2v?2?l + n(n — 1)

= W* + 2 [m]1 [to]1
■+[w]a.

To form [m+n]3 we have to multiply by m + n — 2; in regard to the first term, this

is written under the form {m — 2) + to ; in regard to the second term under the form

(m— 1) + (to — 1); and in regard to the third term under the form m+(n — 2); the

product is thus obtained in the form

[m]3 + [m]2 [to]1

+ 2 [m]2 [to]1 + 2 [v?*]1 [to]2

+ [yto]1 [to]2 + [to]3

= [m]3 + 3 [m]2 [to]1 + 3 [toi]1 [to]2 + [to]8,

and so on ; the law of the terms is obvious ; and the numerical coefficients are in

effect obtained as follows :

1, 1

x by 1, 1

1

1, 1

1, 2 1

x by 1, 1

1, % 1

1, % 1

1, 3, 3, 1

x by 1, 1

&c,

viz. by precisely the same process as is used in finding the numerical coefficients in

the powers (toi + to)1, (m+n)2, (m 4- to)3, &c. ; and we thus see that for any integer value

r of the index, we have a factorial binomial theorem, wherein the numerical coefficients

are the same as in the binomial theorem for the same index.

c. viii. 59
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But the method of varied multiplication may be applied to the demonstration of

a much more general theorem ; viz. we may use it to develope a product such as

(h - a) (h - b) (h-c) (h -d)(h- e),

according to a series of products

(h-a)(h-/3)(h-y)(h-B)(h-€),

(h-a)(h-/3)(h-y)(h-8),

(A_a)(A-£)(A-7),

(fc_a)(A-i8),

(A-«),

1.

For this purpose, starting with

A — a — h — a + a — a,

we multiply by h — 6, written first under the form h — /3 -{- /3 — b, and then under the

form A — a + (a — b) ; we have thus

(h - a)(h -b) = (h - a) (h- (3)

+ (h-a) {(a-a)+({3-b)}

+ 1 (a — a) (a — 6),

and so on. It is easy to see that we may for instance write

(A_ a) (h - b) (h-c) (h - d) (h-e)

= (h-a) (h - /3) (h - y) (h -S)(h- e)

+ (h-a)(h-/3)(h--y)(h--8)
f"> H, 7? ^j c\

+ (h - a) (h - /3) (h -
-7)

Va, b, c, d, e)1

\a, 6, c, c£, e/2

+ (h-a)(h-0)
/«> A 7 \

Va, b, c, d, e/3

+ h — a

\a, b , c, dy e/±

+ 1
(a )

\a} b, c, d, e/5 '
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where the symbols ( )0 denote sums of products of the differences of an upper letter

and a lower letter, 6 factors in each product; and the several sums being formed as

follows :

For

a, ft % 8, e\

7 7 write a

job, 6, c, a, e/i

a

b/8

7 c

8 d

the expression is

For

(a - a) + (/3 - 6) + (7 - c) + (S - d) -f (e - e).

'a, ^ 7, 8

.a, b, c, d, ej2

write a, a

a, /3

a, 7

a, 8

ft 7

7> 7

7, 8

8, 8

a, b

a, c

a, d

b, c

a, e

b, d

b, e

c, d

c, e

d, e;

viz. the expression is

(a-a)(a-b)+(a-a)(/3-c)+... + (S-d)(8-e).

For

a, A 7

ka, by c, dy e)3

write a , a , a

a, a, /3

a, a, 7

a, A £

a, ft 7

A ft /3

a, 7, 7

ft ft 7

ft 7> 7

% 7> 7

a, b, c

a, b, d

a, by e

a, c d

a, c, e

by c} d

a, d, 0

by c, e

6, d, e

c, d, e:

viz. the expression is

(a - a) (a - b) (a - c) + . . . + (7 - c) (7 - d) (7 - e).

59—2
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For ' 1 ) write a, a, a, a

a, a, c, a, e/4

a, b, c, d

a, 6, c, 6a, a, a, /3

a, a, ft /3 a, 6, d, e

a, ft A /3 a, c, d, 6

A ft ft /3 6, c, d, e;

viz. the expression is

(a- a) (a - 6)(a - c)(a -d)... + 08- 6) (i8-c)(i8-d)(i8-e).

Finally for

write a, a, a, a, a | a, 6, c, d, e ;

a, 6, c, d, e)5

viz. the expression is

(a — a) (a — 6) (a — c) (a — d) (a — e),

which explains the law of the formation of the several coefficients. It is to be observed

that in forming the development of any symbol, for instance ("' £' ' ^ J, the first
(*> ft 7

\a, b, c, d, e)

column contains the homogeneous products, 3 together, of a, ft 7; the second column

the combinations (that is, combinations without repetitions) 3 together of a, 6, c, d, e :

the top line is a, a, a | a, b, c and to form the subsequent lines we must for any

advance a into ft &c. of a greek letter make the like advance a into &, 6 into c, or

c into d, of the corresponding latin letter.

Two particular cases of the theorem may be noticed : if the latin letters all vanish,

we have, for example,

A»==(A-«)(A-£)(A--7)(A--8)(A-€).

+ (h - a) (h - ft) (A - 7) (h - 8) . #x (a, ft 7, 8, e)

+ (fc_a)(A_£)(A_7)

+ (fc-a)(A-£)

+ (A-a)

+ 1

• #2(«, ft % 8)

.#s(«, ft 7)

where the symbols H denote the sum of the homogeneous products of the annexed

letters, taken together according to the suffix number : the last coefficient H5 (a) is of

course = a5. And if the greek letters all vanish, then we have in like manner

(h-a)(h-b)(h-c)(h-d)(h-e) = h5

— hAGl (a, by c} d, e)

+ A3(72(a, 6, c, d, e)

-h2G3(a, b, c, d, e)

+ h (74 (a, b, c, d, e)

— C5(a, 6, c, d, e),



533] FACTORIALS AND DERIVATIONS. 469

where the symbols G denote the combinations of the annexed letters taken together

according to the suffix number ; the last coefficient C5 (a, b, c, d, e) is of course

= abode. This is the ordinary theorem giving the expression of an equation in terms of

its roots.

Combining the two theorems, if in the first theorem we express the products

(h — a) (h — /3) (h — 7) (h — 8) (h — e), &c. in powers of h by means of the second theorem ;

or if in the second theorem we express the powers h5, h4, &c. in terms of the products

(h — a) (h — b) (h — c)(h — d) (h — e), &c. by means of the first theorem ; then in either

case we obtain certain identical relations connecting the C, H of (a, /3, ...) or of

(a, b, ...).

I have mentioned the factorial notation

[m]r = m (m — 1) . . . (m — r + 1),

where r is a positive integer; a consequence of this is

[m]r+s = [m]r [m — r]s,

where r and s are positive integers ; or as this may also be written

[m + r]r+8 = [m + r]r [m]s.

Assuming this to subsist for s = 0, or a negative integer ; first for s = 0, we have

[m -f r]r = [m + r\r [m]° ; that is, [m]° is = 1 ; and then for s = — r, we have 1 = [m+r]r [m]~r ;

that is,

and in particular, r=l, 2, &c, we have

[m]_1 =

^~2 = (m+l)(m + 2)J

(fee,

which explains the extension of the factorial notation to negative integer values of the

index.

But the equation

[m]r+s = [m\r [m — r]s

does not in any determinate manner lead to an extension of the factorial notation to

Um
fractional or other values of the index. In fact, assuming \m]r = ^ , , where IT

0 11 (m — r)

is an arbitrary functional symbol, the equation in question becomes

Tim _ Ilm II (m — r)

[m + ?
*]*•'

1

m + 1

1

U (m — r — s) II (m — r) U (m — r — s) '

viz. the original equation is identically satisfied, without any condition whatever being

imposed upon the function II, and on this account we have not, in the notation of the

factorial with an integer index, any sufficient basis for a theory of general differentiation.
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A product

m (m — a) ... [m — (r — 1) a]

can of course be expressed in the factorial notation, viz. it is

= 0Lr

and on this account it is not in general necessary to employ a notation such as

[m, a]r to denote such a factorial wherein the difference of the successive factors instead

of being = — 1 is = — a ; in particular cases where factorials of the kind in question

are used, it may be convenient to employ such a notation. In particular it is some

times convenient to use the notation [m, — l]r or better [m)r to denote the product

m (m -f 1) . . . (m + r — 1),

where the successive factors instead of being diminished, are increased by unity. It

may be noticed, that reversing in this last product the order of the factors, we find

[m}r = [m + r - l]r ;

a somewhat similar formula, but employing only the ordinary factorial notation, is

obtained from the equation

[m]r = m (m — 1) ... (m — r + 1),

by first changing the sign of m and then reversing the order of the factors ; viz. we have

[-mj' = (-)r[m + r-l]r.

Keverting to the process used for the development of the expressions ( )d, where there

are two columns, the one of greek, the other of latin letters ; it is to be remarked

that although the order in which the successive lines are evolved is not material for

the purpose of the theorem, yet that a certain definite order of evolution has been

made use of; thus in regard to ( ' ' , ) , the column of greek letters, giving

the homogeneous products of the second order in (a, /9, y, S), was

a a

a /3

a
7

/3 P

a S

e 7

$ S

7 7

7 S

8 8
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this is evolved from the top term (a, a) by a process given implicitly in Arbogast's

Calculus of Derivations, and which may be termed the rule of the last and the last

bat one. Let the direction "operate on any letter," be understood to mean that the

letter in question is to be changed into that which immediately follows it, but in

such wise that when the letter occurs more than once, e.g. as in a, a the operation

affects only the letter in the right-hand place. Then operate on the a, a in regard

to a, we obtain a, ft ; operate on this in regard to /3, we obtain a, 7; and in regard

to a, we obtain ft, ft. Again we operate on a, 7 in regard to 7, and obtain a, S ; we

do not operate on it in regard to a for the reason that a is not the letter immediately

preceding 7. Operate on ft, ft in regard to ft, we obtain ft, 7. The next step, if the

series extended to e would be to operate on a, 8 in regard to 8, giving a, e ; do not operate

on it in regard to a, for the reason that a is not the letter immediately preceding 8.

But in the example, since the series does not extend to e, there is no operation on

a, 8. Passing then to the next term ft, 7, we operate in regard to 7, obtaining ft, 8,

and since ft is the letter immediately preceding 7, we also operate in regard to ft,

obtaining 7, 7. Similarly if e were admissible, ft, 8 would give /3, e, but it in fact

gives nothing ; 7, 7 gives 7, 8 ; thus if e were admissible would give 7, e and 8, 8,

but it in fact gives only S, 8, and, e being inadmissible, the process is here concluded.

The rule is, operate on the last letter, and when the last but one letter is that

which, in alphabetical order, immediately precedes the last letter (but in this case

only) operate on the last but one letter.

Taking another example, but with numbers instead of letters, and supposing the

highest admissible number to be 5, then from 111 we derive as follows:

111 112 113 114 115 125 135 145 155 255 355 455 555

122 123 124 134 144 235 245 345 445

222 133 224 225 244 335 444

223 233 234 334 344

333,

the original single column being here for greater convenience broken up into distinct

columns ; but the order of the terms, when the columns are taken one after the other

in order, each being read from the top to the bottom, being the same as before ; it

will be noticed that the successive divisions are the partitions into 3 parts (no part

exceeding 5) of the numbers 3, 4, ..., 15 respectively; the partitions being in each

case obtained without repetition, and those of the same number being given, say in

their numerical order (corresponding with the alphabetical order when letters are

employed). It is necessary to show that the partitions will be obtained without

repetitions; and that all the partitions will be obtained; for this purpose consider, for

example, the partitions of 9 ; any one of these is either a partition 135 where the last

number 5 is not a repeated number; and in this case there is a partition of 8, viz.

134, from which operating on the last we obtain 135 ; but there is no other partition

of 8 which would give 135, the only such partition would be 125, but here, as 2 is

not the number which immediately precedes 5, there is no operation on the last but

one, and we do not from it obtain 135. Or else a partition of 9 is of the form 144
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where the last letter is repeated ; there exists in this case no partition of 8, such

that operating on the last we obtain from it 144, but there does exist a partition

of 8, viz. 134, such that operating on the last but one we obtain from it 144. That

is, for any partition whatever of 9 there exists one (and only one) partition of 8,

such that operating on the last or the last but one, we obtain from it the partition

of 9 ; that is, taking the entire system of the partitions of 8, and operating on the

last and the last but one, we obtain, and that without repetitions, the entire series

of the partitions of 9; and so in general.

Translating the example into letters, but using for greater convenience a2, &c.

instead of a, a, &c. the process will be precisely the same ; taking the letters to be

a, b, c, d, e, we have

a3 a2b a2c a2d a2e abe ace ade ae2 be2 ce2 de2 e3

ab2 abc abd acd ad2 bee bde ode d2e

b3 ac2 b2d b2e bd2 c2e d3

b2c be2 bed c2d cd2

c3.

Attributing weights to the several letters, viz. to a, 6, c, d, e the weights 1, 2, 3, 4, 5

respectively, the several columns show the terms of the weights 3, 4, ..,15 respectively.

I have said that the foregoing rule is given implicitly in Arbogast's Calculus of

Derivations; this calculus includes in fact a process for the expansion of a function

<f> (a 4- bx + ex2 4- dxs + &c.)

in powers of x\ the expansion in question may be obtained by means of Taylor's

theorem, viz.

(j> (a 4- bx 4- ex2 4- dx3 4- &c.)

= 4>a

+ ^ (bx + ca? 4- dx3 4- &c.)

4- ~ (bx + ex2 4- dx3 4- &c.)2

4- - o o(fe + ^Z + dx3 4- &c.)3,

viz. expanding the several powers of the polynomial increment, and arranging in powers

of x, this is

= cj>a

4- x (<j)'a . b)

4- x3 U'a . d 4- fi'a . be + <f>'"a . |

b'a.e + <j>"a . (bd + %e2) 4- ^a . ^ + cf>""a . |U

+ &c.
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but the object of the rule is to obtain this last-mentioned result directly, and under

standing " operate in regard to a letter " to mean differentiate with regard to this

letter and integrate with respect to the next succeeding letter, then the coefficients

of the successive powers of x are all obtained from the first coefficient <pa, by operating

thereon according to the rule of the last and the last but one; thus <£a, operating

on a gives </>'<x . b ; this operating in regard to b gives <\>a . c, and in regard to a gives

b2
$"a.~-; the term <f>'a.c is to be operated upon in regard to c only, and it gives

<f>'a . d ; the other term $"a . ~ operated on in regard to b gives <j>"a . be, and in regard

bs

to a it gives §'"(1 . -^ ; and so on. But attending only to the literal parts, the terms,

for instance b2, be, bd, &c, which present themselves in the formula, are the homogeneous

c2

terms derived from 62, by the rule, as originally stated, with a view to the derivation

of such terms.

C. viii. 60
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534.

A "SMITH'S PRIZE" PAPER (]); SOLUTIONS.

[From the Oxford, Cambridge and Dublin Messenger of Mathematics, vol v. (1870),

pp. 182—203.]

1. Mention what form of given relation <j>(a, b, c, ...) = 0 between the roots of a

given equation will in general serve for the rational determination of the roots ; explain

the case of failure ; and state what information as to the roots is furnished by a given

relation not of the form in question.

In the given relation, <£ (a, b, c, ...) must be a wholly unsymmetrical function of

the roots ; that is, a function altered by any permutation whatever of the roots ; or,

what is the same thing, by any interchange whatever of two roots.

For this being so, if a, ft, 7, . . . be the values of the roots, then for some one

order, say a, ft, 7,..., of these values the given relation <j> (a, b, c, ...) = 0 will be satisfied

by writing therein a = a, b = ft, c = 7, &c. ; but it will in general be satisfied for this

order only, and not for any other order whatever (viz. it will not be satisfied by

writing a — ft, b = a, c = y, &c, or by any other such system). The given equation

determines that the roots are equal to a, ft, 7, ... in some order or other, but the given

equation combined with the given relation <f> {a, b, c, ...) = 0, determines that a is = a

and not equal to any other value, b = ft and not equal to any other value, &c. ; and

it thus appears a priori, that the two together must rationally determine each of the

roots a, b, c, . . . ; the a posteriori verification, and actual rational determination of the

values of a, b, c, ... respectively, is a separate question which is not here considered.

The function <£(a, b, c, ...) may be of the proper form, and yet the particular

values a, ft, 7, ... be such that the given relation </> (a, b, c, ...) = 0 is satisfied, not only

for the single arrangement a = a, b = ft, c = y, &a, but for some other arrangement,

1 Set by me for the Master of Trinity, Feb. 3, 1870.
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a = S, b = 7, c = ft, ... or for more than one such other arrangement. (For instance, if

the given relation be a -f 2b + 3c — 32 = 0, and the roots are 3, 5, 7 ; the relation is

satisfied by a = 5, Z> = 3, c = 7, and also by a = 3, 6=7, c = 5.) Here the given equation

and relation do not completely determine each root, they only determine that a is = a

or = S (or as the case may be = some other one value) ; and similarly that b is = ft

or =7 (or as the case may be = some other one value), and so for the other roots

c, d, ... ; and it thus appears a priori, that in such a case each root is determined,

not rationally, but by means of an equation, the order of which is equal to the

number of the values of such root ; we have here the case of failure of the general

theorem.

When the given relation </> (a, b, c, ...) = 0 is not of the required form; that is,

when <fi (a, b, c, ...) is a partially symmetrical function, there will be in general several

arrangements of a, ft, 7,..., such that equating a, b, c, ... to a, ft, 7,... according to

each of these arrangements, the given relation tf> (a, 6, c, ...) = 0 will be satisfied; and

it follows that each of the roots a, b, c, ... is determined not rationally, but by means

of an equation of a certain order (not necessarily the same order for each of the

roots). Thus, if the relation be symmetrical as regards a pair of roots a and b; then

if it be satisfied, suppose by a = a, b = ft, c = 7, ..., it will also be satisfied by a = ft,

b — a, c = 7, . . . , but not in general in any other manner ; each of the roots a, b has

here either of the values a, ft, and the two roots a, b in question will be given, not

rationally, but by means of the same quadratic equation. And observe, moreover, that

any other function yfr (a, b, c, ...) of the same form as $, that is, symmetrical in regard

to the two roots a, b, will for the two arrangements a = a, 6 = /3, 0 = 7..., and a = ft,

b = a, c = 7, ... acquire not two distinct values, but one and the same value, that is,

the value of yjr(a, b, c, ...) will be determined rationally; and so in general.

There is for the partially symmetrical function c/> (a, b, c, ...) a case of failure

similar to that which arises for the completely unsymmetrical function, viz. the particular

values a, ft, 7 . . . may be such as to give more ways of satisfying the given relation

0(<x, b, c, ...) = 0, than there would be but for such particular values of a, ft, 7,...;

and there is then a corresponding elevation of the order of the equation for the

determination of the roots a, b, c, ... or some of them.

2. If the roots (a, ft, 7, S) of the equation

{a, b, c, d, e) (u, l)4 = 0

are no tivo of them equal ; and if there exist unequal magnitudes 6, <$> such that

(0 + ay : (0 + ftY : (0 + 7)4 : (6 + 8)* = (cf> + a)* : (<f> + ft)* : (<£ + 7)4 : (<£ + S)4;

show that the cubinvariant ace — ad2 — b2e — c3 + 2bcd is = 0 ; and find the values of 0, cj>.

We have

/g + qy = (0+ftY = (0 + vY = /fl + sy .

and we cannot have any two of the fourth roots, say -: and ■ , , n equal to each
J J 0 + a 0 + /3

other; for this would imply (0 — 0) (a — ft) = 0, that is, 0 = <j), or else a = ft.

60—2
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Hence assuming -—— = X, we may write

6+ol 0 + 0 . 0 + Y_-. 0'+8
~T~~— == A. i i 7^ — — A, ,—; — %A, ,—;—k = — %A,

</> + « </> + /3 $ + 7 <£ + S

{i=v/(— 1) as usual},

viz. this is one of three systems of equations ; the other two may be obtained there

from by writing 7, 8, /3 and 8, /3, 7 successively in place of /3, 7, 8. Hence assuming

0 + u

<f> + ll

the four values of n are a, /3, 7, 8, and the corresponding four values of v are X, — X,

ik, — iX ; and v9 it are linearly related to each other ; the anharmonic ratio of (a, ft, 7, 8)

is therefore equal to that of (1, — 1, i, —i), viz, we have

= -1,
(tt-7)(/3-g) (l-^-l + fl =(l-ff

(a-SX^-ry) (l+i)(-l-i)' (1+*)"

that is,

(a-7)(/3-S) + (a-S)(/S-7) = 0)

or, what is the same thing,

2(a/3 + 78)-(a + /3)(7 + 8) = 0,

viz. we have this relation, or else one of the like relations

2(a7 + 8/3)-(a + 7)(8+/3) = 0,

2 («S + £7) - (a + S) (/3 + 7) = 0,

that is, the product of the three functions 2 (a/3 + 78) — (a + /3) (7 + 8)

is =0.

But the product in question is (save as to a numerical factor) the cubinvariant J of

the quartic function; or the equation in question is the required equation J"=0.

More simply, the linear transformation v = -j , gives for v the equation v* — X4 = 0 ;

which is (1, 0, 0, 0, — X4$/y, l)4 = 0 ; the cubinvariant hereof is =0, and therefore also

the cubinvariant of the original function (a, b, c, dy e][u, l)4.

Keverting to the equations

0 + ol ^ 0+(3 _ 0 + y . 0+8
= A, -7- 7^ = — A, — = %K, — v — — IA,

<j> + a ' <£ + /3 ' <f> + y ' ((> + %'

(which, as we have seen, give 2 (otyS + 78) = (a + /3) (7 + B)), the same equations give

+ tt-5 = ^ » ~X~T •" 7—7-k = U,

</> + « 0 + £ ' 0 + 7 0 + 8'
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that is,

20<f> + 2a/3 - (0 + <f>) (a + /3) = 0,

2<9</> + 27S - (0 + 0) (7 + 8) = 0,

or, what is the same thing,

26(f) : 2 : 0 + c/> = - a/3 (y + 8) + 7S (a + /3)

: 7 + S - a-/3

: 7S - aft

viz. we have thus the values of 0$, 0-\~(f> (and thence of 0, <j>) corresponding to the

relation 2 (a/3 -+■ 7S) = (a + /3) (7 + S) of the roots. And by cyclically permuting ft 7, 8

as before, we have the values of 6$, 0 + <£ corresponding to the other two forms

respectively of the relation between the roots.

3. If in a plane A, ft C, D are fixed points and P a variable point, find the

linear relation

ol.PAB + /3.PBC + y. PCD + 8 . PDA = 0

ivhich connects the areas of the triangles PAB, &c.

Taking (%, y, 1), (xl9 ylt 1), &c. for the coordinates of P, A, ft C, D respectively,

we have

PAB =
% > y ,

fli'2 j ^2 ,

, =012, suppose,

P5C= 023, &c.

(where the values of the several determinants fix the signs of the several triangles).

The identical equation then is

a . 012 + 0 . 023 + 7 . 034 + 8 . 041 = 0 ;

(that such an equation exists appears at once by the consideration that a, ft 7, 8 can

be determined so that the coefficients of oo, y, and the constant term shall severally

vanish) ; and in order actually to find the values we may make P coincide with the

points A, B, Cf D successively. We thus have

/3 . 123 + 7 . 134 = 0,

7 . 234 + 8 . 241 = 0,

8 . 341 + a . 312 = 0,

a. 412 + /3. 423 = 0,

or, what is the same thing,

/3.123 + 7 .341 = 0,

7.234 + S .412 = 0,

8 .341+ a .123 = 0,

a .412 +£.234 = 0,
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and these are at once seen to give

a : /3 : y : 8 = 234.341 : -341.412 : 412.123 : -123.341,

so that the required identical relation is

012 . 234 . 341 - 023 . 341 . 412 + 034 . 412 . 123 - 041 . 123 . 341 = 0,

in which 012, 023, 034, 041 stand for the triangles PAB, PBC, POD, PDA, and 234,

341, 412, 123 for the triangles BCD, CDA, DAB, ABG respectively.

4. Find at any point of a plane curve the angle between the normal and the line

drawn from the point to the centre of the chord parallel and indefinitely near to the

tangent at the point.

Examine whether a like question applies to a point on a surface and the indicatrix

section at such point.

Taking the origin at the point on the curve, the axis of x coinciding with the

tangent and that of y with the normal ; the equation of the curve taken to terms

of the third order in x will by

y = bx2 + cxs,

and if, considering x as a small quantity of the first order, and therefore y as a small

quantity of the second order, we regard y as given, and find the two values xly x2,

each of the order \J{y), which satisfy the equation, then, as will appear, xx + x2 is a

small quantity of the order x2, and consequently — 2 will have a finite value. And

y

-^ (x 4- x )
if (f) be the required angle, then obviously tan cf> — 2-X-l 2— .

We have as a first approximation bx2 = y, or say ■# = --£, whence to a second

b2

approximation bx2 = y-G^-, x2 = | (l - ^J , whence » = Ml- |pj , = l~ - || ; say

we have

and thence

whence

Xl~ hh 2b2'

_ y2 cy

i ( r \ — °y

w=-j^

which gives the value of the angle <f> ; it would be easy to express b, c in terms of

the differential coefficients

dxy, dx2y , dx*y.
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It would at first sight appear that a like question might be asked as to a

surface ; viz. that it might be proposed to determine the angle between the normal

and a line drawn from the point to the centre of the indicatrix conic. But this is

not so; in fact, taking the origin at a point on the surface, the axes of x, y being

in the tangent plane, and the axis of £ coinciding with the normal: then to the third

order we have

2= (A, 5, CQx, y)2 + (a, b, c, d~$x, y)s ;

but here, regarding z as a given constant, if we take account of the terms of the

third order, the section is not a conic but a cubic ; and it has not in general any

centre ; and if (as in the ordinary theory) we neglect the terms of the third order,

thus obtaining an indicatrix conic, the centre of this conic lies on the normal, and

there is no angle corresponding to the angle $ of the plane problem.

The only case where there is such an angle is when the cubic terms {a, b, c, d^x, y)3

contain as a factor the quadric terms (A, B, C$#, y)2 (one relation between the

coefficients A, B, G, a, b, c, d). For then we have

z = (A, B, C$x, y)2 (1 + 2te■■+ 2my), viz.

z = (Ay B, GQx, y)2 + 2 (Ixz + myz),

approximately to the third order ; and then regarding 5 as a given constant, this last-

equation represents a conic having for the coordinates of its centre, say x = az, y = fiz,

and there is an angle <f> = tan-1 V(a2 + ft2) ; this is, in fact, what happens in the case

of a quadric surface, for the section by a plane parallel and indefinitely near to the

tangent plane is then a conic, the centre of which is not on the normal ; and the

angle <f> (in the case of a central surface) is in fact the inclination of the normal

to the radius from the centre.

I take the opportunity of adding a remark that the indicatrix is never a parabola,

but in the separating case between the ellipse and the hyperbola it is a pair of

parallel lines. The indicatrix, a parabola, is commonly obtained as follows: viz. taking

the axes as before, but starting from an equation U = 0, the equation presents itself

in the form

z = (A, B, G, F, G, H^x, y, z)\

which, considering 2 as a given constant, represents a conic which, it is said, may be

a parabola. But observe that z is of the order (x, y)2, the terms 2Fyz + Gzx, are

consequently of the order (#, y)3, but they are not all the terms of this order which

would be obtained by the expansion of z as a function of (x, y)\ there is consequently

no meaning in retaining them, and they ought to be rejected; similarly the term in

z2 which is of the order (x, y)* ought to be rejected ; the equation is thus reduced to

z = Ax2 + 2Hxy + By2,

which, when AB — H2 = 0, represents not a parabola but a pair of parallel lines. On

referring to Dupin's Developpements de Geometrie, &c. (see p. 49) I find that he is

quite accurate ; his expression is, " elle peut cependant etre une parabole ; alors elle

se presente sous la forme de deux droites paralleles equidistantes de leur centre" : and

he afterwards examines in particular " ce cas remarquable."
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5. Shew that a cubic surface has at most four conical points; and a quartic

surface at most sixteen conical points.

If a cubic surface has two conical points, then the line joining these has with the

surface two intersections at each of the conical points, and therefore lies wholly in

the surface. Hence, for a cubic surface with three conical points Ay B, C, the lines

AB, BC, GA lie wholly in the surface, and these three lines form the complete section

of the surface by the plane ABG\ it is clear that there cannot be in this plane a

fourth conical point: but there may be, not in this plane, a fourth conical point D.

Suppose that this is so, there cannot be a fifth conical point E\ for if there were,

the line BE would lie wholly in the surface, and would therefore meet the plane ABG

at some point in the section of the surface by this plane; that is, at some point in

one of the lines AB, AC} BG; say at a point in AB: but then the lines AB, BE

would intersect, or the four conical points A, B, D, E would lie in a plane. Hence

there cannot be any fifth conical point E.

For a quartic surface; suppose this has k conical points, and let any one of these

be made the vertex of a cone circumscribing the surface ; each generating line is a

tangent of the surface ; and considering any section by a plane through the vertex,

and observing that from a double point of a quartic curve we may draw six tangents

to the curve, it appears that the order of the cone is =6. It is easy to see that

the lines from the vertex to the remaining (k—1) conical points are each of them a

double line of the cone, and that the cone has not any other double lines; the cone

is therefore a cone of the order 6, with (k — 1) double lines. A proper cone of the

order 6 has at most 10 double lines, but the cone need not be a proper one; it

may, in fact, break up into 6 planes, and in this case the double lines are the

15 lines of intersections of the several pairs of planes. Hence k — 1 is =15 at most:

or k is = 16 at most.

6. Find the differential equation of the parallel surfaces of an ellipsoid.

nr& /t/2 £-2

Let (x, y, z) be the coordinates of a point on the ellipsoid — + f^ + — = 1 ;

a o c

(X, Y, Z) the coordinates of a point on the normal at a distance =k from the first-

mentioned point. We have

X-% Y-y Z-z

—— = ^ = = p suppose ;

that is,

and thence

Moreover

X = *(l + £), F=*/(l + £J, Z = z(l +

k ~p W + V + c\

¥Y c*Z
z — -

a24p' * b2 + p ' C2 + p
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substituting these values in the equation of the ellipsoid, we have

a2X2 b2Y2 c2Z2
I = _i_ 1_

(a2 + p)2^(b2 + p)2^ (c2 + p)2>

which determines p as a function of X, Y, Z. The tangent plane of the ellipsoid at

the point (#, 3/, z) and of the parallel surface at the point (X, F, £), are parallel to

each other (or what is the same thing, the parallel surface cuts at right angles the

normal of the ellipsoid), we have therefore

-tdX + ydY+*9dZ=0,

a2 b2 c2

or substituting for x, y, z their values, this is

XdX YdY ZdZ A
1 1 = 0

a2 + p ' b2 + p c2 + p

where p denotes as above a function of (X, Y, Z) given by the equation

a2X2 b2Y2 ' c2Z2

(a2 + p)2 (b2 + p)2^(c2 + p)2'

We have thus the differential equation of the parallel surfaces. It may be remarked,

that the integral equation (involving k as the constant of integration), is found by

the elimination of 00, y, z, p from the foregoing equations

a2X b2Y c2Z

^ = ^t-i> y=^_i~> * = ;a2 + pf * b2 + p} c2 + p'

a2 + b2 + c2~i} k ~p U4 + 6* + cV'

or, what is the same thing, by the elimination of p from the equations

k2 X2 Y2 Z2

p2 (a2 + p)2 (b2 + p)2 (c2 + p)2

a2X2 b2Y2 c2Z2

1 = 7 r + -, h/_.o. \o ■ / 7.0 • \o'i

these may be replaced by

(a2 + p)2 (b2 + pf (c2 + p)2 '

X2 . Y2 Z2 k2 , A

- + tit— + ~r 1 = 0,
a2 + p b2 + p c2 + p p

X2 Y2 Z2 k2 A

{a2 + p)2 (b2+p)2 (c2 + p)2 p2

or, since here the second equation is the derived equation of the first in regard to

the parameter p, the parallel surface is the envelope of the quadric surface

X2 Y2 Z2 k2 A

a2+ p b2-\- p c2 + p p

where p is the variable parameter. Or analytically, we find the equation by equating

to zero the discriminant in regard to p, of the quartic function

p(a* + p)(& + p)((? + p)(l + lfi X* Y* Z*

p a2 + p &2 + p c2 + p/'

C. VIII. 61
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7. Explain wherein consists the peculiarity of the following problem, and solve it

by geometrical considerations:—

Determine the least circle inclosing three given points.

The peculiarity of the problem is that the variable parameters upon which the

circle depends, (say a, ft the coordinates of the centre and k the radius), are not

subject to any equations, but only to the inequalities

#> (a -a^+09 -ft)3,

^>(a-a2)* + (/3-/32)2,

#>(«_«,)» + (£-&)»,

(«i> ft; a2> ft; «3> ft? "the coordinates of the given points, and the sign > including =).

The problem therefore cannot be solved by the ordinary analytical method, but it is

easily solved geometrically as follows: Let A, B, C he the three points; consider all

the circles inclosing the three points, viz. 0 a circle not passing through any of them ;

A a circle through the point A, B a circle through the point B, AB a circle through

the points A and B, &c. Then for any circle 0, if the centre be fixed and the

radius gradually diminish, the circle will at last pass through one of the points ABC;

that is, every circle 0 is greater than some circle A, B, or (7; and the circle 0 is

therefore not a minimum. Taking next a circle A, we may imagine the centre to move

from its original position in a straight line towards the point A, the circle thus

gradually diminishing until it passes through one of the points B or C; that is, every

circle A is greater than some circle AB or AG, and therefore no circle A is a minimum;

and in like manner no circle B or C is a minimum. There remain the circles

AB, AC, BG\ if the triangle ABC is acute-angled, then in each series, the least circle

is the circle ABC circumscribed about the triangle ; and this is then the minimum

circle inclosing the three points. But if the triangle is obtuse-angled, say at C, then

the least circle GA or CB is the circle ABC circumscribed about the triangle; but

this is not the least circle AB, viz. the circle AB, being diminished to ABC, may

be further diminished until it becomes the circle on the diameter AB ; but below

this it cannot be diminished ; and consequently the minimum circle inclosing the three

points is in this case the circle on the diameter AB.

8. A particle describes an ellipse under the simultaneous action of given central

forces, each varying as {distance)"2, at the two foci respectively: find the differential

relation between the time and the eccentric anomaly.

Taking the equation of the ellipse to be — + ^-2 = l, and the absolute forces at

the two foci (ae, 0), {—ae, 0) to be /u, jll' respectively, the differential equations of

motion will be

d2x __ x — ae ,(x + ae)

dt2~~^(a^l^'~ ^ Ja + exf'

<*£ = -„ _JL_ _ „! _!__

dt2 ^{a-exf * (a + exf
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But if u be the eccentric anomaly, then

x = a cos u, y — b sin u, — a \/(l — e2) sin u,

and the equations become

cos u — e fji cos u + ed?u fdu\2 a

a£2 \dtj a3 (1 — 6 cos w)3 a3 (1 4- 0 cos uf

smwcffy* . /cfaA2 u sin w

ar \a£/ a3 (1 — e? cos uf a3 (1 + e cos i^)3

M

and multiplying by — cos u, — sin u respectively, and adding, we have

du

dt

.P

a3 (1 — e cos ^)2 a3(l + e cos w)2 ?

which is the required differential relation.

9. Show that the attraction of an indefinitely thin double-convex lens on a point at

the centre of one of its faces is equal to that of the infinite plate included between the

tangent plane at the point and the parallel tangent plane of the other face of the lens.

The figure represents the upper half only of the lens, but in speaking of any

portion thereof, such as PRQ, we include the symmetrically situate portion of the

under-half of the lens.

 

Let a, = PQ, be the thickness of the lens, Z NPQ = X, which angle is ultimately

= o • Then it is at once seen that the attraction of the cone NPQ is = 27ra(l — cos \):

Li

and from this it follows that the attraction of the infinite plate is = 2ttol. The

attraction of the whole infinite plate except the cone NPQ is = 27racos\, which is

indefinitely small in regard to 2ira ; and, a fortiori, the attraction of the portion MPR

of the lens is indefinitely small in regard to lira. We have then only to show that

the attraction of the solid NPQ is indefinitely small in regard to 2tt(x ; for, this being

so, the attraction of the lens may be taken to be equal to that of the cone NPQ,

and will therefore ultimately be = 2ira, the attraction of the infinite plate.

61—2
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Let the position of an element of the solid in question be determined by r its

distance from P, 0 the inclination of r to the axis PQ, and <£ the azimuth in regard

to any fixed plane through the axis ; then dm = r2 sin 0 dr dd d$, and the attraction

in the direction PQ is = I sin 0 cos 0 dr d0 d(f>, = lir I ( g - r J sin 0 cos 0 d0, the integral

in regard to <f> having been taken from <£ = 0 to <£ = 2-7T, and that in regard to r

from r=r (value at the face MQ of the lens) to r = ^ (value at the tangent plane

QN). Taking the radius of the surface QM of the lens to be = 1, we have

(1 - a + r cos 0f + r2 sin2 0 == 1 ,

that is,

r2 + 2r cos 0(1- a) = 2a - a2,

{r + (1 - a) cos 0}2 = (1 - a)2 cos2 0 + 2a - a2,

or

r = - (1 - a) cos (9 + V{(1 - «)2 cos2 (9 + 2a - a2},

which is the value of r to be substituted in the formula

^r~ A— (a sin 0 — r sin 0 cos 0) d0,

and the integral is to be taken from 0 = 0 to 0 = X ; viz. this is

| [a sin 0 + (1 - a) sin 0 cos2 0 - sin 0 cos 0 V{(1 - a)2 cos2 0 + 2a - a2}] d0,

= - a cos 0 - £ (1 - a) cos3 0 + {(1 - a)2 cos2 0 + 2a - a2}^ ;

so that taking this between the limits in question, we have

J- A = a (1 - cos X) + £ (1 - a) (1 - cos3 \) + ^5-7^—r2 [{(1 - a)2 cos2 \ + 2a - a2}^ - 11
Z7T o ^l — a/4 J J

77"

or writing for greater convenience X = ^ — /*, (yu = Z PJSfQ), this is

.l4 = a(l_sm/*) + Hl-a)(l-an^

2= a +il - a- ——~4 - a sin/.

1 „

+ sa^ay t{(1 ~ a)2 sin2 ^ + 2a " ** ~ (1 " a)3 sin3^

, (- 3a2 + 2a3) - a sin fi
3 (1 - a)2

+ 3(T^ay2 [*(1 " a)2 Sin2 ^ + 2" "^ ~ (1 - a)S sinS ^ ;
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sin fjb is here an indefinitely small quantity of the order a5, all the terms are therefore

at least of the order o^, and are to be neglected in comparison with a ; or neglecting

such terms we have A — 0 (that is, the attraction of the solid JSfRQ is indefinitely

small in regard to a) ; and the theorem is thus proved.

10. Indicate in what maimer the Lagrangian equations of motion

lead to the equations

dL dT_dT_<W

dt d? d%~ dg'

A ^? + (C-B)gr = 0, &c.

for the motion of a solid body about a fixed point

The expression of the vis viva function T is

T=±(Ap2 + Bq2+Cr2),

but this expression will not by itself lead to the equations of motion ; we require to

know also the expressions of p, q, r in terms of certain coordinates A, /*,, v, which

determine the position of the body in regard to axes fixed in space, and of the

differential coefficients V, ///, v of these coordinates in regard to the time ; each of

the quantities p, q, r will be a linear function of A,', /n't v (p = aX' + bfju + cv\ &c.);

containing in any manner whatever the coordinates X, yu,, v. This being so, the equations

of motion will be

dt dx' dx~^ &c" dx'-^dx' + ^dx' + ^dx"

where -~j , ~, , -j—, are each independent of X', ///, v ; hence, in the equation, the

only terms containing the differential coefficients of p, q, r, are the terms

dp A dp dq r>dq dr ^dr

dX' dt + dX' dt+~dX' dt

d dT
of -j- . ~i-7 ; and hence, assuming that the equations of motion are the known equations

dp d dT dT
A-~+(C— B)qr = (\ it appears that the equation ^i • jw ~ jr = 0 will assume the form

there are of course two other equations only differing from this in that in place of

X', they contain // and v respectively; and since p, q, r regarded as functions of

V, fx\ v are independent functions, the determinant formed with the differential coefficients
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•TV ' JV ' /TV ' ^C' *s no^ = ^ » an(^ ^e ^hree equations are therefore equivalent (as

they should be) to the equations

A'^ + (C-B)qr = 0, &c.

What precedes is a complete answer to the question, but in regard to the actual

expressions of p, q, r, it may be remarked, that these quantities may be expressed very

symmetrically in terms of the quantities

\^ ix, v — tan \ 8 cos/, tan \ 6 cos g, tan \ 6 cos h,

which determine the positions of the principal axes in regard to the axes fixed in

space, by means of the angles of position (cos/, cos 6/, cos h) of the resultant axis, and

the rotation 9 about this axis ; viz. writing k — 1 + X2 + fi2 + v2, we then have

tcp = 2 ( V + vfi - pv'),

tcq = 2(- v\! + fi' + \i/),

kt = 2 ( fl\' - \fl + i/),

and the above result may be verified a posteriori without any difficulty. See Gamb.

Math. Jour., vol. in. (1843), [6], p. 224, [Coll Math. Papers, vol. I. p. 33].

11. Find in the Hamiltonian form,

dy __ dH dzr _ dH ,

dt ~" d<& ' dt drj '

the equations for the motion of a particle acted on by a central force.

Taking as coordinates r the radius vector, v the longitude, y the latitude, the

equation of the vis viva function is

hence

whence writing

T=-i{r-
i + 7

*2(cos2y .v'2 + y'2)},

dT

dr'~
r' = r suppose,

dT_

dv

• r2 cos2 y .
v' = v

dT

Y
dy' =

. r
= y » >

erms of r, v, y, and of the ne\

T =4(r2 +
-

v2 +t).

r,2 cos2 3/ r2/ '

H == i(r2 + -

r

Y2 +yl F,

2 cos2 y r2J
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the equations are

dH _ dr dR __ dv dH _ dy

~dr~ di' ~dv~~ di' dy = H' .

dH __ dr dH __ dv dH _ dy

dr dt ' dv dt ' dy di'

dH= dH= v dH^L

dv ' dv r2 cos2 y ' dy r2'

dH 1 / v2 \ dV dH n dH v2siny

We have

dr rs Vcos2 y J dr ' efo ' dy r2 cos3 y '

and, substituting these values, the equations of motion present themselves as six equations

of the first order between r, v, y, r, v, y, and t in the form

dv dy dr dv

dV~ 0 ~

dr

dy

Y V z --■( y3 +r)- v2 sin2 y

r2 cos2 y r2
r3 Vcos2 y J J

r2 cos3 y

12. An unclosed polygon of (m+1) vertices is constructed as follows: viz. the

abscissce of the several vertices are 0, 1, 2...m, and, corresponding to the abscissa k, the

ordinate is equal to the chance of (m + k) heads in 2m tosses of a coin ; and on then

continually increases up to any very large value : ivhat information in regard to the

successive polygons, and to the areas of any portions thereof, is afforded by the general

results of the Theory of Probabilities ?

It is somewhat more convenient to take account also of the abscissae —1, — 2, ..., — m,

thereby obtaining a polygon of 2m + 1 vertices, symmetrical in regard to the axis of y.

In such a polygon, the sum of the 2m + 1 ordinates is = 1 ; the central ordinate is

the largest, and the ordinates continually diminish as h increases : moreover for any

large value of m the area of the whole polygon is very nearly, and may be regarded

as being, = 1 ; and the area between the ordinates corresponding to the abscissae + k,

— h as being equal to the probability of a number of heads between m -\-k, m — k, in

the 2m tosses of the coin. A general result of the Theory of Probabilities is that in

a great number of trials the several events tend to happen in the proportion of their

respective probabilities ; viz. in the case of the 2m tosses there is a tendency to an

equal number of heads and tails. But observe that this does not mean that the

probability of m heads and m tails increases with the number 2m of the trials ; or

even that, a being any given number, the probability of a number of heads between

m + a and m — ot increases with the number 2m of trials ; on the contrary, it diminishes ;

what it does mean is that taking the limit of deviation to vary with m, say a number

of heads between m + am, m — am, the probability of such a number increases with m ;

viz. that taking a a fraction however small, m can be taken so large that the

probability of a number of heads between m + am, m — am in the 2m trials, shall be as

nearly as we please = 1.
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The conclusion in regard to the areas of the polygons is that, taking h any given

value whatever, however large, the ratio (m being of course >k) which the area between

the ordinates to the abscissae m + Jc, m — k bears to the area of the whole polygon

(or to unity) continually decreases as 2m increases, and ultimately vanishes ; but con-

trarywise, taking a any given fraction whatever, however small, the ratio which the area

between the ordinates to the abscissae m + am, m — am bears to the area of the whole

polygon (or to unity) continually increases as 2m increases, and ultimately becomes =1.

13. Show that for the quadric cones which pass through six given points the locus

of the vertices is a quartic surface having upon it twenty-five right lines; and, thence or

otherwise, that for the quadric cones passing through seven given points the locus of the

vertices is a sextic curve.

Suppose f7=0, V=Q, W = 0, S=Q are any particular four quadric surfaces passing

through the six points, say

(U= (a, ...) (x} y, z, w)\ V = (6, ...) (x, y, z, w)\ &c.) ;

then the equation of the general quadric surface through the six points will be

ZU + PV+JW+ SS = 0,

and this surface will be a cone, having (x, y, z, w) for the coordinates of its vertex, if

only we have simultaneously

adU dV dW BdS=Q

dx dx dx dx '

a^+&c. =0,

dy

*^+&c. =0.
aw

Eliminating (a, /3, 7, 8) we have an equation V = 0, where V is the Jacobian or

d(U V W S)
functional determinant -—r1— —^ formed with the differential coefficients of the

d(x, y, z, w)

four functions ( U, V, W, S) : the locus of the vertex is thus a quartic surface.

Calling the six points 1, 2, 3, 4, 0, 6, then taking as vertex any point in the line

12, the lines from such point to the points 1 and 2 coincide with the line 12, and

we can through this line and the lines to the remaining points 3, 4, 5, 6 describe a

quadric cone; the quartic surface therefore passes through the line 12; and similarly

it passes through each of the fifteen lines 12, 13, ...,56.

Again, taking the vertex anywhere in the line of intersection of the planes 123

and 456, we have an improper quadric cone, viz. the plane-pair formed by these two
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planes ; the line in question is therefore a line of the quartic surface ; and similarly

the quartic surface contains each of the ten lines 123.456, 124.356,..., 156.234. We

have thus in all 25 lines on the quartic surface.

In the case of seven points 1, 2, 3, 4, 5, 6, 7, the locus is the curve of inter

section of the quartic surfaces which correspond to the points 1, 2, 3, 4, 5, 6 and the

points 1, 2, 3, 4, 5, 7 respectively: these have in common the ten lines 12, 13, 14, 15,

23, 24, 25, 34, 35, 45 (which it is easy to see do not form part of the required locus),

and they have therefore, as a residual intersection, a curve of the order 16 — 10, = 6,,

or sextic curve, which is the locus of the vertices of the cones which pass through

the seven given points.

14. Show that the envelope of a variable circle having its centre on a given conic

and cutting at right angles a given circle is a bicircular quartic; which, when the given

conic and circle have double contact, becomes a pair of circles; and, by means of the

last-mentioned particular case of the theorem, connect together the porisms arising out of

the two problems:

(1) given two conies, to find a polygon of n sides inscribed in the one and circum

scribed about the other ;

(2) given two circles, to find a closed series of n circles each touching the two

given circles and the two adjacent circles of the series.

The equation of the given circle is taken to be

(x - a)2 + (y - ft)2 = 72,

and that of the conic —o + f- = l. This being so, we have acos0, b sin 0 as the

a2 b2 °

coordinates of a point on the conic, which point may be taken to be the centre of

the variable circle, and introducing the condition that the two circles cut at right

angles, the equation of the variable circle is

O - a cos 0)2 +(y-b cos 0)2 = (a - a cos 6)2 + (/3-b sin 0)2 - y2,

that is,

x2 + y2 - a2 - ft2 + 72 - 2a% cos 0 - 2by sin 0 = 0,

where 0 is the variable parameter ; and the equation of the envelope therefore is

{x2 + y2 -a2-ft2 + 72)2 - 4<xV - 4%2 = 0,

x 1/

which is a quartic curve ; and writing herein - , - in place of x, y the equation would

z z

be of the second order in regard to x2 + y2, z, and it thus appears that the curve has

double points at each of the points x2 + y2 = 0, z — 0, viz. that the envelope is a

bicircular quartic.

If the fixed circle touches the conic, then by a consideration of the figure it at

once appears that the point of contact is a double point on the curve ; and so if

there is a double contact, then each of the points of contact is a double point on

the curve. But in this case the curve is a bicircular quartic with four double points;,

viz. it is a pair of circles.

C. VIII. 62
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The porism in regard to the two conies is, that in general it is not possible to

find any polygon of n sides satisfying the conditions ; but that the conies may be

such that there exists an infinity of polygons ; viz. any point whatever of the one

conic may then be taken as a vertex of the polygon, and then constructing the figure,

the (n + l)th vertex will coincide with the first vertex, and there will be a polygon of

n sides.

Now imagine that the conic touched by the sides is a circle having double contact

with the other conic. Describe any one of the polygons, and with each vertex as

centre describe the orthotomic circle, which will, it is clear, be a circle passing

through the points of contact with the fixed circle of the sides through the vertex.

We have thus a closed series of n circles, each touching the two adjacent circles of

the series. And by considering any other polygon, we have a like series of n circles :

and by what precedes the envelope of all the circles of the several series is a pair of

circles ; that is, the circles of every series touch these two circles. We have consequently

two circles, such that there exists an infinity of closed series of n circles, each circle

touching the two fixed circles, and also the two adjacent circles of the series ; which

is the porism arising out of the second problem.
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535.

NOTE ON THE PROBLEM OF ENVELOPES.

[From the Messenger of Mathematics, vol. I. (1872), pp. 3, 4.]

There is a mode of looking at the problem of Envelopes, which, so far as I am

aware, has not been explicitly noticed. Let U=(xi y, z)m be a function of the

coordinates (x, y, z)} © = ©' = (#, y, z)a (x', y\ z'Y a function of the two sets of coordi

nates (#, y> z) and (x\ y\ z')\ it being understood that when we write © we regard

(OS, y, z) as the current coordinates, when ©' we regard (of, y, z) as the current

coordinates. Suppose that we have [7 = 0; the curve ©' = 0 is then a curve the

equation whereof contains as parameters the coordinates (x, y, z) of a point P on the

curve [7 = 0; and we may seek for the envelope of the curve ©' = 0 as P describes

the curve [7=0 ; the required envelope is of course obtained as an equation in (V, y\ z')

given by the elimination of oc, y, z, X from the equations (equivalent to four equations

only)

[7 = 0, ©^0,

dx®' + \dxU=0,

dy®' + \dyU=09

dzW + \dzU=Q.

But, observe that the required envelope is the locus of the points of intersection

of the curve & = 0 belonging to a particular point (xt y, z) of the curve U = 0, by

the curve ©' = 0 which belongs to a consecutive point of U. The curve © = 0, con

sidering therein (x\ y\ z') as the coordinates of a given point of the plane, determines

by its intersection with [7 = 0 those points (#, y, z) on the curve [7 = 0, to each of

which belongs a curve ©' = 0 passing through the point in question (x\ y\ z'). Hence,

if the curve © = 0 touch the curve [7=0, the point of contact, coordinates (x} y, z),

is a point such that to it and to the consecutive point there belong curves, each of

them passing through the given point (of, y\ z'\ Hence expressing that the curves

62—2



492 NOTE ON THE PROBLEM OF ENVELOPES. [535

© = 0, U = 0 touch each other, we have a relation in (x\ y, z) which is the locus of

the point of intersection of the curves ©' = 0 belonging to two consecutive points of

the curve £7"=0; that is, the equation of the required envelope is obtained as the

condition that the curves 27= 0, © = 0 shall touch each other. But when the curves

touch each other, they have at the point of contact their derived functions proportional,

■or we have simultaneously

jj=0, © = 0,

dx®+\dxU=Q,

dy® + \dyU=0,

dz®+XdzU=0,

the same equations as before, since © and ©' denote the same function.

It is to be added that, when a — m} the equations

dx®+XdxU=0,

dy<$>+\dyU=0,

dz<d + XdzU=Q,

are homogeneous in (x, y, z\ and we may by the elimination of (x, y, z) from these

equations obtain an equation Disct. (© + XU) = 0, say for shortness A = 0, involving X

and also the coordinates (V, y\ z). Now it is a known theorem that the condition for

the contact of the two curves [7 = 0, © = 0 can be obtained by expressing that the

equation A = 0 shall have a pair of equal roots, or, what is the same thing, by equating

to zero the discriminant of the function A ; this last-mentioned process leads therefore

to the equation of the envelope of the curve ©' = 0, viz. (a being = m as above) the

equation of the envelope of the curve ©' = 0, is in fact

Disct. A Disct. (X) Vt z) (© + XTJ) = 0,

viz. we first take the discriminant of the function © + X U in regard to the coordinates

■(#, y, z), and then taking the discriminant in regard to X of this discriminant we equate

it to zero. This is in many cases a more simple process than that of the direct

elimination of x, y, z, X from the five equations.
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536.

NOTE ON LAGRANGE'S DEMONSTRATION OF TAYLOR'S

THEOREM.

[From the Messenger of Mathematics, vol. I. (1872), pp. 22—24.]

I take the occasion of the publication of the last edition of Mr Todhunter's

Treatise on the Differential Calculus to make some remarks on the demonstration in

question. Mr Todhunter proposes to himself to exhibit a comprehensive view of the

Differential Calculus on the method of Limits; but he very properly introduces in some

cases demonstrations founded upon other views of the subject, pointing out that this

is the case, and explaining or indicating his objections. Thus (Chapter VI.) upon

Taylor's Theorem, he remarks "Before we offer a strict demonstration of the theorem

in question, we shall notice the method which it was usual to adopt in treatises on

the Differential Calculus not based on the doctrine of limits," and then, after giving

a demonstration depending on the relation -y- f(oo + h) = -jrf(x + ^)>0) ne goes on

"There are numerous objections to the method of the preceding articles, and especially

the use of an infinite series, without ascertaining that it is convergent, is inadmissible ;

we proceed then to a rigorous investigation," which investigation (after Mr Homersham

Cox) is a demonstration of the equation

/(* + h) =/(«o + hf\x) ... + 1/» («o + ,~-^/w+1 {x + eh)'

(0 between 0 and 1) whence "if the function fn+l(x + 0h) is such that by making n

sufficiently great the term .——-fn+1(w + 6h) can be made as small as we please, then

by carrying on the series

/(x) + hf (x) + *r (x) + ^/" (x) +...

1 This demonstration is similar in principle to Lagrange's but I think his is preferable ; viz. the principle

made use of by Lagrange is that the series has the same value whether x is changed into x + k, or h into h+k.
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to as many terms as we please we obtain a result differing as little as we please

from f(x + h). Under these circumstances then we may assert the truth of Taylor's

theorem."

I share Abel's horror of divergent series^), and I maintain the validity of Lagrange's

demonstration. When by an algebraic process we expand a function in a series, for

instance the function . , by division
1 - x J

1 - x) 1 (1 + X + X2 + &c.

1 — X

X

X2 &c.

in the series 1 +# + #24-&e., and write accordingly

1

1 — x
= l+x + x2 + &c.

all that is (or ought to be) meant is that the algebraical operations continued as far

as we please will give the series of terms 1, x, x2,... or say the series of coefficients

1, 1, 1,... And of course with this meaning of the equation, the objection " non

constat that the series is convergent" would be wholly irrelevant, we do not say that

it is, we do not care whether it is so or not. In further illustration, remark that

we frequently use such an equation merely as the means of expressing the law of a

series of numbers a0, al5 a2, ..., say an = coeff. xn in f{x), where the function is assumed

to be by a definite process expansible in the form a0 + axx + a2x2 + &c. in question.

Any objection that the series is not convergent would be simply irrelevant. Now any

rational or irrational algebraic function f(x + h) can by ordinary algebraical processes

be expanded in the form f(x) + terms in h, h2 &c... And if in regard to a function

f(x) we make the single assumption that f(x + h) is expansible in a form containing

powers of h and reducing itself to f(x) when h is put = 0, then Lagrange's demon

stration shows that the powers of h are h, /i2, hs, &c... and that the expansion in

fact is

f(x + h) =/(«) + hf (x) +i^/" («) + &c. ;

viz. f(x + h) acquires the same value f(x + h + k) whether we change therein x into

x + Jc or h into h + k', and the expression on the right-hand side is the only series

in h possessed of the same property. It is to be remarked that the equation contains

in itself the definition of the operation of derivation, viz. the equation being true,

f(x) can only denote the coefficient of h in the expansion of f(os + h); and what

1 Peut-on imaginer rien de plus horrible que de debiter

0 = l,l-2™ + 3,l-4w-fetc,

n etant un nombre entier positif?—CEuvres, t. 11., p. 266; [Nouv. Ed., 1881, t. n., p. 257].
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really is shown is that admitting such an operation to be possible in regard not only

to f(x), but to /' (x), &c, then the coefficients f (as), J v , &c, are obtained from fix)

by the successive repetitions of this operation and by dividing by the proper numerical

denominator.

By what precedes, any objection in regard to convergency, I regard as irrelevant;

and if it is said that the above-mentioned single assumption is not granted, I would

either ask "What is a function"—or I would content myself with the hypothetical

statement—if fix) be such that f(x + h) is expansible ut supra, then Taylor's theorem.

In regard to the demonstration given by Mr Todhunter, it implicitly assumes that

x and h are both real, and (although doubtless possible) it would be considerably

more difficult to find an analogous demonstration of the formula involving fn+1 (x + 0h)

in the case of x and h imaginary. But the formula with the term in question is not

(nor does Mr Todhunter consider it as being) Taylor's theorem ; to obtain from it Taylors

theorem, we require (in the foregoing point of view) the property that hn+1f(x + Oh) is

expansible in a series involving hn+1 and the higher powers of h, that is, the very

property that f(x + h) is expansible in positive powers of h.

Moreover admitting that the formula with the term fn+l(x + 8h) is demonstrable

for imaginary values of x, h, the formula is meaningless in the case where xy h are

one or both a symbol or symbols of operation : 6 would certainly have no definable

numerical magnitude, and if it is considered as meaning anything, then the equation

in question is a mere definition of what it does mean, and ceases to be a theorem

in regard to f(x + h). It is impossible, in a quantitative algebra such as is presupposed

in the method of limits, to put any meaning on the equation

which however I regard as a legitimate particular form of Taylor's theorem.
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537.

SOLUTIONS OF A SMITH'S PRIZE PAPER FOR 1871.

[From the Messenger of Mathematics, vol. I. (1872), pp. 37—47, 71—77, 89—95.]

1. A point moves in a plane ivith a given velocity, and also with a given velocity

about a fixed point in the plane: show that the locus is either a circle passing through

the fixed point, or else a circle having the fixed point for its centre; and explain the

relation between the two solutions.

We have in general

{dry . n /d0\2

<dt) '*-{£)'
+"

and in the present question, taking the fixed point as the origin, and measuring 9

from any fixed line through this point,

dO Tro fdr\2 9 0
*—• V2=(dt)+rW'

where V, a> are given constants. Hence

\dd) \dt) " \dt) <o*

or, writing V=aa>,

©•-*-■

therefore

de=- dr

V(a2-r2)'

or

r
6 + ft = sin-1 - , (ft the constant of integration),

a
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that is,

r = a sin (0 -f /3),

which is the equation of a circle (radius = |a) passing through the fixed point. In

fact, the point moving in such a circle with a constant velocity, moves about the

centre with a constant angular velocity, and about any fixed point in the circumference

with an angular velocity which is one-half of that about the centre, and is therefore

also constant.

Treating /3 as a variable parameter, to obtain the envelope we have

0 = a cos (0 + /3),

. 7T

that is, 6 + /3 = ^ and therefore r = a, which is the equation of a circle (radius = a)

having the fixed point for its centre. This is consequently the singular solution.

2. Determine the system of curves which satisfy the differential equation

dx {V(l + x2) + ny) -f dy {V(l + y2) + ra?} = 0 ;

and sAow £Aa£ £&e curve which passes through the point x — 0, 3/ = n contains as part

of itself the conic

x2 + y2 + 2xy V(l + n2) - n2 = 0.

The equation is integrable per s#, viz. we have

x V(l + 0?) + log {# + V(l + <>} + 2/ V(l + 2/2) + log [y + V(l + 2/2)} + %nxy = (7,

or, determining the constant so that for w = 0, y may be —ny

C = n V(l + ^2) + log {rc + V(l + 0}>

and the equation may be written

x V(l + w°) + y V(l + f) + 2nxy - n V(l + »») + log ^ + V(^^(1V^ +^ = °»

which is evidently a transcendental curve; it may however be shown that, if

x2 + y2 + 2xy V(l + n2) - n2 = 0,

then we have

x V(i .+ O + y V(l + 2/2) + 2w#y -wV(l + ^2) = 0>

and

{*; + V(i + x2)} [y + V(i + 2/2)} = % + V(i + n%

so that the equation of the curve is thus satisfied; wherefore the transcendental curve

contains as part of itself the conic x2 + y2 + 2xy V(l + ^2) — w2 = 0.

[As a simple illustration as to how this may happen, take the transcendental

curve y — sin xy = 0, which it is clear contains as part of itself the line y = 0.]

c. viii. 63
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We have, from the equation of the conic

{x + y V(l + n2)}2 = n2 (1 + y%

that is,

x + y V(l + n2) =±n V(l + y%

but considering the radicals as positive, the sign must be taken so that we have

simultaneously x = 0, y = n. We have therefore

x + y<s/(l+n*) = n*/(l+tf),

and similarly

y + x V(l + n2) = n V(l + <).

Then

w {x V(l + #2) + y V(l + 2/2)} = 2xy + (>2 + 2/2) V(l + w3)

= 2^y + V(l + n2) {n2 - 2xy V(l + w2)}

= ?i2{V(l+wa)-2tfjy},

which is the jftrsi of the relations in question ; and

n2 {x + V(l + (*?)} {y + V(l + 2/2)}

= wV?/ -f nx {x + y \/(l + ?i2)} + %y {t/ + a? V(l + n2)}

+ xy + (x2 + 3/2) V(l + ^2) + #y (1 + w2)

= {w + V(l + ra2)} {^2 + 2/2 + 2xy V(l + O}

= {?i + V(l + ?22)} n2,

which is the second of the two relations. And the theorem is thus proved.

[The foregoing is the easiest and most obvious solution, but it is interesting to

consider the question differently, as follows:

Write

we have

if

and then

fo+V(i + ^)}?y + A/(i + 2/2)}

V w + VQ+ro8)

Q W(n2 + l) + 7i} = W(l+x2) + x}W(l + y2) + y} = A+B,

Q"1 W(n2 + 1) - n] = {V(l + x2) - x] W(l + y2) -y} = A-B9

A = V(l + ^2) V(l + 2/2) + ^2/>

B = xJ(l+tf) + yJ(l + a?)\

AB = ^ V(i + y2) + ^2 V(i + ^)

+ y (1+x2) v(l + y2) + % (1 + 2/2) V(l +O

- a? V(l + x2) + y V(l + y2) + 2ayJB,
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that is,

whence

that is,

Q2 {2ft2 + 1 + 2n V(l + ?i2)} - ia {2ft2 +l-2n V(l + ft2)}

= 4{a;V(l+*2) + 2/V(l+2/2)}

+ 4a;?/ y {V(l + ft2) + »} - g {V(l + ft2) - n)

4 {« a/(1 + a?) + y V(l + y2) + 2nxy - n V(l + ft8)}

= y2 {2ft2 + 1 + 2ft V(l + ft2)} - 4 {2w2 + 1 - 2n V(l + ft2)}

y*

+ 8?m/ — 4ft V(l + ft2)

- 4ary Q }V(1 + ft2) + ft} - 4 {V(l + ft2) - »}

= (Q2 - ^) (2«2 + 1) + (y2 + ^ - 2J 2ft V(l + «*)

-(y-^)^V(l+ft2)-4(Q + ~-2)

-(g_l){ffl±i^±^(lllP + 1)

+ (y-iKQ + D22W(1+w2)

-i^^^va+ft2)

— 4 -—-^••---- n*i/

= (y — 1) X2 suppose,

ft*'?/

a;V(H-*2) + 2/ V(l + 2/2) + 2nxy-n V(l +ft2) = i (y- 1) O.

And the integral equation is

|(y-l)f2 + logy = C,

•which, for (7=0, is satisfied by y=l.

Now starting from

^+V(l+^)}{y+V(l+y2)}

V ft+V(l + ft2)

we have

V(l + *2) + a; = Q {V(l + ft2) + «} {V(i + 2/2) - y),

V(l + «-) - co = 1 {V(l + ft2) - ft} {V(l + f) + y],

63—2
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and thence

if

2x = K V(l + y2) - Ly,

K=Q y(l + na) + n) - i {V(l + O - *i},

Z = Q W(l + O + n} + ~ {V(l + w») - n],

wherefore

Moreover

that is,

•or, what is the same thing,

Z2-iT2 = 4.

(2x + Ly)2 = K20+y2),

4x2 + {I? - K2) y2 + 4<Lxy = i?2,

&-2 + 3/2 + i^ = i (X2 - 4),

which is the rationalised form of

_ fo + V(l + ^)}{yW(l + y2)}

v w + v(i+wa)

And if Q = 1 then Z = 2 V(l + w2), J (L2 - 4) = ^2, so that this equation is

x2 + y2 + 2#y V(l + raa) - w2 = 0 ;

or, when (7=0, the complete integral is satisfied by

{*+ */(i+ a?)} {y + */(! + </*)}_

72 + V(l + ^2)

that is, by

os2 + y2 -f 2xy y'(l -f ?^2) — n2 = 0.

We may without difficulty rationalise, and present the result as follows : the equation

+ {2(y + i) + („-i)(,-i)}(l + i)% = 0,

has the complete integral

and a particular integral xy — n = 0 : the complete integral is in fact

. xy\
(n — a?y) {— ?^3#2;^/2 -f- n2/2?y (— x2 — y2 + 1 ) + n {x2y2 — x2 — y2) — xy} = x2y2n2 ( (7 + 4 log — j .

satisfied, for (7=0, by xy — n — 0.]
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3. Write a = & — c, /3 = c — a, y = a — b; then considering the three circles and the

three conies

(*-*? + *— fh. fo+K^To-1'

7 No ^ V2

<»-<* + »* = -<#. 5 +ra= l-

ivhere K is arbitrary ; it is required to show that if a variable circle having its centre

on one of the conies cuts at right angles the corresponding circle, the envelope is in each

of the three cases one and the same bicircidar quartic.

Consider the circle (x — a)2 + y2 = — By and the conic y- + wr" = 1, the coordinates
v ' * ^ ' be K-\-bc

of a point on the conic are cos 6 *J(bc), sin 6 ^(K + be), where 9 is a variable parameter ;

say for a moment these values are p and q. The equation of the variable circle is

(x-p)2 + (y-q)2 = r2,

and in order that this may cut at right angles the circle

(x-a)2 + y2=-/3y}

we must have

(p-a)2+q2 = r2-/3y,

or, substituting for r2 its value from this equation, the equation of the variable circle is

(x-pj* + (y- q)2 = (a - p)2 + q* + #y,

that is,

x2 + y1 —a2 — fiy — 2p(x — a) — 2qy = 0,

viz. this is

(x2 + y2 - a2 - /3y) - 2 (x - a) V(6c) cos 6 - 2y ^{K + be) sin 0 = 0.

Hence taking the envelope in regard to 6, the equation is

(x2 + y2-a2- /3y)2 - 4 (x - a)2 be - ty2 (K + be) = 0,

that is,

(x2 + y2-ab-ac + be)2 - 4 (x - a)2 &c - 4y2 (X + be) = 0,

or, what is the same thing,

(x2 + 2/2)2 - 2 (6c 4- ca + a&) (x2 4- ?/2) - 4ifr/2 + Sabcx

+ 62c2 + c2a2 + a262 - 2a2&c - 2b2ca - 2c2ab = 0,

viz. this equation, being symmetrical in regard to a, b, c, is the same equation as would

have been obtained from either of the other conies and the corresponding circle ; and

from the form of the equation it is clear that the curve is a bicircular quartic.
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4. Show that the caustic by refraction for parallel rays of a circle, radius c, index

of refraction /u, is the same curve as the caustic by refraction for parallel rays of the

concentric circle, radius - , index of refraction - .
fi J J p

Take as usual fi > 1. Imagine the ray AP (fig. 1) parallel to the axis of x,

incident at P on the circle radius c, and let the refracted ray after cutting the circle

c
radius - , cut it again in Q, and then cut the axis in R. Take <£, <£' for the angles

A6

of incidence and refraction '; sin cf> = /j, sin <f>\

Fig. l.

 

Moreover in the triangle PQO, we have sin Q : sin P = c : - ; that is, sin Q = /jl sin P,

= /jl sin <j>, = sin <fi ; or ZQ= $. And then in the triangle RQO, ZR = (j) — <£', Z.Q = 180° — </>,

whence zO=f, that is, Z QOR = $'.

Consider now a ray BQ incident at Q and refracted in the direction QR ; the

index of refraction being - , that is, the denser medium being on the outside of the

A6

small circle. Taking 0, 0' for the angles of incidence and refraction, we have sin 0= - sin 0 ';

but, the refracted ray being by hypothesis QR, we have by what precedes #' = $, hence

sin 0 = - sin <£ = sin <£', that is, 0=<j>/, or /.BQ0=Z.Q0R} that is, the incident ray .5Q

is parallel to the axis of x. We have thus two pencils of rays each parallel to the

axis, such that for any ray AP of the first pencil there is a corresponding ray BQ of

the second pencil, the rays AP and BQ each giving rise to the same refracted ray

PQR] hence the two pencils have the same caustic.

[It is proper to remark that for the ray BQ it has been assumed that the

refraction takes place not at Qf where it first meets the small circle, but at Q ; if
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we consider the refraction at Q\ then the index of refraction is still to be = — , that

is, the denser medium must now be inside the small circle ; the refracted ray is in the

direction B!Q' situate symmetrically with RQ on the opposite side of the axis of y ;

and it would at first sight appear that the caustic was a curve equal and similar to

the original caustic, but situate on the opposite side of the axis of y. But geometrically

the complete caustic consists of two equal and similar portions situate on opposite

sides of the axis of y; so that we really obtain, not an equal and opposite caustic,

but in each case one and the same caustic.

I originally obtained the theorem in a different manner; viz. the equation for the

caustic for the first pencil of rays was found to be

c 1
which equation (as is easily seen) remains unaltered when c, fi are changed into - , -

respectively.—See my " Memoir on Caustics," Phil. Trans., t. cxlvii. (1857), [145], p. 285.]

5. Given at each point of space the direction-cosines (a, j3, y) of a line through that

point : it is required to find the conditions in order that the lines may be not a triple but

a double system.

For any given point P the values of the quantities a, /3, y which determine the

direction of the line through that point are given as functions of the coordinates

(x, y, z) of the point P. Hence passing from a point P to a consecutive point P'

on the line, the coordinates of P' will be x + pa, y + p/3, z + py ; and the values of a, ft, y

for the point P' will be

/ da den da\

^ \ dx dy dzj '

P\dx dy ' dz

But if the lines form a double system, we must have the same line for the point P,

and for any other point P' on the line ; and in particular the same line for the point

P, and for the consecutive point P\ Hence as conditions for the double system we

obtain

dot doi doi _

dx dy dz '

dx dy dz '

dx dy dz
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But in virtue of the relation a2 + /32 + y2 — 1, we have

da dfi dy __

dx dx dx '

da d/3 dy __ 0

dy dy dy '

<to,od@, dy = 0

dz dz ™ clz

Hence subtracting the corresponding equations we have three equations, which are at

once seen to be equivalent to the two equations

dft dy dy da da d/3 __ . o .

dz dy dx dz dy dx ' '

equations which must be satisfied identically, whatever are the values of (x, y, z). The

equations have been obtained as necessary conditions; they are, in fact, the sufficient

conditions for a double system; for the line being unaltered in passing from P to P\

it remains unaltered when we pass to the following point P", and so on ; that is, for

the passage to any point Q whatever on the line.

Cor. If the equation adx + fidy + ydz = 0 be integrable by a factor, it must be

integrable per se : in fact, the condition that it may be integrable by a factor is

\dz dy) \dx dz) \dy dx)

But we have

and the equation thus becomes

that is, h— 0, and therefore

d/3 dy 7 Q

&(a2+/32-j-72) = (),

dft dy _ dy da _ da dfi _

dz dy ' dx dz ' dy dx

Hence, also, if the lines cut at right angles a surface, we must have adx + fidy + ydz

a complete differential.

The foregoing theory is given in Sir W. R. Hamilton's " Memoir on Ray-Systems."

6. If X = 0, Y = 0, Z = 0, W = 0 are four given conies in the same plane and

having a common point: show that, in the system of conies aX + bY+cZ+ dW = 0, there

are in general four (improper) conies the equations of which may be taken to be

x* = 0, y2 = 0, xz=0, yz = 0.
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Taking the conies to pass through the point x=0, y — 0; their equations will be

of the form

X = axx2 + 2hxxy + bxy2 + 2fyz + 2g1zx = 0,

Y = a2x2 + 2h2xy + b2y2 + 2f2yz + 2g2zx = 0,

Z = a3x2 + 2h3xy + b3y2 + 2f3yz + 2^^ = 0,

W = a4#2 + 2h4xy + 64?/2 + 2/4^ + 2g±zx = 0.

Now multiplying by the indeterminate quantities a, /3, 7, 8, the three ratios a : /3 : 7 : 8

may be determined so that the terms in yzy zx shall vanish, and the terms in x2, xy, y2

be a perfect square : we thus arrive at a quadric equation for any one of the ratios,

say a : /3, the remaining ratios being then linearly determined; viz. there are two sets

of values of a, (3, 7, 8 : and changing the coordinates (x, y), the two resulting forms

may be represented by x2 =0, y2 — 0.

And it is clear that we thus have in the system of conies aX + /3Y+ yZ + SW= 0,

four conies the equations of which may be represented by

X' = x2 = 0,

Y' = y2 = 0,

Zf = h3xy +f3yz + g3zx = 0,

W = hxy +fyz + g±zx = 0,

where of course the coefficients f g, h have new values.

We may then form the equations

aX'+ftf-ftW =x{«x+(Ah-fsh)y+ <Jtg>-fzgd*}>

/3Y' - g4Z' + g8W' = y {(g3h4 - gji3) x + /3y + (f,g3 -f3g4) z},

so that, by writing a = g3h4 — gji3 and @=fji3—f3h4ty the terms in { } will be one and

the same linear function of (x, y, z) ; that is, changing the z so as to denote the

linear function in question by z, we have as conies of the series xz = 0, and yz — 0,

that is, we have in the series the four conies x2 = 0, y2 = 0, xz — 0, yz~0; whence also

any other conic of the series, and consequently each of the original four conies, may

be represented by an equation of the form

ax2 + by2 + 2fyz + 2gzx = 0.

7. The coordinates (x, y, z, w) of a point P in space are connected with the

coordinates (V, y', z) of a point P' in a plane by the equations

x : y : z : w = X' : F : Z : W\

where X', F, Z\ W are quadric functions of (x'} y', z') such that X' = 0, F = 0, Z' = 0,

W' = 0 represent conies having a common point : show that the locus of P is a cubic

scroll {skew surface of the third order): and find the curves in the plane which corre

spond to the generating lines of the scroll.

c. viii. 64
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The equations x : y : z : w=X' : Y' : Z' : W are three equations containing the

indeterminate parameters x : z' and y' : #', so that eliminating these we have between

(x, y, z, w) a single (homogeneous) equation representing a surface. To each point

(xf, y', z') of the plane, there corresponds a single point of the surface, and to each

point (x, y, z, w) of the surface a single point (x'} y, z) of the plane. The only

exception is that for the common point of the four conies, the ratios x : y : z : w

are essentially indeterminate, and there is not corresponding hereto any determinate

point of the surface.

To find the order of the surface, consider its intersection with any arbitrary line

ax + by +cz + dw = 0,

axx + b^y + dz + dYw — 0.

We have corresponding hereto in the plane the points of intersection of the conies

aX' +6F + cZ' + dW = 0,

alX' + b1Y' + c1Z' + d1W, = 0,

viz. these are conies each of them passing through the common point of the four

conies, and therefore they intersect besides in three points : that is, the order of the

surface is = 3.

To show that the common point ought to be (as above) excluded, some further expla

nation is desirable. To the section of the surface by the plane ax + by + cz + dw = 0,

corresponds the conic aX' + bY' + cZ' + dW = 0; and similarly to the section by the plane

axx + bxy + cxz -f djW = 0, corresponds the conic a^X' 4- &iF' + gxZ' + d1W = 0. Now to the

common point considered as belonging to the first conic there corresponds a determinate

point of the surface ; and to the common point considered as belonging to the second

conic there corresponds a determinate point of the surface; but these are two distinct

points on the surface : so that corresponding to the common point of the four conies,

there is not on the surface any point of intersection of the two plane sections; but

these intersect in only three points of the surface ; viz. the line of intersection of

the two planes meets the surface in three points: or the surface is a cubic surface.

The same result may be obtained, and it may be further shown that the surface

is a scroll, by means of the property in the foregoing question 6 ; viz. it thereby

appears that each of the functions X', Y\ Z', W may be taken to be of the form

ax'2 + by'2 +jfyV + gzx ; hence replacing the original coordinates x, y, z, w, by properly

selected linear functions of these coordinates, the given relations may be presented in

the form

x : y : z : w = x'2 : y'2 : x'z : y'z,

whence eliminating, we have

xw2 — yz2 — Q

the equation of a cubic scroll, having the line z = 0, w = Q for a double line, and the

line x = 0, y = 0 for a directrix line. The equations of a generating line of the scroll
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are, it is clear, z — 0w = 0, x — 02y = 0, where 6 is a variable parameter ; and corre

sponding hereto in the plane we have the line a/ — 6y' — 0, viz. this is any line

through the common intersection of the four conies.

8. If U, V are binary functions of the form {a, by...)(x, y)m with arbitrary

coefficients, and if the equations U = 0, V= 0 have a common root, show how this can

be determined in terms of the derived functions of the Resultant in regard to the

coefficients of either function.

Show what results in regard to the common root can be obtained when the coefficients

are not all of them arbitrary but (1) each or either of the functions depends in any

manner whatever on a set of arbitrary coefficients not entering into the other function,

(2) the two functions depend in any manner whatever on one and the same set of

arbitrary coefficients.

How is the theory modified when, instead of the two equations, there is a single

equation JJ = 0 having a double root ?

Suppose

U=(a, b,...)(x, y)m (=axm +j bxm~l y + &c.Y,

V= (a', b\...)(x, y)m' f= aV71' + ~ bxm'~l y + &c] .

Then if R is the resultant, the equation R = 0 is the relation which must exist

between the coefficients (a, b,...) and (a', &',...) in order that the equations £7=0 and

V=0 may have a common root (that is, in order that the functions U, V may have

a common factor x — ay). Imagine the relation subsisting, and that x, y are the values

belonging to the common root, or (what is the same thing) that we have x — ay = 0 ;

we have then simultaneously ?7=0, V=0, iJ = 0. Now suppose the coefficients a, 6,...

to be infinitesimally varied in such manner that U, V have still a common root; say

the new values are a + Sa, b + Sb, ... : this implies between 8a> 8b, ... the relation

dR j, dR „
-j- oa + -rr 06 + . . . = 0.
da do

But the common factor x—ay is a factor of the unaltered equation V= 0 ; and the

values of (x, y) are thus unaltered, viz. the equation U = 0 is satisfied with the

original values of (x, y) ; so that we have

dU' dU j,,
-j- °a+~jT ob+ ... =0,
da do

or, what is the same thing,

xmSa + mx™-1 yhb + . . . = 0,

an equation which must agree with the former one, that is, we have

m . 0 dR dR 0
xm : mxm~ly : &c. = -T- : -^- : &c,

• da do

64—2
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X

a series of equations giving the value of the common root - (= a) in the several forms

1? = *?^^ 2 x_dR dR

my da ' db ' m—ly db ' dc '

And it is clear that we have in like manner

aF* : mx^y : &c.=f? : S : &c
J da db

It is clear that if U involves, in any manner whatever, the coefficients a, b} ..c

which do not enter into the function V, then we have in precisely the same manner

*E . dJL . &c = — • d- • &c

da ' db ' da ' db ''

a system of equations satisfied by the values x, y which belong to the common root.

But if the coefficients a, b, ... are contained in any manner whatever in both of

the functions TJ> V; then by altering a> b} ... we alter the common root; say that

w + 8x, y + hy belong to its new value ; then we have

dU x ^dUx ^dUx ^dUM^ A
-j- ox + -7- oy + -y— oa + ^7-oo + ...=0,
ax dy ° da db

-y— ox + -7— by + -j- oa + -jj- bb + . . . = 0.
dx dy u da do

Now the values of x, y which satisfy U = 0, V = 0 also satisfy

dx dy dy dx '

hence from the foregoing two equations eliminating Sx or Sy, the other of these two

quantities will disappear of itself, and we thus obtain an equation

A8a + B8b+... = 0,

which must agree with the above equation

dR s dR <.,

or we have

dR dR 0 a -r> 0

da db

a system of equations satisfied by the values x, y which belong to the common root.

In the case of a single equation U=0 having a double root, the condition for

this is A = 0, where A is the discriminant of the function U ; and the like reasoning

shows that for the values x, y which belong to the double root we have

M[ . *E u &c = dA # dA m

da ' db ' da * db '" '
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viz. if U is of the form (a, &,...)(#, y)m with arbitrary coefficients, then we have thus

a series of equations giving the required value of -; but if {a, 6,...) are arbitrary

coefficients contained in any manner whatever in the function U, then we have a

series of equations satisfied by the values x, y which belong to the double root.

9. The normal at each point of a principal section of an ellipsoid is intersected

by the normal at a consecutive point not on the principal section: show that the locus

of the point of intersection is an ellipse having four {real or imaginary) contacts with

the evolute of the principal section.

The principal section is for convenience taken to be that in the plane of zx;

the coordinates of any point thereof are therefore X, 0, Z where

X2 Z2 ,

a2 c2

Consider the normal at a point X, Y, Z of the ellipsoid; taking as, y} z as current

coordinates, the equations of the normal are

x-X y-Y_z-Z

X Y Z *

a2 62 c2

Writing herein y = 0, we have

.-*(!-§, ..5(1-"

viz. x, z are here the coordinates of the point where the normal meets the plane

of xz; and observing that the point in question lies on the normal at the point

X, 0, Z, it is clear that x, y, z will be the coordinates of the intersection of the

last-mentioned normal by the normal at the consecutive point not on the principal

section.

Writing for shortness

(a + ft + 7 = 0, a and 7 positive, 8 negative) the values are

wherefore

or, substituting in

yX aZ

a2 '

X ax Z_ cz

a 7 ' c a

X2

c2 '
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we have

a2x2 c2z2 _ ..

Y2 a2 '

the required locus, which is thus an ellipse.

If the point (X, 0, Z) is an umbilicus, it is clear that the corresponding point

of the locus will be a point of the evolute of the principal section ; and to prove

that the locus touches the evolute, it is only necessary to show that the tangent of

the locus is also the tangent of the evolute; or what is the same thing, that the

tangent of the locus passes through the umbilicus.

Now for the umbilicus we have

the corresponding values of x, z being

yX aZ

a2 c2

Take £, f as the current coordinates of a point on the tangent of the locus, we have

a2x% &z^ ,

—- + —- =1,
72 a2

or, substituting for x, z the foregoing values,

y a

and these should be satisfied by £, f= X, Z\ viz. we ought to have

Z2_^ = 1

j a '

and this equation is in fact true for the values of X, Z at the umbilicus; viz. for

these values we have

a2 c2 n

that is, /3 = c2 — a2, which is in fact the value of ft.

There is obviously a contact in each quadrant, that is, there are four contacts

(in the present case all rea]) of the locus with the evolute.

The same theorem holds good in regard to the other principal sections; only for

these, the umbilici being imaginary, the points of contact of the locus with the

evolute are also imaginary.

Remark There is a great convenience in questions relating to the ellipsoid, in

the use of the foregoing notations a, ft, y.
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10. An endless heavy chain of given length is suspended from two fixed points in the

same horizontal plane: show that {subject to a condition as to the length) the figure of

equilibrium may consist of portions of two distinct catenaries.

The two parts of the chain will each of them be a portion of a catenary, viz.

they will either coincide with each other, forming a twice repeated portion of a

catenary (which is always a possible position of equilibrium), or they will form portions

of two distinct catenaries. That the latter form is in some cases possible, appears

from the case of a very long chain. It is then clear that there is a position of

equilibrium in which the upper catenary is nearly a straight line. It may be added,

that, as the length of the chain diminishes, the two distinct catenaries approach more

and more, and for a certain value of the length become coincident ; for any smaller

value of the length, the only position is that consisting of a twice repeated portion

of a catenary. But to obtain the solution in a regular manner, observe that, in order

to the existence of such a form of equilibrium, the necessary condition is, that the

tension at A (or B) must be equal in the two catenaries. Now the tension at any

point of a catenary is proportional to the height above the directrix of the catenary;

hence the condition is, that there shall be through the points A, B two catenaries having

the same directrix, and such that the sum of the lengths is equal to the given length

of the chain.

Take AB = 2a, the length of the chain =21. Take /3 for the distance of the

directrix below the points A, B \ c for the parameter of the catenary (or distance of

its lowest point above the directrix), ft, c being of course unknown. Then taking the

origin at the mid-point of the directrix, and the axis of y vertically upwards, the

equation of the catenary is

whence for the point A or B,

y=±(e° + e «),

/3 = |(^ + e-«),

and the arc measured from the lowest point is

s = \{e"-e *).

Hence, assuming that there are two distinct catenaries, if the parameters are c, c', we

have

a _ a a a_

ic(e~c + e~c) = i&ie^' + e ?),

a a a __a

\c{eG-e~c) + \c\ed-e c~') = l,

which are the conditions for the determination of c, c' ; and it is to be shown that

these can be satisfied otherwise than by taking c = c'.
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Trace the two curves

a a

y =2^+e *)'

y' = -(e*-e x)}

shown respectively by the black line and the dotted line in fig. 2. Draw any line

parallel to the axis of a, meeting the first curve in the points P, P' respectively,

and let the ordinates MP, MP' meet the second curve in the points Q, Q' respectively ;

Fig. 2.

 

0 M N

then it is clear, that if for a given value of I the line PP' can be drawn in such-

wise that MQ + M'Q' = I, there will be in fact the required two values c = OM and

c'=OM'.

And since for MP very large we have MQ, and therefore also MQ + M'Q', very

large, and as MP diminishes, MQ -b M'Q' also diminishes until it attains a certain

minimum value, say = X, it is clear that if I has any value greater than this minimum

value, PP' can be so drawn that QM+Q'M' = L

[The above remarkably elegant investigation in regard to the two values c, c'

was given in the Examination ; it seems to be the case that as PP' moves downwards,,

MQ + M'Q' continually decreases (viz. MQ decreases more rapidly than M'Q' increases),

its value being least, and = 2JSTS when PP' becomes a tangent to the first curve at

its lowest point R ; but it is not by any means easy to prove that this is so. The

question depends on the form of the curve defined by the equations

where X and Y are the current coordinates.]
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11. A particle is attracted to two centres of force, one of them at the origin, the

other revolving about the origin in a circle in the plane of xy with a uniform angular

velocity n' : find the equations of motion; and writing v for the velocity of the particle

and A for the resolved area {about the fixed centre) in the plane of xy, show that

dA
there is a first integral giving the value of v2 — ^n-j~ in terms of the coordinates of

the particle and of the revolving centre.

Take f, r\, 0 for the coordinates of the moving centre, so that

£ = a cos n't, r) = a sin n't ;

the equations of motion are

where

ax * x t x ~~ c

dt* y r VH p '

d?z z , z

We have

But

whence

r2 = x2 + y2 + z2,

p* = (x-!;)2+{y-v)2+z2.

r dr — xclx-k-y dy + z dz,

pdp — (x — %) (dx — d%) + (y — v) (dy — drj) + z dz.

d^ — — n'a sin n't dt — — n'w dt,

dn = n'a cos n't dt = n'% dt,

p dp = (x — %)dx -f (y — rj) dy + z dz

+ n[V(x-t;)-Z(y-v)]dt

— (x — %)dx + (y — v) dy + z dz

- n' \x (y - v) - y O - £)] dt.

Hence from the equations of motion

n (dx d2x , dy d2y dz d2zs

<dt dt2 dt dt2 dt dt2

- 2n' C
d2y d2x

X~&t2~y~aH2

6r „ / dx cly dz

= r2{xdt+yi+zTt

p

2fc-»S+(y-,)|+4;

- 2n' [ai(y-v)-y(x- f)}

c. vin. 65
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But we have

d2y d2x _d 2 dd __ dA
XM~ydtf~dtr dt~' H\

the foregoing equation may be written

d . v2 A , d?A „ , dr a , do
nr-*nw = -2(t>rdt-2+Pdt'

whence

v2 - 4m' -=- = 0 - 2 I (j>rdr - 2 I typdp,

the required result.

12. If x, y are the coordinates of a particle moving in piano under the action of

a central force varying as (distance)"'2: write doivn the expressions of the coordinates

xy y in terms of the time t and of four arbitrary constants : and (in case of disturbed

motion) starting from the equations

§x = 0, Sy = 0, hx' = -=- dt, By' = -7- dt,

(the notation to be explained), indicate the process of finding the variations of the

constants in terms of (1) -7-7 > -7- , (2) the derived functions of 12 in regard to the

constants.

We have

f cos u — e \/(l — e2) sin u .
x = a l-i cos & H—^—— sin -st

1 — e cos u 1 — e cos u

where

1V(l — e2) sin u cos u — e .
y — a \ -^ cos -or — - sin -or

° 1 — e cos u 1—e cos u

w-esinw = $y^J + c,

an equation serving to express w in terms of t and the constants a, ef c\ the fore

going equations, therefore, in effect give x} y in terms of t and the four constants

a, e, c, /37.

In the second part of the question, O is a given function of x} y, t, the differential

coefficients -7— , -j- being the partial ones in regard to x, y respectively. The equation

Sx = 0 signifies that the variation of x, in so far as it arises from the variation of

the constants, is = 0 ; it in fact means

dx da dx de dx dc , dx d-ur -
j I . — Qt

da dt de dt dc dt cfe dt
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(dx\
= -tt) is therefore obtained from that of x by differentiating in

regard to t alone, as if a, e, c, m were constants : viz. x will be a given function of

t, a, e, c, w; hx' then denotes the variation of x in so far as it arises from the

variation of the constants, viz. the equation hx' — -y— dt means

dxf da dx de dx do dx' cfe _ dfl

da dt de dt do dt dvr dt dx '

There are the like equations in regard to y, y\ viz. in all, four equations which are

linear in regard to -7- , -7- , -7- , -=- ; and which serve to determine these quantities in

dt dt dt dt

D dn dn
terms of -y- , -7— .

dx ay

Now considering the x, y as expressed in terms of a, e, c, «r, t> then n becomes

da

a function of these quantities; the differential coefficients -7—, &c, being connected

with the original differential coefficients -7- , -7- by the equations

di^l __ dn dx dn dy

da dx da dy da'

dn __ dn dx dn dy

de dx de dy de '

&c.

As there are four equations, -7—, -7- can be expressed in an infinity of ways in

P dn dn dn dn 1 . , . da 0 . . (> dn dn
terms 01 -7— , 7- , 7- , -7— , and considering -7- , &c, as given 111 terms 01 -7- , -7- ,

. n ., p & 0 ,. . p cZo c?n c?n dn
we can m an infinity of ways express -7- , &c, as linear functions of -=— , -y- , -=- , — .

c&c da de ac a^sr

But there is one form (obtained by combining the equations in a particular manner)

wherein the coefficients of the lasfc-mentioned quantities are functions of a, e, c, m

without t ; and this is the form actually employed for the expression of -=- , -y- , -=- , -7-

at at at at

in terms of -7— , -7- , -7- , -7— , in the method wherein these quantities are made use of.
da de dc dm n

I remark upon the present question, that the answer ought to be in substance

perfectly familiar to every student in Physical Astronomy; and that a student ought

to be able to present it in a clear and logical form: the question being in fact

intended as a test of ability in this respect.

65—2
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13. Explain the course of the geodesic lines on a spheroid of revolution: and in

particular show that the condition is satisfied in virtue of which any geodesic line, con-

sidered as starting from a given point, ceases at some point of its course to be a

shortest line.

From each point on the surface a geodesic line may be drawn in any direction

whatever along the surface, that is, through each point of the surface there is a singly

infinite series of geodesic lines. A geodesic line undulates (in the manner of a

sinusoid) between two parallels equidistant from the equator on opposite sides thereof;

viz. considering it as starting from a point A on the equator, it arrives at a point

V on the upper parallel (there touching the parallel), and passes downwards to cut

the equator at A', and thence arrives at a point V on the lower parallel (there

touching the parallel), and again passes upwards to meet the equator at A", and so

on; the arcs AVy VA\ A'V, VA"> &c, being similar and equal to each other (differing

only in position). The equatoreal arc AA' (= A'A" = &c.) or difference of the longitudes

A, A', is always less than 180°, its value increasing with the inclination at which the

geodesic line cuts the equator, viz. when this angle is indefinitely small, the arc is

= - 180° (c, a the polar and equatoreal axes respectively), and as the inclination

becomes indefinitely near to 90°, the value of the arc becomes indefinitely near 180°.

If the arc in question is commensurable with 180°, the geodesic line will be, it is

clear, a closed curve ; but if not, then it is not a closed curve, but proceeds undulating

for ever between the two parallels. In the limiting case where the inclination is =90°,

the geodesic line is obviously a meridian.

Considering a geodesic line starting in a given direction from a point A, and

the geodesic line from the same point A in the consecutive direction, it appears from

the foregoing account of the configuration of the lines, that the two lines will inter

sect each other in general an indefinite number of times: supposing that they first

intersect in a point K, then by a general theorem of Jacobi's, the geodesic line AK

is a shortest line from A to any point nearer than K, but it is not a shortest line

from A to any point beyond K.
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538.

EXTRACT FROM A LETTER TO MR. C. W. MERRIFIELD.

[From the Messenger of Mathematics, vol. i. (1872), pp. 87, 88.]

The general integral of the equations

/3 y S'

, n ~ dzz d*z d?z dd,

where a, /3, y, 8 = _ , ^, -^, ^3j
OL B

, can, I think, be found, viz. -^ = — gives

0 7 *

r — function s, and — =% gives s = function t But r = function s, is integrated as the

equation of a developable surface (p instead of z), viz. we have

p =z a x 4- hy -f g

0 = a!x + y + g'

a and # functions of A, and

( , _da , _ c&/\

similarly, 5 = function t} gives

Observe that the constants have been so taken, that ~ — h, ~ = h: but in order that h

ay ax

may, in the two pairs of equations, mean the same function of (x, y)} we must have

LO -., yy ,
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that is,

7 [dh j. [q'dh

J a * J a

or, writing a = cf)h, g = yh, we have

p = #<£/?, -\-yh-\- yh,

where

x$li + y + xh = 0.

The last equation gives h as a function of (#, y)} and the values of p, q are then

such that dz = pcfe? + qdy is a complete differential, so that we obtain z by the

integration of that equation.

A simple example is

p = \l?x — hq, q = — hoc + y log h, hx — y = 0,

that is,

whence

we have

v = -\v-> q = -y + ylogl>

* = ktf^g-x-\y\

ifo iAj lit

y2 a y l.i

#3 ar ' x y

/3 y S\ x.

as it should be.

Cambridge, 28 July, 1871.
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539.

FURTHER NOTE ON LAGRANGE'S DEMONSTRATION OF

TAYLOR'S THEOREM.

[From the Messenger of Mathematics, vol. i. (1872), pp. 105, 106.J

This refers to a paper, Wilkinson, ' ' Note on Taylor's Theorem, " Messenger of Mathematics, same volume,

pp. 36, 37, discussing the "Note on Lagrange's Demonstration of Taylor's Theorem," [536, ante, pp. 493—495].
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540.

ON A PROPERTY OF THE TORSE CIRCUMSCRIBED ABOUT

TWO QUADRIC SURFACES.

[From the Messenger of Mathematics, vol. I. (1872), pp. Ill, 112.]

The property mentioned by Mr Townsend in his paper(2) in the August No., "On

a Property in the Theory of Confocal Quadrics," may be demonstrated in a form

which, it appears to me, better exhibits the foundation and significance of the theorem.

Starting with two given quadric surfaces, the torse circumscribed about these

touches each of a singly infinite series of quadric surfaces, any two of which may be

used (instead of the two given surfaces) to determine the torse ; in the series are

included four conies, one of them in each of the planes of the self-conjugate tetrahedron

of the two given surfaces ; and if we attend to only two of these conies, the two

conies are in fact any two conies whatever, and the torse is the circumscribed torse

of the two conies; or, what is the same thing, it is the envelope of the common

tangent-planes of the two conies.

Consider now two conies [7, U\ the planes of which intersect in a line i"; and

let / meet U in the points L, Mt and meet U' in the points L\ M' : take A the

pole of / in regard to the conic U, and A' the pole of /' in regard to the conic U\

Take T any point on /, and draw TP touching U in P, and TP' touching V

in P' : the points P, P' may be considered as corresponding points on the two conies

respectively.

Join AP and produce it to meet the line /in G; the line APG is in fact the

polar of T in regard to the conic U (for T being a point on /, the polar of T

passes through A ; and this polar also passes through P) ; that is, the points T, G

and L, M are harmonics on the line i" ; whence also, in the plane of the conic V,

I1 Messenger of Mathematics, same volume, pp. 49, 50.]
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the lines P'G, P'T and P'L, P'M are harmonic lines through the point P'. It thus

appears that in the particular case where the points L, M are the foci of the conic

U', the line P'G is the normal at the point P' ; and we may say in general that

P'G is the quasi-normal at the point P' of the conic TJ'.

 

Consider now the torse circumscribed about the conies U, U' ; the plane PTP' will

represent any plane, and the line PP' any line of this torse: projecting on the plane

of U' with the point A as centre of projection, the projection of PPf is the line

P'G ; which, as just seen, is the quasi-normal of the conic V at the point P'.

The projection of the cuspidal curve is the envelope of line P'G, which is the

projection of the generating line PP' of the torse—viz. this envelope is the quasi-

evolute of the conic TJ' ; which is the theorem in question.

C. VIII. 66
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541.

ON THE RECIPROCAL OF A CERTAIN EQUATION OF A CONIC.

[From the Messenger of Mathematics, vol. i. (1872), pp. 120, 121.]

The following formula is useful in various problems relating to conies: the

reciprocal equation of the conic

X (ax + by + ez) (a'x + b'y + c'z) - fi (a"x + b"y + c"z) (a'"x + b'"y + c'"z) = 0

may be written indifferent in either of the forms

{X f, v, ? +fi £ , f, , C }» + 4V f , 17 , ? £ , v . ? =0,

a', 6', c'

a, 6, c

a", 6", c"

a'", V", c"'

a , b , c

a'", b'", c"

and

{X i, ?V, -A*

a', v, c'

a, b, c

f . »? » ? }2 + 4V

a", 6", c"

a'", V", c'"

»7

a , b , c

a", b", c"

a' , 6' , c'

a", 6", c"

£ , 9 , ?

a' , 6' , c'

a'", 6"', c"'

= 0.

In fact, in the reciprocal equation, seeking for the coefficient of £2, it is

{X|(6c' + b'c) - n (b"c'" + 6"'c")}2 - (2X66' - 2yu6"6'") (2Xcc' - 2/*cV"),

viz. this is

f" 2&&'e"e'"+26"&'"cc' 1

X2 (6c' - 6'c)2 + /*» (6"c'" - 6"'c")2 + 2X/JV ' V } *\-(bc' + b'c)(b"c'" + b'"c")
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or, as it may be written,

( 2bb'c"c'" + 2b"b'"cc'

{X (be' - b'c) ± (M (b"c'" - V"c")Y + 2X/* | - (bc'+ b'c) (b"c'" + V"c")

{+(bc'-b'c)(b"c'"-b'"c")

Taking the upper signs, this is

{\ (be' - b'c) + /m (b"c'" - b'"c")Y + 4X/t / bb'c"c'" + b"b"W

\-bc'b"c'"-b'cb'"c",

viz. the term in X/t is

+ 4X/* (be" - b'"c) (b'c" - b"c').

Taking the lower signs, it is

{X (be' - b'c) - fi (b"c'" - b'"c")Y + 4X^ / bb'c"c"' + b"b'"cc'

viz. the term in X/j, is

+ 4X/i (be" - b"c) (b'c'" - b'"c').

And it is thence easy to infer the forms of the other coefficients, and to arrive at

the foregoing result.

66—2
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542.

FURTHER NOTE ON TAYLOR'S THEOREM.

[From the Messenger of Mathematics, vol. I. (1872), p. 137.]

This paper refers to a "Further Note on Taylor's Theorem," Messenger of Mathematics, same volume,

pp. 135—137.
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543.

ON AN IDENTITY IN SPHERICAL TRIGONOMETRY.

[From the Messenger of Mathematics, vol. I. (1872), p. 145.]

In a spherical triangle, writing for shortness a, ft, 7 for the cosines and a\ /3', y'

for the sines, of the sides: also

A2 = l -a2-£2-y2 + 2a/3y;

we have

, OL — fiy . A A

cos A = Q, / , sini=^n}

P7 Py

with the like expressions in regard to the other two angles B, G respectively.

Hence

cos (A + B + G) = cos A cos B cos (7 — cos 4 sin 5 sin (7 — &c.

^(a-/Qy)(ie->-y«)(y~g/3)-A2(a + /g + y-)5y~yg~g/g)

(l-a2)(l-/32)(l-y2)

The numerator is identically

= (l-a)(l-/3)(l-7)[A«-(l + a)(l+/3)(l + 7)],

viz. comparing the two expressions, we have

(l-«)(l-/3)(l-7)A»-(l-«»)(l-/8»)(l-7»)

= (a - 0y) (/3 - 7a) (7 - a/3) + A2 (- a - £ - 7 + £7 + 7a + a/3) ;

or, what is the same thing,

(1 - a/37) A2 = (1 - a2) (1 - p) (1 - 7*) + (a - /37) (/3 - 7a) (7 - a/3),

which is the identity in question and can be immediately verified. We have thus

cozU I J I n_A2-(l+a)(l+/3)(l + 7)

cos{A+U+C)- (1 + a)(1+/3)(1+7) ,

and thence

l + COB(^+J+0)-(1+a)(i;,w(1+|y),

1 c-Wl I J I CT_2(l + a)(l + /3)(l + 7)-A2

° ( +jS + G) (l + a)(l + ^)(l + 7) '

giving at once the values of cos2 ^(A + B + 0), sin2 ^(A+B + G), sin (J. + B + (7), and

tan2 J (J. + B + G): these are known expressions in regard to the spherical excess.
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544.

ON A PENULTIMATE QUAETIC CURVE.

[From the Messenger of Mathematics, vol. I. (1872), pp. 178—180.]

I HAVE had occasion to consider with some particularity the form of a curve

about to degenerate into a system of multiple curves ; a simple instance is a trinodal

quartic curve about to degenerate into the form x2y2 = 0, or say a " penultimate " of

#22/2 = 0. To fix the ideas, take x, y, z to denote the perpendiculars on the sides of an

equilateral triangle, altitude =1 (so that x + y + z = l), and let the curve be symmetrical

in regard to the coordinates x, y, its equation being thus

(a, a, 1,/, /, h)(x9 y, *)2 = 0,

where a, /, h are ultimately all indefinitely small in regard to unity : to diminish the

number of cases I further assume

a = +, / and h = — ,

h2 > a2, that is, a + h = — ,

f >at „ „ , \A»+/=-,

but I do not in the first instance take a, f, h to be indefinitely small. Then if —f

is not too large, the curve is as shown in the figure (*), viz. it is a triloop curve, with

two horizontal double tangents, 3 touching the curve in two real points, 4 touching

it in two imaginary points. Imagine —f increased : the new curve will have the same

general form, intersecting the first curve at A and B but touching it at (7, viz. it will

pass inside the loop C but outside the loops A, B ; and outside the remainder of the

curve ; and the 4 will also move downwards as shown. The new position of 4 will

be below the first position.

Supposing that a, h have given values, and that —f continually is increased in

regard to *J(a)\ two things may happen. First, the double tangent 3 may move down

1 The figure is drawn with very small values of a, f, h, in order to exhibit as nearly as may be one

of the penultimate forms of the curve; but this is not in anywise assumed in the reasoning of the text.

Observe in the figure that the points A, B are ordinary double points, and that there are at each of them

two distinct tangents inclined at a small angle to each other.
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to z = — oo , the lower loops lengthening out and finally becoming each of them a pair

of parabolic branches parallel at infinity ; and then reappearing at z = -f oo , again move

downwards, each loop becoming in this case a pair of hyperbolic branches touching

two asymptotes at z = — oo , and then again on the opposite sides thereof at ^ = +00,

i4
 

and coming down as a single branch to touch the double tangent 3 which is now

above 4. Secondly, the double tangent 4 may come to coincide with the horizontal tangent

2, at the instant of coincidence being a tangent of four-pointic contact; and becoming

afterwards (being as before above 2) an ordinary double tangent with two real points

of contact ; viz. instead of a simple loop at 0 we have a heart-shaped loop.

But to investigate whether the two cases actually happen, and in what order of

succession, we require the expressions of z for the several lines in question; we find,

without difficulty,

where \ = - 2/+ V{4/2 - 2 (a + A)},

„ X2 = 2/+V{4/2-2(a + A)},

a— h

where X1} X2

for line 1, Zl ~ 1 + 2V

„ 2,

1

~2~l-2\2'

„ 3,
1

"3"1-2V

„ 4,
1

~4~1-2V

X3, X4 are all positive.

Xo —

x4 =

2{-V(a)-/l*

a — h

'2{V(a)-/l'

Observe that in the limiting case —f=^/(a)}

where, instead of the loops at A, B, we have cusps; zlf z2, and z4 are (in general)
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positive ; X3 = oo , and therefore z± = 0 ; that is, the line 3 coincides with AB, ceasing

to be a double tangent ; there is in this case the one double tangent 4.

First. #3 becomes infinite for 1 — 2\3=0; that is, a — h = —*J(a)—f, or —f=\/(a)+(a—h)\

viz. for —f=>\/(a) + (a — h) — €, we have (s3 = — oo, and for — /= y(o) + (a — h) + e, we

have zz = + go .

Secondly. The lines 4 and 2 will coincide if

T a — h

that is, if

■■2f+J{4f-2(a + h)},

2{V(«)-/|_

\4(\4-4/) = -2(a + ft),

or, substituting for X4 its value,

(a - A) [(a - A) - 8/{V(a) -/}] + 8(a + h) {V(a) ~/}2 = 0,

the condition is

{3a + A-4/V(a)}2=0, or 4/V(a) = 3a + A,

(observe that, / having been assumed negative, this implies — h > 3a). That is, 3a + A

being = — but not otherwise, the double tangent 4 will, for the value —/= ., ^ ,

td y \CL)

come to coincide with the line 2 ; and for any greater value of —f will be as before

above line 2, (being in this case an ordinary double tangent with real points of

contact) as appears from the form, U2 = 0, of the foregoing equation for the determi

nation of f.

The passage of the line 3 to infinity, and the coincidence of the lines 4 and 2

may take place for the same value of /, viz. this will be the case if

that is, if

7o^4V(a) + Ml-4V(a)}=0 or ~h = ai-4J(a?'

or, a being small, for the value — h = 7a approximately. If — h is less than the above

value, then „ is less than tj(a) + a — h, or —f increasing from fj(a)9 the coinci-

tj \j (a)

dence of the lines 2, 4 takes place before the line 3 goes off to infinity : contrarywise,

if —h is greater than the above value.

In any form of the curve (i.e. whatever be the value of f in regard to a, A), if

we imagine a, h indefinitely diminished, the lines 1, 2 and 4 will continually approach

(7, and the curve will gather itself up into certain definite portions of the lines

oo = 0, y = 0. Thus any secant through A (not being indefinitely near to the line AG),

which meets the curve in real points, will meet it in two points tending to coincide

at the intersection of the secant with the line % = 0 ; analytically there are always two

intersections real or imaginary which (the secant not being indefinitely near the line

AG) tend to coincide at the intersection of the secant with the line x = 0; and we

thus see how we ultimately arrive at the line x = 0 twice repeated ; and similarly for

the line y = 0.
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545.

ON THE THEORY OF THE SINGULAR SOLUTIONS OF DIFFER

ENTIAL EQUATIONS OF THE FIRST ORDER.

[From the Messenger of Mathematics\ vol. II. (1873), pp. 6—-12.]

I CONSIDER a differential equation under the form

<£ 0> y, p) - 0,

where

1°. <f> is as to p, rational and integral of the degree n;

2°. it is, or is taken to be, one-valued in regard to (ps, y);

3°. it has no mere (x, y) factor ;

4°. it is indecomposable as regards p.

Considering {x, y) as the coordinates of a point in piano, the differential equation

determines a system of curves, in general indecomposable, the system depending on

a single variable parameter, and such that through each point of the plane there pass

n curves.

Such a system is represented by an integral equation

f(x, y, d, e2...e™) = 0,

where

5°. / is rational and integral in regard to the m constants, which constants are

connected by an algebraic (m — 1) fold relation ;

6°. it is, or is taken to be, one-valued in regard to (x, y)\

7°. it has no mere (x, y) factor;

8°. it is indecomposable as regards (x, y)\

c. viii. 67
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9°. Considering (so, y) as given, the equation f— 0, together with the (m — 1) fold

relation between the constants, must constitute a m-fold relation of the order n, that is,

must give for the constants n sets of values. We may, if we please, take / to be

linear in regard to the constants clf c2, ..., cm, and then the condition simply is, that

the (m — 1) fold relation shall be of the order n.

I give in regard to these definitions such explanations as seem necessary.

2°. A one-valued function of (x, y) is either a rational function, or a function

such as ex sin y, &c, which for any given values whatever, real or imaginary, of the

variables, has only one value. A function is taken to be one-valued when, either for

any values whatever of the variables, or for any class of values (e.g. all real values),

we select for any given values of the variables one value, and attend exclusively to

such one value, of the function.

Thus, U a rational function of (so, y), <f>=p2 — U = 0, </> is one-valued in regard to

■(as, y). But if, U not being the square of a rational function, we take \f(U) to be

a one-valued function (consider it as denoting, say for all real values of x, y for which

U is positive, the positive square-root of U), then, <f>—p + ^/(U) = 0, cj> is taken to be

one-valued in regard to (so, y).

3°. The meaning is, that the equation cf> = 0 is not satisfied irrespectively of the

value of p, by any relation between the variables so, y.

4°. The meaning is that </> is not the product of two factors, each rational and

integral in regard to p, and being or being taken to be one-valued in regard to (so, y).

Thus, if as before U is a rational function of (so, y) but is not the square of a

rational function, and if we do not take any one-valued function, then the equation

(f,=p2—U=0 is indecomposable; but if we take \J(TJ) as one-valued, then we have

xj) — [p — */(U)} {p + *J(U)} = 0, and the equation breaks up into the two equations

p _ ^/( £7) = 0 and p + V( U) = 0. I assume as an axiom, that the curves represented by

the indecomposable differential equation are in general indecomposable; for supposing the

differential equation satisfied in regard to a system of curves, the general curve breaking

into two curves, each depending on the arbitrary parameter, then we have two distinct

systems of curves; either the differential equation is satisfied in regard to each system

separately, and in this case they are the same system twice repeated; or the differential

equation is satisfied in regard to one system only, and in this case the other system

is not part of the solution, and it is to be rejected. As an instance, take the equation

cf>=px + y = 0, (so dy + y dx = 0) ; if we choose to integrate this in the form x2y2—c = 0,

this equation represents the two hyperbolas ooy + sj(c) = 0, xy — *J(c) = 0, but considering

each of these separately, and giving to the constant theory any value whatever, we

have simply the system of hyperbolas xy — c — 0 twice repeated. But if by any (faulty)

process of integration the solution had been obtained in a form such as (c+x)(c—xy)—0,

then the differential equation is not satisfied in regard to the system c 4- x == 0 ; and

the factor c H- x is to be rejected. Observe that it is said, that the curves are in

general indecomposable ; particular curves of the system may very well be decomposable ;

thus in the foregoing example, where the system of curves is xy — e = 0, in the

particular case c = 0, the hyperbola breaks up into the two lines x = 0, y — 0.
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5°. It is necessary to consider a form f=0 involving the m constants connected

by the (m — 1) fold relation. For taking such a system of constants, imagine an

equation f(x, y, cl9 c2, ..., cm) = 0 rational and integral in regard to (x, y), and representing

an indecomposable curve; such an integral equation leads to a differential equation

of the form <£ (x, y, p) = 0, rational in regard to (x, y) ; whence, conversely, a differ

ential equation of the form last referred to may have for its integral the equation

f(x, y, d, c2,..., cm) = 0. And we cannot in a proper form exhibit this integral in terms

of a single constant. For first consider for a moment cl9 c2, ..., cm as the coordinates

of a point in m-dimensional space ; the curve is not in general unicursal, and unless

it be so, we cannot express the quantities c1} c2, ..., cm rationally in terms of a para

meter; that is, we cannot in general express cly c2,..., cm rationally in terms of a

parameter. Secondly, if by means of the (m — 1) fold relation we sought to eliminate

from the equation f=0 all but one of the m constants, we should indeed arrive at

an equation F(x, y, c) = 0 rational and integral as regards x and yy and also as regards

c; but this equation would not represent an indecomposable curve.

6°. It -is important to remark that, even in the case where <£ (x, y, p) is one-

valued in regard to (x, y) (2°), there is not in every case a form /=0 one-valued

in regard to (x, y). A simple example shows this ; let a, fi be incommensurable

(e.g. a — e, fi = 7r), then the equation (f> = fixp + ay = 0 (ay dx + fixdy = 0) has for its

integral c = xayPy where xay& is not a one-valued function of x, y, and we cannot in

any way whatever transform the integral so as to express it in terms of one-valued

functions of x and y. But taking xayp to be a one-valued function—if e.g. for all

real values of x, y we consider xayP as representing the real value of (±x)a(±yy—y

we shall have, without any loss of generality, the integral of the differential equation ;

the whole system of curves c = xayP, c any value whatever, is the same whether we

attribute to xay? its infinite series of values, or only one of these values.

7°. The meaning is, that the equation /=0 is not satisfied irrespectively of the

values of clt c2, ..., cm by any relation between x> y only.

8°. The meaning is, that the function f is not the product of two factors, rational

or irrational in regard to clt c2, ..., cm, but each of them one-valued or taken to be

one-valued in regard to x} y. Thus the function

/= xy - c, = \xy + V(c)} {®y - V(c)},

is decomposable ; but if we do not take any one-valued function, then f=xy — c is

indecomposable ; if we take *J(ocy) to be one-valued, then it is decomposable.

The case /= xay& — c (a and /3 incommensurable) is to be noticed ; starting from

the differential equation ay dx 4- fix dy = 0, there is no reason for writing the integral

- J?
f= xay& — c = 0 rather than in either of the forms /= xmaym& — c — 0, /= xmym — c =0,

(m an integer), (a, fi\ (ma, mfi), (— , — ) are, each pair as well as the others, two

\m mj

- £
incommensurable magnitudes. If we choose to take xay& but not xmym as one-valued,

67—2
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then f=zxayP — c and f= xmaymfi — c are each one-valued, and the former is, the latter

a i

is not, indecomposable; they would be each decomposable if we chose to take xmym

as one-valued; and if only xmaym& were taken to be one-valued, then f=odmaymp — c

would be indecomposable.

9°. This is a mere statement of the condition in order that the system of curves

represented by the integral equation may be such that, through a given point of the

plane, there may pass n of these curves. Since the number of constants is unlimited,

there is clearly no loss of generality in assuming that the equation is linear in regard

to the several constants.

I consider now the differential equation

0O> y> P)=°>

(as already stated of the degree n as regards p), and its integral equation

I take (x, y) to be the coordinates of a point, say in the horizontal plane, and I use

G to refer to the constants c1? c2,...,cm collectively, thus for given values of xy y I speak

of the n values of (7, meaning thereby the n values of the set (cl9 c2, ..., cm) ; of G

having a two-fold value, meaning thereby that two of the sets cu c2, ..., cm become

identical ; and so on.

The case C=c, where there is only a single constant c, is interesting as affording

an easier geometrical conception ; we may take c = z to be a third coordinate ; the

equation f{x, y, z) = 0 thus represents a surface, such that its plane sections z = c, or

say these sections projected by vertical ordinates on the horizontal plane z = 0 are the

series of curves f{x, y, c) = 0. But the case is not really distinct from the general one.

The theory of singular solutions depends on the following considerations:

To a given point P on the horizontal plane belong n values of C, each deter

mining a curve f(x, y, G) = 0 through P ; and also n values of p, viz. these give the

directions at P of the n curves respectively.

The curve f(xy y} G) = 0 may be such as to have in general a certain number

of nodes and of cusps (either or each of these numbers being = 0) : we may imagine G

determined, say C = C0, so that the curve shall have one additional node: this node I

call a " level point." Take P at the level point, there are n values of G, viz. G0 and

n — 1 other values ; that is, there are through P the nodal curve, and n — 1 other

curves, and therefore 2 + (w— 1), =^ + 1 directions of the tangent; but the directions

are determined by the equation 0 = 0 of the order n : and the only way in which

we can have more than n values is when this equation becomes an identity 0=0;

that is, P at the level point, the function <fi (#, y, p) will vanish identically, irrespectively

of the value of p.
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The ordinary nodes (if any) on the curves f(x, y, G) = 0 form a locus called the

" nodal locus," and the cusps (if any) a locus called the " cuspidal locus." Take the

point P a given point on the nodal locus, G has a two-fold value answering to the

curve in regard to which P is a node, and n — 2 other values ; that is, the n curves

through P are the nodal curve reckoned twice and n — 2 other curves ; the directions

are the directions at the node, and the n— 2 other directions, in all n directions, which

are the directions given by the equation $ = 0 ; there is no peculiarity in regard to

this equation.

Similarly, take P anywhere on the cuspidal locus : G has a two-fold value, answering

to the curve in regard to which P is a cusp, and n — 2 other values ; that is, the

n curves through P are the cuspidal curve reckoned twice and n — 2 other curves ;

the directions are the direction at the cusp reckoned twice and n — 2 other directions :

in all n directions, which are the directions given by the equation <j> = 0 ; this equation

thus gives a two-fold value of p.

There is a locus (distinct from the nodal and cuspidal loci) which may be called

the "envelope locus," such that taking P anywhere on this locus G has a two-fold

value ; for such position of P the n values of G are the value in question reckoned

twice and n — 2 other values ; the n curves through P are that belonging to the

two-fold value of C, or say the two-fold curve, and n — 2 other values ; and the n

directions are the direction along the two-fold curve counted twice, and n — 2 other

directions; these are the n directions given by the equation $ = 0, viz. this equation

gives a two-fold value of p.

The envelope locus may be an indecomposable curve, or it may break up into

two or more curves; and it may happen that either the whole curve or one or more

of the component curves may coincide with a particular curve or curves of the system

f{x, y,G) = 0.

There is a locus (distinct from the cuspidal and envelope loci) which may be

called the tac-locus, such that taking P anywhere on this locus p has a two-fold

value; for such position of P, there is no peculiarity as regards 0, viz. G has n

distinct values giving rise to n curves through P; but as the directions are given

by the equation <j> = 0, two of the curves touch each other, viz. the tac-locus is the

locus of points, such that at any one of them two of the curves f(xf y} G) = 0 through

the point touch each other.

We may by an extension of the received notation write

disct^/X^, y, (7) = 0

to denote the equation between {x, y), such that, for any values of (x, y)y which satisfy

the condition, or say for any position of P on the (7-discriminant locus, there is a

two-fold value of G. By what precedes it appears that the C-discriminant locus is

made up of the nodal, cuspidal, and envelope loci, and without going into the proof

I infer that it is in fact made up of the nodal locus twice, the cuspidal locus three

times, and the envelope locus once.
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Writing moreover

disctp </> (x, y, p) — 0

to denote the equation between (%, y), such that for any values of (oc, y) which satisfy

the condition, or say for any position of P on the p-discriminant locus, there is a

two-fold value of p. By what precedes, it appears that the jp-discriminant locus is

made up of the envelope locus, cuspidal locus, and the tac-locus; as I infer, each of

them once.

The foregoing are the abstract principles: I consider the singular solution to be

that given by the equation which belongs to the envelope-locus (viz. I do not recognise

any singular solution which is not of the envelope species) ; and the result of the

investigation is, when we seek in the ordinary way to obtain the singular solution,

whether from the integral equation or from the differential equation, that we account

for the extraneous factors which present themselves in the two processes respectively.

I reserve for another communication the discussion of particular examples.
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546.

THEOEEMS IN RELATION TO CERTAIN SIGN-SYMBOLS.

[From the Messenger of Mathematics, vol. n. (1873), pp. 17—20.]

I find the following among my papers:

Let the latin letters a, b, . . . denote lines of n signs ± , and the greek letters

a, /3, . . . columns of the same number n of signs + ; two symbols of the same kind

are multiplied together by multiplying their corresponding terms, the product being

thus a symbol of the same kind ; in particular, the product of a symbol by itself, or

square of a symbol, is a line (or column as the case may be) of +'s: and the symbol

itself is thus a square root of a line (or column) of +'s. Thus n being = 5, we say

that the latin letters denote roots of + + + + + and the greek letters roots of +

+

+

+.

The roots a, &, c, d, e will be independent if no one of them is equal to the

product of all or any of the others ; and, this being so, the 32 roots are the terms of

(l+a)(l + 6)(l+c)(l + d)(l+e);

it follows that, for any other system of independent roots a', b\ c', d\ e, we have

(1 + a!) (1 + 60 (1 + C') (1 + d!) (1 + e') = (1 + a) (1 + b) (1 + c) (1 + d) (1 + e):

and conversely if either system be independent and this equation is satisfied, then

the other system is also independent.
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In particular a, b, c, d, e being independent, then a, b, cy bd, e (viz. any term d

is replaced by its product by some other term b) is also independent ; and by a similar

transformation on the new series a, b, c, bd, e, and so on in succession we can pass

from a given independent system a, b, c, d, e to any other independent system whatever.

A similar but more general theorem is the following: let a, b, c, d, e be inde

pendent, and I be equal to the product of all or any of these roots, but so that as

regards, suppose (b, c, e), the number of these factors contained in I is even (or may

be = 0), e.g. I is = a, or abc, &c, but it is not = ab, or bee, &c.

Then a, lb, Ic, d, le is an independent system: to show this we must show that

that is,

that is,

l + al + bl + cl + dl+e = l + al+lbl + lcl + dl+le,

l + al+d(l + lbl + lcl + le-l + bl + cl+e) = 09

1 + aU d(l-lb + e + e + l2-lbc + be + ce + l3-lbce) = 0,

or, since I2 = 1, I3 = I, this is

(1 +a) (1 + d) (I - 1)(6 + c + e + bee) = 0,

which is easily verified under the assumed conditions as to I, e.g. I = abcf

(1 + a) I = aba + a2be = abc + be = (1 + a) be,

(l + a)(Z-l) = (l + a)(&c-l),

(1 + a) (1 + d) (be - 1) (6 + c + e + 6ce) = 0 ;

be (b 4- c + 6 + &ce) = c + 6 + ebe + 6 ;

(6c - 1) (6 + c + ^ + See) = 0.

The proof is obviously quite general.

All that precedes applies also to the columns.

Now consider a square of 5 x 5 signs + ; I say that, if this is independent as to

its lines, it will be also independent as to its columns.

To prove this consider any particular square, say

a P y 8 c

and the equation is

and we in fact have

that is,

+ - - +
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independent as to its lines, and also independent as to its columns: I derive from

this the square

a 0/3 Oy S Oe

a

 

b

c

bd

e

viz. in the new square the line d is replaced by bd, the designation of the columns

will be presently explained. This new square is, by what precedes, independent as ta

its lines; we have to show that it is also independent as to its columns.

As regards the columns, any column is either unchanged or it is changed in its

fourth place only, according as the sign in b is for that column + or — ; that is, if we

write 0==+, the columns of the new square are (as above written down) a, 00, 0y, S, 0e;

+

and 0 is a product of all or some of the original columns a, 0, y, 8, e: but as regards

0, y, e it contains an even number (or it may be 0) of these factors ; for otherwise

the sign in the second line of 0 instead of being + would be — . But these are

the very conditions that show that the columns a, 00, 0y, 8, 0e are independent.

Hence starting from the square

- + + + +

+ - + + +

++

+

+ - +

+ + - +

+ + + + -

which obviously is independent as to its lines and also as to its columns; and trans

forming as above any number of times in succession, we obtain ultimately a square

which has for its lines any system whatever of independent roots, and by wThat precedes

each of the new squares is also independent as to its columns; that is, every square

independent as to its lines is also independent as to its columns. Q.E.D.

c. viii. 68
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547.

ON THE REPRESENTATION OF A SPHERICAL OR OTHER SUR

FACE ON A PLANE: A SMITH'S PRIZE DISSERTATION.

[From the Messenger of Mathematics, vol. n. (1873), pp. 36, 37.]

In the Smith's Prize Examination for 1871 I set as the subject for a dissertation:

The representation of a spherical or other surface on a plane.

I give the following as a specimen of the sort of answer required: an answer

which, without so much as noticing that projection (in its restricted sense) is only one

kind of representation, goes into the details of the constructions for the different

projections of the sphere, and even into the demonstrations of these constructions, errs

quite as much by excess as by defect, and is worth very little indeed.

The question is understood to refer to Chartography, viz. the kind of represen

tation is taken to be such as that of a hemisphere or other portion of the earth's

surface in a map.

An implied condition is that each point of the surface (viz. of the portion thereof

comprised in the map) shall be represented by a single point on the map ; and con

versely, that each point on the map shall represent a single point on the surface.

And further, any closed curve on the surface must be represented by a closed curve

on the map, and the points within the one by the points within the other. If for

shortness the term element is used to denote an infinitesimal area included within a

closed curve, we may say that each element of the surface must be represented by an

element of the map ; and conversely, each element of the map must represent an

element of the surface.
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A map would be perfect if each element of the surface and the corresponding

element of the map were of the same form, and were in a constant ratio as to

magnitude ; say if it were free from the defects of " distortion " and " inequality " (of

scale) ; the condition as to form, or freedom from distortion, may be otherwise expressed

by saying that any two contiguous elements of length on the surface and the corre

sponding two contiguous elements of length on the map must meet at the same angle

(this at once appears by taking the two elements of area to be each of them a

triangle). But for a spherical or other non-developable surface, it is not possible to

construct a map free from the two defects.

An obvious and usual kind of representation is that by projection : viz. taking any

fixed point and plane, the line joining any point P of the surface with the fixed

point meets the fixed plane in a point P' which is taken to be the representation

of the point P on the surface.

When the surface is a sphere the projection is called orthographic, gnomonic or

stereographic according to the positions of the fixed point and plane : the last kind

is here alone considered ; viz. in the stereographic projection the fixed point is on the

surface of the sphere, and the fixed plane is parallel to the tangent plane at that

point, and is usually and conveniently taken to pass through the centre of the sphere.

The stereographic projection is one of those which is free from the defect of dis

tortion ; it is consequently, and that in a considerable degree, subject to the defect

of inequality. It possesses in a high degree the important quality of facility of

construction, viz. any great or small circle on the sphere is represented by a circle in

the map ; and from the general property of the equality of corresponding angles, or

otherwise, there arise easy rules for the construction of such circles.

The so-called Mercator's projection is an instance of a representation which is not

in the above restricted sense a projection ; and which is free from the defect of dis

tortion : viz. the (equidistant) meridians are here represented by a system of (equidistant)

parallel lines ; and the parallels of latitude by a set of lines at right angles thereto :

the distance between consecutive parallels in the map being taken in such wise as

is required to obtain freedom from distortion ; for this purpose the increments of

latitude and longitude must have in the map the same ratio that they have on the

sphere, and since in the map the length of a degree of longitude (instead of decreasing

with the latitude) remains constant, the lengths of the successive degrees of latitude

in the map must increase with the latitude : the scale of the representation thus

increases with the latitude, and would for the latitude ± 90° become infinite.

There is a simple representation of a hemisphere, due to M. Babinet, in which

the defect of inequality is avoided, viz. the meridians are represented by ellipses having

their major axes coincident with the diameter through the poles and dividing the

equator into equal distances, and the parallels by straight lines parallel to the equator.

68—2
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548.

ON LISTING'S THEOREM.

[From the Messenger of Mathematics, vol. u. (1873), pp. 81—89.]

Listing's theorem, (established in his Memoir*, Die Census rdumlicher Gestalten),

is a generalisation of Euler's theorem 8 + F = E + 2, which connects the number of

summits, faces, and edges in a polyhedron; viz. in Listing's theorem we have for a

figure of any sort whatever

A-B+C-D-(p-l) = 0,

or, what is the same thing,

4 + C = 5 + D + (p-l),

where

A = a,

C = c-fc" + ir,

D=d-/c'",

in which theorem a relates to the points; b, k relate to the lines; c, k", tt to the

surfaces; d, k" to the spaces; and p relates to the detached parts of the figure, as

will be explained.

a is the number of points; there is no question of multiplicity, but a point is

always a single point. A point is either detached or situate on a line or surface.

b is the number of lines (straight or curved). A line is always finite, and if

not reentrant there must be at each extremity a point : no attention is paid to cusps,

inflexions, &c, and if the line cut itself there must be at each intersection a point;

* Gott. Abh. t. x. (1862).



548] on listing's theoeem. 541

and in general a point placed on a line constitutes a termination or boundary of the

line. Thus a line is either an oval (that is, a non-intersecting closed curve of any

form whatever), a punctate oval (oval with a single point upon it), or a biterminal

(line terminated by two distinct points). For instance, a figure of eight is taken to

be two punctate ovals ; an oval, placing upon it two points, is thereby changed into

two biterminals.

k. The definition, analogous to the subsequent definitions of k" and #'", would be

that k is the sum, for all the lines, of the number of circuits for each line; but

inasmuch as for an oval the number of circuits is = 1, and for any other line (punctate

oval, or biterminal) it is = 0, k is in fact the number of ovals,

c is the number of surfaces. A surface is always finite, and if not reentrant

there must be at every termination thereof a line : no attention is paid to cuspidal

lines, &c, and if the surface cut itself there must be at each intersection a point or

a line; and in general a point or a line placed on a surface constitutes a termination

or boundary thereof. It may be added that if a line intersects a surface there must

be at the intersection a point, constituting a termination or boundary as well of the

line as of the surface. Thus a surface is either an ovoid (simple closed surface, such

as the sphere or the ellipsoid), a ring (surface such as the torus or anchor-ring), or

other more complicated form of reentrant surface ; or else it is a surface in part

bounded by a point or points, line or lines. We may in particular consider a

blocked surface having upon it one or more blocks : where by a block is meant a

point, line, or connected superficial figure composed of points and lines in any manner

whatever, the superficial area (if any) included within the block being disregarded as

not belonging to the surface, or being, if we please, cut out from the surface. Thus

an ovoid having upon it a point, and a segment or incomplete ovoid bounded by an

oval, are each of them to be regarded as a one-blocked ovoid ; the boundary being

in the first case the point, and in the second case the oval; and so in general the

blocked surface is bounded by the boundary or boundaries of the block or blocks. It

will be understood from what precedes, and it is almost needless to mention, that for

any surface we can pass along the surface from each point to each point thereof;

any line which would prevent this would divide the surface into two or more distinct

surfaces.

k," is the sum, for the several surfaces, of the number of circuits on each surface.

The word circuit here signifies a path on the surface from any point to itself: all

circuits which can by continuous variation be made to coincide being regarded as

identical; and the evanescible circuit reducible to the point itself being throughout

disregarded. Moreover, we count only the simple circuits, disregarding circuits which

can be obtained by any repetition or combination of these. Thus for an ovoid, or

for a one-blocked ovoid, there is only the evanescible circuit, that is, no circuit to

be counted; but for a two-blocked ovoid there is besides one circuit, or we count

this as one ; and so for a ^-blocked ovoid we count n — 1 circuits. For a ring it is

easy to see that (besides the evanescible circuit) there are, and we accordingly count,

two circuits ; and so in other cases.
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7T. It might be possible to find an analogous definition, but the most simple one

is that 7r denotes the number of ovoids (unblocked ovoids) or other surfaces not

bounded by any point or line.

d is the number of spaces, reckoning as one of them infinite space.

it" is the sum, for the several spaces, of the number of circuits in each space:

the word circuit here signifying a path in the space from a point to itself; all

circuits which can by continuous variation be made to coincide being considered as

identical, and the evanescible circuit reducible to the point itself being throughout

disregarded. Moreover, we count only the simple circuits, disregarding circuits which

can be obtained by a repetition or combination of these. Thus for infinite space, or

for the space within an ovoid, there is only the evanescible circuit, or there is no

circuit to be counted; and the same is the case if within such space we have any

number of ovoidal blocks (the term will, I think, be understood without explanation);

but if within the space we have an oval, ring, or other ring-block of any kind

whatever, then there is (besides the evanescible circuit) a circuit interlacing the ring-

block, and we count one circuit; and so if there are n ring-blocks, either separate or

interlacing each other in any manner, then there are, and we accordingly count,

n circuits. So for the space inside a ring there is (besides the evanescible circuit),

and we count, one circuit ; and the case is the same if we have within the ring any

number of ovoidal blocks whatever ; but if there is within the ring an oval ring or

other ring-block, then there is one new circuit, and we count in all (for the space

in question) two circuits.

p is the number of detached parts of the figure; or, say the number of detached

aggregations of points, lines, and surfaces. Observe, that rings interlacing each other

in any manner (but not intersecting) are considered as detached ; so also two closed

surfaces, one within the other, are considered as detached. The figure may be infinite

space alone ; we have then p = 0.

The examples which follow will further illustrate the meaning of the terms and

nature of the theorem ; and will also indicate in what manner a general demonstration

of the theorem might be arrived at.

Infinite space.

a = 0, 4=0,

b=0, tc = 0, B = 0

G = 0, k" = 0, 7T=0, G = 0,

d=l, «'" = 0, D = 1

p = 0, p-l = --1

= 0.
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2. Spherical surface.

a = 0, -4=0,

6=0, *' =0, J3 = 0

C = 1, *" = 0, tt = 1, 0=2,

d = 2, *'" = 0, D = 2

P = l, P-1=0

2 =2:

viz. the effect is to increase (7 by 2 and i) and p — 1 each by 1.

3. Spherical surface, with point upon it.

a = l, -4 = 1,

6 = 0, *' =0, 5 = 0

C = 1, tf" = 0, 7T = 0, 0 = 1,

d = 2, *'" = 0, Z> = 2

p = l, p-l = 0

2 =~2:

viz. the effect is to increase a and diminish 7r each by 1 ; that is, A is increased

and C diminished each by 1.

4. Spherical surface with two points.

a = 2, A = 2,

6 = 0, * =0, B = 0

0 = 1, K" = i? 7T = 0, (7=0,

(2 = 2, tf"' = 0, D = 2

p = l, p-l = 0

2 =~2:

viz. the second point increases a and ic" each by 1, that is, it increases A and

diminishes G each by 1.

And for each new point on the spherical surface there is this same effect; so

that we have, for the next case:

5. Spherical surface with n points (n > 2).

a — n, ■ A = n,

6=0, k =0, 5 = 0

o=X *"=ra-l, 7T = 0, C=2-w,

d = 2, *'" = 0, D = 2

p = l, jp — 1 = 0

IT =T.
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7T = 0, G =1-- n,

p-l = 0

Imagine that besides the n points there is an aperture (bounded by a closed curve);

the case is :

6. Spherical surface with n points (n > 2) and aperture.

a — n, A = n,

6 = 1, « =1 , 5=0

c = 1, k" — n

d = 1, *'" = 0

P = l>

1 =1:

viz. b and *; are each increased by 1, and therefore B is unaltered ; k" is increased,

and therefore G is diminished, by 1 ; but d is diminished, and therefore D also

diminished, by 1.

7. Spherical surface with n points (n > 2) and two apertures.

a — n, A — ny

6=2, k =2 , 5=0

c = 1, /e" = n + 1, 7r = 0, G = — ^

d=l, *"' = l , D = 0

2> = 1, p-l = 0

0 ^0:

viz. & and k are each increased by 1, and thus B is still unaltered ; tc" is increased,

and therefore G diminished, by 1 ; d" is increased, and therefore D diminished, by 1,

and each new aperture produces the like effect. Thus we have :

8. Spherical surface with m apertures (m > 2).

a = 0 , A = 0,

b = m, k = m , B = 0

c = 1 , /e" = m — 1, 7r = 0, (7 = 2 — m,

d = l, «'" = m-l, D = 2-m

p = l, p - 1 = 0

2 — m = 2 — m;

where, comparing with case 5, we see the different effects of a point and an aperture.

9. Spherical surface with m apertures (m > 2) and a point or points on each or

any of the bounding curves of the aperture.

If on the bounding curve of any aperture we place a point, this increases a, and

therefore A, by 1 ; the bounding curve is no longer a simple closed curve, and we
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thus also have k diminished, and therefore B increased by 1 ; and the balance still

holds.

Placing on the same bounding curve a second point, a, and therefore A, is

increased by 1 ; but the bounding curve is converted into two distinct curves ; that

is, b, and therefore B, is increased by 1 ; and the balance still holds. And the like

for each new point on the same bounding curve.

10. Spherical surface with n points connected in any manner by lines.

Reverting to the cases 4 and 5, by joining any two points by a line, we increase b,

and therefore B, by 1 ; but as regards k" the two united points take effect as a

single point ; that is, k" is diminished, and therefore C increased, by 1 ; the balance

is therefore undisturbed.

The case is the same for each new line, if only we do not thereby produce on

the surface a closed polygon, or partition an existing closed polygon; in each of these

cases we still increase b, and therefore B, by 1 ; and instead of diminishing k\ we

increase c, by 1, and therefore still increase G by 1 ; and the balance continues to

subsist.

By continuing to join the several points we at last arrive at a spherical surface

partitioned into polygons in any manner whatever ; or, what is the same thing,,

we have :

11. Closed polyhedral surface. Here, if 8 is the number of summits, F the

number of faces, E the number of edges; then

a = S, A=S,

b=E, K = 0, £ = E

c=F, *" =0, 7T = 0, C = F,

d = 2, k'" = 0, D = 2

p = l, p-l = 0

S + F = E+2,

so that we have Euler's theorem. Observe that this theorem (Euler's) does not apply

to annular polyhedral surfaces, or to polyhedral shells. For instance, consider a shell,

the exterior and interior surfaces of which are each of them a closed polyhedral

surface ; 8 = 8'+ S", F=F' + F", E = E' + E", where S' + F' = E'+2, 8" + F" = E" + 2,

and therefore 8 -t- F = E + 4. Listings theorem, of course, applies, viz. we have

12. a = S' +S", A = S' + S",

b=E' + E", 5= E* + E"

c=F'+F"9 C=F' + F",

d = 3, D = 3

p = 2, p-l= 1

8 +F = E' + E" + 4.

c. viii. 69
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As another group of examples, consider a plane rectangle, for instance, a sheet of

paper bounded by its four edges; here

13. a = 4, A=4<,

6=4, k' = 0, 5 = 4

e=l, k" = 0, 7T = 0, 0 = 1,

d = l, k'" = 0, D = l

p = l, ^-1 = 0

5 =5.

Let the paper be formed into a tube by uniting two opposite sides, the suture not

being obliterated, but continuing as a line drawn lengthwise from one extremity of

the tube to the other: here

14. a = 2, 4 = 2,

b = 3, *' = 0, 5=3

0=1, tf" = 0, 7T = 0, 0=1,

d=l, tf"' = l, D = 0

p — 1, p — 1=0

3 =~3.

Let the suture be obliterated, so that we have simply a tube open at each end;

here

15. a = 0, 4 = 0,

6=2, «' = 2, 5 = 0

c=l, /c =1, 7T = 0, 0=0,

d = l, «"' = 1, D = 0

P — 1, jp — 1 = 0

0 =0.

Let the tube be formed into an annulus by bending it round and joining the

two extremities, the suture not being obliterated, but continuing as a closed curve

round the tube; here

16. a = 0, A = 0,

b = 1, k = 1, 5 = 0

c =1, *" =1, ,r = 0, 0=0,

d = 2, /c'" = 2, D = 0

p = 1, |> — 1 = 0

0 ="o.
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Let the suture be obliterated, so that we have simply a tubular annulus; here

17. a = 0, J.=0,

6 = 0, k = 0, £=0

c = 1, *" = 2, tt = 1, (7 = 0,

d = 2, /e'" = 2, D = 0

j) = l, p-l=0

0 =1).

We may compare herewith the case of a simple annulus or closed curve.

18. a = 0, J. = 0,

6 =1, *' =1, .8=0

c = 0, hT = 0, tt = 0, (7 = 0,

<Z = 1, *'" = 1, D = 0

jP = 1, j9 — 1 =0

0 =~o.

Add to such an annulus, for instance, three radii meeting in the centre ; then

19. a = 4, J. = 4,

6=6, *' =0, 5 = 6

c = 0, *"=(), 7T = 0, (7 = 0,

d = l, / = 3, D = -2

j) = l, £> — 1=0

Let the last-mentioned figure become tubular, all sutures being obliterated ; then

20. a = 0, A= 0,

6=0, *' =0, 5=0

o=l, kT = 6, 7t = 1, (7 = - 4,

d = 2, *'" = 6, D = -4

p — l, p — 1=0

- 4 = - 4.

And so if instead of the tubular figure, annulus with three radii, we had a

tubular figure, annulus with diameter, then

21. a = 0. J.= 0,

6=0, k' =0, J5= 0

c=l, *" = 4, 7T=1, (7 =-2,

d = 2, k'" = 4, D = -2

p = 1, p-l = 0

-2 =-2;

and the like in other cases.

69—2
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549.

NOTE ON THE MAXIMA OF CERTAIN FACTORIAL FUNCTIONS.

[From the Messenger of Mathematics, vol. n. (1873), pp. 129, 130.]

I consider the functions

y1 = x(x-l),

y2=x(x-±)(x-l),

y8 = ff(a? -£)(#-!) (#-l),

1\/ 2\ / n-l\

^K^-^K^-^V1)^-^

Attending only to the absolute values, disregarding the signs, yn has n maxima,

viz. if n be odd, = 2p + 1 suppose, these are

where Yp+1 corresponds to the value x = \, and Ylt Y2, ..., Yp to values of x between

QTin _L_ q r» f\ -L0 and -=——r , s and ^ T , . . . , /^ and2^ + 1' 2^9 + 1 2p + l,•••, 2^ + 1 2p + l'

But if n be even, = 2p suppose, then the maxima are

V V Y Y V

where Yly F2, ..., Yp correspond to values of x between

0 and 7T- , — and — , ..., ^— and I.

2p' 2p 2p' } 2p 2
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In every case the maxima decrease from Yx which is the greatest, to Yp or Yp+1

which is the least ; in particular, n = 2p + 1, then

2p-l 1

(*r2p+l '"2.2p + l

= {i.3...(2p-i)}» ft.f...p-^y

2*p+\(2p + iyp 4 (2p + iyv '

which is

= 1,{r(p+i)*rj}' i>(p + i)

4 (2p + l)^ 47r(2p + l)*'

Suppose p is large ; then, as for large values of xy

Toc = sJ(2Tr)xx-%e-*,

we have

(2p + l)2^ = (2p)2*\ /^M1^) _ 22^^ $,

and so

' = 4tt22^2^ cp^i ~~^ \^2^

Also F2 corresponds approximately to

#? == of

2p + 1 2w '

F-l 1 1 S^1--!-! 1 3 (n_X)

1_2«'2n-2w-" 2ra • w»+i2-2-2--V" »;

1 ,r(n + j)_ 1 r(2p+f)

w»+i2 P| 2(2p+l)*+1 V(t) '

Now

r (2p + 1) = V(2tt) (2p + f) «-»-l = V(2tt) (2^+2e(2p+f)1<>S (1+i^ f*-t

= V(2tt) 22P+2^+2e-^,

and

(2p + 1)2*+1 = (2py*+* e*P+1) los'1+^ = (2pyp+ie ;

so that

1 x/C2Tr).22y+2.^+2e-2^

1 ~ 2^+2p2P+1e ' VO)

so that, p being large, Y1 is far larger than Yp+1.
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550.

PROBLEM AND HYPOTHETICAL THEOREMS IN REGARD TO

TWO QUADRIC SURFACES.

[From the Messenger of Mathematics, vol. n. (1873), p. 137.]

Two conies may be circum-and-inscribable to an n-gon ; viz. the conies may be

such that there exists a singly infinite series of ?i-gons each inscribed in the first and

circumscribed about the second of the conies. In particular they may be circum-and-

inscribable to a triangle.

The following problem arises:

Consider two given quadric surfaces and a given line 8; to find the planes through

8, which cut the surfaces in two conies circum-and-inscribable to a triangle (it is

presumed there are two or more such planes).

Let the surfaces be ©, ©', and let the line S a tangent to ©' meet © in the

points A, B) if through 8 we draw two planes as above, then in the first plane the

tangents from A, B to the section of ©' will meet in a point C of © ; and in the

second plane the tangents from i, 5 to the section of ©' will meet in a point D

of ©. The points C, B being thus determined the lines AB, AC, BG, AD, BD all

touch the surface ©', and it is presumed that the surfaces ©, ©' may be such that

CD also touches the surface ©'; viz. in this case we have a tetrahedron ABCD, the

summits of which lie in the surface ©, and the edges touch the surface ©'; and not

only so, but it is further presumed that the surfaces may be such that starting from

any point A of © and using either any tangent or a properly selected tangent AB

of ©', it shall be possible to complete the figure as above ; or, what is the same thing,

the surfaces may be such that there exists a doubly or a triply infinite series of

tetrahedra, the summits of each lying in © and its edges touching ©'. It is also

presumed that the faces of the tetrahedra all touch one and the same quadric sur

face ©".
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551.

TWO SMITH'S PRIZE DISSERTATIONS.

[From the Messenger of Mathematics, vol. n. (1873), pp. 145—149.]

Write dissertations on the following subjects :

1. The theory of interpolation, with a determination of the limits of error in the

value of a function obtained by interpolation.

2. Determinants.

1. The general problem is to find y a function of x having given values for

given values of x. The problem thus stated is of course indeterminate ; in practice, we

assume a certain form for the function y, the coefficients of which form are determined

by the given conditions, viz. either y is known to be of the form in question, the

actual value being then determined as above, or it is assumed that y is approximately

equal to a function of the form in question, and the value is then approximately

determined in such wise that, for the given values of x, the function y shall have its

given values.

The ordinary case is when we have the values of y corresponding to n given

values of xy and y is taken to be a function of the form A + Bx + . . . + Kxn~\

Suppose to fix the ideas w=4, and that yl9 y2y ys, y^ are the values of y corre

sponding to the values a, b, c, d of x. We may at once write down the expression

(x — b) (x — c) (x — d)

y ~ (a- b) (a - c)(a - dy1

(x — c) (x — d) (x — a)

+ (6-c)(6~d)(6~a)^2

(x — d)(x— a) (x — b)

+ (c-d)(c-a)(c-b)ys

(x — a) (x — b) (x — c)

+ (d-a)(d-b)(d-c)yAi
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for clearly this is of the form in question A + Bx + Cx2 + Dxs, and y becomes = yx for

x — a: = y2 for x—h, &c. And the like for any value of n. This is known as Lagrange's

interpolation formula.

The given values of x may be equidistant, say they are 0, 1, 2,..., n — 1, and the

corresponding values of y are y0, yu ..., yn-i ; then writing down the expression

x A #? . # — 1 A „ , # . # -- 1 . . . # — n + 2 Am ,
ya = y0 + -by0+-—- A2y0+...+ _ ==^ A^z/0,

1 l *L 1.2... n— 1

where, as usual,

A2/o = 2/i — 2/o, A2y0 = y2-2y1 + y0i &c. ;

then for a? = 0, 1, 2, &c. the values of y are

2/o + At/o, =2/i>

y0 + 2Ay0 + A2y0, = y2,

&c,

or the required conditions are satisfied.

As regards the determination of the limits of error, taking a particular case n = 4,

suppose that we have the values y0, yly y2i ys of y corresponding to the values

0, 1, 2, 3 of x, and that the true value of y is known to be

= A + j&b + Cte24- D#3-{- 2&b*,

where K is a function of x, which for any value of x within the given values (i.e.

from x — 0 to x = 3) is known to be at least = P and at most = Q, i.e., K > P < Q,

where to fix the ideas P and Q are each positive, Q being the greater. Here

calculating the interpolation value of y — Kx* (the last term Kx* by Lagrange's formula),

we have

x K x .x — 1 A „ x . x—1 x — 2 AQ

y = y0+^Ay0 + 1 g A2y0 + —1 2 g A3y0

+ Kx*

- \ K1x(x-2)(x-3)

+ 8 K2x(x-l)(x-3)

-^-K3x(x-l)(x-2),

viz. this is the true value of y. Hence using the approximate formula as given by

the first line, the last four lines give the error, viz. this is

= Kx* + K3 ^-x2 + K2 (8^3 + 240 + #if^2 - %* (-22^8 + 27^) + K2 (32^2) - ^ (i^3 + Sx).

But /fi, iT2, Kz being each >P and < Q, this is

>P(#4+ 8x* + 4<3x2 + 24<x)

-Q( Ux* + 32x2+30x),
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and it is

-P( Ux3 + SSx2 + 30*'),

the difference of these limits being

= (Q - P) (x* + 22^3 + 7o#2 + 54#).

2. A determinant is a function of n2 letters ; viz. arranging these in the form of

a square, the determinant

as, o3, c3

is a function linear in regard to each of the n2 letters, and such that interchanging

any two entire lines, or any two entire columns, the sign of the determinant is reversed,

its absolute value being unaltered.

The above definition leads to a rule for calculating the actual value of the deter

minant, which rule may be taken as a definition, viz. the determinant is the sum of

1.2.3 ...n terms obtained as follows: starting from the term

+ a1&2c3

we permute in every possible way the suffixes 1, 2, 3, ... , and give to the term a

sign, ±, which is that compounded of as many — signs as there are cases in which an

inferior number succeeds a superior number. Or, what is the same thing, any arrange

ment may be obtained by a succession of interchanges of two letters ; and then taking

for each interchange the sign — , we obtain the sign + of the term in question. The

positive and the negative terms are each of them i (1 . 2 . 3 . . . n) in number.

To show the connexion of the two definitions, it is sufficient to observe that in

the second definition, attending for instance only to the first and second columns, to

any terms Maxh^ NaJ)z, &c, there always correspond other terms — Ma2bly —J\Ta3b1} &c,

so that taking the pairs together, these are M {a1b2 — a2b^)y N' (aibs — a^), &c, terms

which change their sign, but remain unaltered as to their absolute values by the

interchange of the first and second columns.

Among the fundamental properties of determinants are as follows :

The properties are the same as regards lines and columns.

A determinant vanishes if any line vanishes (that is, if each term of the line is = 0).

A determinant vanishes if two lines are identical.

A determinant is a linear function of its lines.

Whence—

Determinant having a line sA is = s times the determinant having the line A (sA

is here used to denote the line each term of which is s times the corresponding term

of the line A).

c. viil 70
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Determinant having a line A +A/ = determinant with line A -f determinant with

line A'.

It follows that, if any line of a determinant is the sum of the other lines, each

multiplied by an arbitrary coefficient, or, what is the same thing, if we can with any

of the lines, each multiplied by an arbitrary coefficient, compose a line 0, then the

determinant is = 0.

The same principle leads to a theorem for the product of two determinants of the

same order n, viz. it is found that the product is a determinant of the same order n,

each term thereof being a sum of the products of the terms of a line of one of the

factors into the corresponding terms of a line of the other factor. Starting with this

expression of the product, we decompose it into a series of determinants each of which

is either =0, or it is a product of a single term of the one factor into the other

factor, and the sum of all these products is equal to the product of the two factors.

If we have n quantities x, y, ... connected by as many linear equations

djoc + bxy + c2£-f ... = 0,

then the determinant

^2 3 ^2 ) @2 ) • • •

^3? 03 > $3) "•

and so, if we have n linear equations

a1x-\- hy + ^z-h

is =0:

■ u,

then each of the quantities oc, y, z, . . . is given as the quotient of two determinants,

the denominator being in each case

Ctlf Pj, Ci, . ..

(%2 ) 0%, C2 ) • • •

<h> h, Cs, ...

and the numerators being (save as to their signs) that for x

ui j Ox, Ci, ...

11%, D2 1 O2 , • . .

u3> 0S, G3y ...

and the like for y, z, ... .

A determinant remains unaltered when the lines and columns are interchanged,

the dexter diagonal (\) remaining unaltered.
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A determinant

a1? bl7 d, dlt ...

^3 » ^3? £3; (ls, . . .

C64 , t?4 , C4 5 1X4 , . . .

is a sum of products of complementary determinants

2 +

a2i b2

^3> ^3>"

C4 , CV4 , . .

or, say of products of complementary minors.

In particular, it is a sum

2 ±ax b2, c2, d2, ...

^3> ^3> °^3> ••«

O4, C4, 0^4 , • . .

of products of first minors into single terms or (n— l)fch minors.

This last theorem affords a convenient rule for the development of a determinant.

70—2
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552.

ON A DIFFERENTIAL FORMULA CONNECTED WITH THE

THEORY OF CONFOCAL CONICS.

[From the Messenger of Mathematics, vol. n. (1873), pp. 157, 158.]

The following transformations present themselves in connexion with the theory of

confocal conies.

The coordinates x, y of a point are considered as functions of the parameters

A, k where

x2 v2

a-\-h b + h

a + k b + k

and then assuming % — x-\-iy, v = x — % \i = V(— 1) as usual), and writing c = a — b}

we find

A = H-a-& + fr) + 4V{(£'-o)fo»-c)},

^K-a-H^-WKf-^W-c)},

whence if

we have

or, say

H = (a + h)(b + h), K = (a + k)(b + k),

^ = i{fV(*?2-c)-W(f-c))2,

V(#) = i{£V(V-c) + W(r-c)},

v(^)=H?v(^-c)-7,v(r-c)},
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and thence

A + 4(a + 6) + V(iT) = i{f + V(f,-c)}W + V(^-c)},

k + i (a + b) + </(K) = | {| + V(|2 - o)\ {t? - vW - c)}

2% + V(V-"c)-

These also follow from the known differential formula

that is,

4d^ _ dh2 dk2

>j(¥-c)^(v2-c)-H~7r>

implying

2ad^ _ dh dk

V(p-c) vwvw

where a is a constant. The foregoing integral formulae give at once

dh _ dt; drj

VW~V(ff-c)"V(^-c)*

and substituting these values we find a = l, and the differential formulae are then

satisfied.

We thence have

const. = V{0 + h)(b + h)} ± *J{(a + k) (b + k)},

as the integral of the differential equation

dh dk _ ft

V(fl")xV(*)
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553.

TWO SMITH'S PRIZE DISSERTATIONS.

[From the Messenger of Mathematics, vol. II. (1873), pp. 161—166.]

Write dissertations :

1. On the condition of the similarity of two dynamical systems.

2. On orthogonal surfaces.

1. We may consider two particles m, m', describing similarly two similar paths

(which for convenience may be taken to be similarly situate in regard to two sets of

rectangular axes respectively), viz. this means that the times t, t' of passage through

s' t'
corresponding arcs s, s/ are proportional. The ratios - , -■ , are thus each of them

s V

V

constant : and this must also be the case with the ratio — , of the velocities vf v' at

v

s' v' t'
corresponding points ; since it is clear that we must have - = —. — .

Now in order that the two particles may move as above under the action of

any forces upon the two particles respectively, it is clearly necessary that the forces

F, F' at corresponding points shall act in the same direction, and be in a constant

ratio of magnitude. To obtain this ratio, imagine the two particles, masses m, m',

moving as above, in the corresponding infinitesimal elements of time t, t', with the

velocities v, v through the infinitesimal arcs cr, a respectively, (— = 77, -7 = -7 > ~ — ->U

F F'
the deflections from the tangent will be J — t2, \ —, t'2 respectively, and these must

be in the ratio of the corresponding arcs a-, a', viz. we must have

Ft' F't"2
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or, what is the same thing,

that is,

Ft2 F'P

- : —>- = * : s,

m m

F^-V^i^ fix

F ~ m s : \t) '

and this relation subsisting, and the velocities at the beginnings of the elements of

time t, t being in the assumed ratio, it is clear that the velocities at the ends of

these elements of time will be in the same ratio ; and thus the two particles will

go on moving in the manner in question.

All that has been said as to two particles, applies without alteration to any two

systems of particles moving under the like geometrical conditions, and we thus arrive

at the conclusion ; given two similarly constituted systems, which at any instant are

in a given magnitude-ratio - , their component particles being in a given ratio —

(the same for each pair of component particles), then if the particles of the two

s
systems respectively are to move in similar paths of the same magnitude-ratio -, the

times of describing corresponding arcs being in a given constant ratio - (this implying

v' s' t'\
as above that the ratio of the velocities at corresponding points is — , = --f--J, it is

necessary that the forces on corresponding particles in corresponding positions shall act

in the same directions, and shall be in the constant magnitude-ratio

F'

F~~ m' s : \t) '

and this being so, the motion of the two systems will in fact be similar as above

explained.

Taking — , = yu, for the mass-ratio, - , = a for the length-ratio, and - , = r for the

F'

time-ratio ; also -~ , = <fi for the force-ratio, the condition determining the force-ratio cj>

is thus

It is to be observed, that if the forces are entirely internal, and proportional to

homogeneous functions of the same order, say —n, of the coordinates of all or any of

the particles ; e.g. if they are central forces varying as the inverse nth power of the

distances ; then the condition as to the action of the forces in the two systems

respectively can always be satisfied by giving a proper constant value to the ratio of

the absolute forces (or forces at unity of distance); thus, if in the first system we
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n'YY) 771

have two particles m1} m2 attracting or repelling each other with a force —\~ , and

tC 771 77t

if in the second system the force is }—2- ; then the condition as to the direction

of the forces at corresponding positions is satisfied ipso facto; and the condition as to

magnitude is

that is,

kfm^m2 rn _ w! s' t2

r'n km1m2 m s t'2'

k' _ w! mxm2 sYn t2

k m(m2 m sr11 t'2

_ m fs\n+1 f

~ m' \s) t'2'

or, say

n±l

t~\s) \Fm'J '

t' /A "2 fkm\?

In the case n = 2, the present theorem (applying however only to the case of two

elliptic orbits of the same eccentricity) agrees with Kepler's third law, or say with

the theorem

t==2ttJ

that is,

Tx a

V0*)'

where observe that the //,, or mass in the sense of the formula, is the km, or

attractive force on a unit of mass, of the theorem as above written down.

2. In a family of surfaces F (%, y, z, p) = 0, containing a single variable parameter p,

there is through any given point of space, a surface or surfaces of the family; or (if

more than one, confining the attention to one of these surfaces) we may say that

there is, through any given point of space, a surface of the family.

Considering now two other families of surfaces, there will be through any given

point of space, three surfaces, one of each family; and if (for every given point of

space whatever) these intersect each other at right angles, we have a system of

orthogonal surfaces.

Supposing the equations of the three families to be

F (x, 2/, z, p) = 0,

<&(x, y, z, q) = 0,

^ (w, y, z, r) = 0,
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then the requisite conditions are

dFd^dFd^ <*£&& = $

dx dx dy dy dz dz

dF dW

CLX CLX

d®dW

CLX CLX

viz. these equations must be satisfied, not in general identically, but in virtue of the

given equations F= 0, <£ = 0, ^ = 0.

Or, what is more convenient, we may take the equations of the three families

to be

p -f(®> y> z) = °> ? - 0 (°°> y> z) = °> r ~ f (^ y> z) = ° ;

and write the conditions in the form

dp dq dp dq dp dq __

doc dx dy dy dz dz '

dp dr __ n

CLX (XiX

dq dr _ n

(X/X ax

where of course p, q, r stand for their given functional values, p =f(x, y, z), &c. ; the

equations in this form contain only (#, y, z), and not the parameters p, q, r\ so that,

if satisfied at all, they must be satisfied identically ; and the required conditions therefore

are that the last-mentioned system of equations shall be satisfied identically by the

values p, q, r considered as given functions of (x, y} z).

The last-mentioned conditions lead to the theorem known as Dupin's ; viz. it

follows from them that the surfaces intersect along their curves of curvature ; or more

definitely, each surface of one family is intersected by the surfaces of the other two

families in its two sets of curves of curvature respectively.

To indicate the geometrical ground of the theorem, consider on a surface of one

family a point P, and at this point the normal meeting the consecutive surface in T' \

the surfaces through P of the other two families respectively will pass through P\

and meet the given surface in two curves PA, PB (viz. PAy PB represent infinitesimal

arcs on these two curves respectively), the angle at P being a right angle.

Drawing at A, B normals to the given surface to meet the consecutive surface

in the points A\ Bf respectively, the same two surfaces will meet the consecutive

surface in the arcs P'A\ P'B' respectively ; and (the system being orthogonal), we

must have the angle at P' a right angle. This imposes a condition upon the direction

c. vni. 71
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(in the tangent plane at P) of the orthogonal directions PA, PB; viz. it is found

that these must be such that the normals PP', AA' intersect, or. what is the same

 

thing, the normals PP', BB' (one of these conditions implying the other); that is,

that the lines PA, PB shall be the directions of the two curves of curvature through

P on the given surface.

Observe that PP', AA' intersecting each other, the four points P, P', A, Af are

in the same plane, that is, PA, P'A' intersect, these lines being the normals at P, P'

respectively of the surface through P of one of the other two families; and similarly

PP', BB' intersecting each other, the lines PB, PfBf intersect; these being the normals

at P, P' respectively of the surface through P of the other two families. We have

through PP' two planes at right angles to each other; and these are met by a plane

A'P'B', in two lines A'F, B'P', the inclinations of which to the line PPf differ only

infinitesimally from a right angle, say they are 90° — a and 90° — b respectively ; hence

if the angle A'P'B' is = 90° — c, this is the hypotenuse of a right-angled spherical

triangle, the sides whereof are 90° — a, 90° — b ; wherefore sin c = sin a sin b, viz. sin c is

an infinitesimal of a higher order which may be neglected, or the angle P' will be

= 90° ; that is, the surfaces through P of the other two families, intersecting the given

surface in the directions PA, PB of the two curves of curvature, will intersect the

consecutive surface at P' in the two directions P'A', P'B' at right angles to each

other ; which is an a posteriori verification of Dupin's theorem.

In what precedes the given surface through P may be regarded as a surface

assumed at pleasure ; and it in effect appears that taking the consecutive surface also

at pleasure (but varying only infinitesimally from the given surface), the condition in

order that the two surfaces, which at P intersect each other and the given surface at

right angles, shall at P' intersect the consecutive surface in two directions at right

angles to each other, is that they shall intersect the given surface in the directions

PA, PB of the two curves of curvature. But if we thus take the consecutive surface

at pleasure,—or say if we construct it by measuring off along the normal at each

point P of the given surface an infinitesimal distance PP', — p, where p an arbitrary

function of the coordinates of the point P,—then although on the consecutive surface

the lines P'B', P'A' are at right angles to each other, there is nothing to show, and

it is not in fact the case, that these lines P'A', P'B' are the directions of the curves
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of curvature on the consecutive surface. In the orthogonal system they must be so;

and this imposes upon the infinitesimal normal distance p, a condition; viz. it is found

that p considered as a function of {x, y, z) must satisfy a certain partial differential

equation of the second order.

It hence appears that no one of the three families of surfaces can be assumed

at pleasure; for taking the equation of a family to be p—f(oc, y, z) = 0, then p being

the value of the parameter for the given surface of the foregoing investigation, and

p + Sp the value of the parameter for the consecutive surface, the normal distance at

the point (x, y, z) between the two surfaces is

-*V{®,+($,+(£

viz. hp is here a constant; and we have

/\(dp\2,(dp\2 fdj

' V \\dx) ^\dy) +U

satisfying the foregoing partial differential equation; or, what is the same thing, p

considered as a function of x, y, z must satisfy a certain partial differential equation

of the third order; viz. this is the condition to be satisfied in order that a family of

surfaces p —/(%, y, z) = 0 may belong to an orthogonal system.

71—2
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AN ELLIPTIC-TRANSCENDENT IDENTITY.

[From the Messenger of Mathematics, vol. II. (1873), p. 179.]

The following is a singular identity:

(1+g )(1 + q3) (1 + q°)(l +902(1 + q9) ■■■

-(l-g)(l-g»)(l-g»)(l-20»(l-g»)...

= 2q(l + q*)(l +^)(1 + qe)(l + q*) (1 + q») (1 + q™) (1 + tff (1+ g16) . . . ,

where in each of the three terms every factor has the exponent 1 or 2 according as

the exponent of q is not, or is, divisible by 7.
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555.

NOTICES OF COMMUNICATIONS TO THE BRITISH ASSOCIATION

FOR THE ADVANCEMENT OF SCIENCE.

[From the Reports of the British Association for the Advancement of Science, 1865 to 1873,

Notices and Abstracts of Miscellaneous Communications to the Sections.]

1. On the Problem of the in-and-circumscribed Triangle. Report, 1870, pp. 9, 10.

I HAVE recently accomplished the solution of this problem, which I spoke of at

the Meeting in 1864. The problem is as follows : required the number of the triangles

the angles of which are situate in a given curve or curves, and the sides of which

touch a given curve or curves. There are in all 52 cases [see 514] of the problem,

according as the curves which contain the angles and are touched by the sides are

distinct curves, or are any or all of them the same curve. The first and easiest case is

when the curves are all of them distinct ; the number of triangles is here = 2aceBDF,

where a, c, e are the orders of the curves containing the angles (or, say, of the

angle-curves) respectively; and B, D, F are the classes of the curves touched by the

sides (or, say, of the side-curves) respectively. An interesting case is when the angle-

curves are one and the same curve ; or, say, a = c = e (where the sign = is used to denote

the identity of the curves); the number of triangles is here ={2a(a - l)(a-2) + A} BDF>

where a, A are the order and class of the curve a = c = e. In the reciprocal case,

where the side-curves are one and the same curve, say B = D = F, we have of course

a like formula, viz. the number of triangles is here = {2B (B — 1) (5— 2) + &} ace, where

B, b are the class and .order of the curve B = D = F. The last and most difficult case

is when the six curves are all of them one and the same curve, say a=c=e=B=D=F ;

the number of triangles is here = one-sixth of

. . . . • +1),

2a3- 18a2 + 52a- 46)

. - 18a3 + 162a2 -420a + 221)

52a3 - 420a2 + 704a +172)

a4- 46a3 + 221a2 + 172a

A>( . . . - 9)]

\+A ( . .- 12a+ 135)1,

- 9a2 + 135a - 600 J
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where a is the order, A the class of the curve ; a is the number, three times the

class + the number of cusps, or (what is the same thing) three times the order + the

number of inflexions.

2. On a Correspondence of Points and Lines in Space. Report, 1870, p. 10.

Nine points in a plane may be the intersection of two (and therefore of an

infinite series of) cubic curves ; say, that the nine points are an " ennead " : and

similarly nine lines through a point may be the intersection of two (and therefore of

an infinite series of) cubic cones; say, the nine lines are an ennead. Now, imagine

(in space) any 8 given points ; taking a variable point P, and joining this with the

8 points, we have through P 8 lines, and there is through P a ninth line completing

the ennead ; this is said to be the corresponding line of P. We have thus to any

point P a single corresponding line through the point P ; this is the correspondence

referred to in the heading, and which I would suggest as an interesting subject of

investigation to geometers. Observe that, considering the whole system of points in

space, the corresponding lines are a triple system of lines, not the whole system of

lines in space. It is thus, not any line whatever, but only a line of the triple system,

which has on it a corresponding point. But as to this some explanation is necessary ;

for starting with an arbitrary line, and taking upon it a point P, it would seem

that P might be so determined that the given line and the lines from P to the

eight points should form an ennead,—that is, that the arbitrary line would have upon

it a corresponding point or points.

The question of the foregoing species of correspondence was suggested to me by

the consideration of a system of 10 points, such that joining any one whatever of

them with the remaining nine points, the nine lines thus obtained form an ennead; or,

say, that each of the 10 points is the " enneadic centre " of the remaining nine. I

have been led to such a system of 10 points by my researches upon Quartic Surfaces;

but I do not as yet understand the theory.

3. On the Number of Covariants of a Binary Quantic. Report, 1871, pp. 9, 10.

The author remarked [see 462] that it had been shown by Prof. Gordan that the

number of the covariants of a binary quantic of any order was finite, and, in particular,

that the numbers for the quintic and the sextic were 23 and 26 respectively. But the

demonstration is a very complicated one, and it can scarcely be doubted that a more

simple demonstration will be found. The question in its most simple form is as

follows: viz. instead of the covariants we substitute their leading coefficients, each of

which is a " seminvariant " satisfying a certain partial differential equation ; say, the

quantic is {a, b, c, . . . , k][oc, y)n, then the differential equation is (a9& + 2bdc . . . + njdk) u — 0,

which qua equation with n + 1 variables admits of n independent solutions : for

instance, if n = 3, the equation is (ad^ + 2bdc + Scda) u — 0, and the solutions are a, ac — 62,,
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a?d — Sabc + 263 ; the general value of u is u = any function whatever of the last-

mentioned three functions. We have to find the rational non-integral functions of

these functions which are rational and integral functions of the coefficients; such a

function is

\ {(a2d - Sabo + 263)2 + 4 (ac - 62)3},

= a?d2 + 4ac3 + 463d - 362o2 - 6abcd,

and the original three solutions, together with the last-mentioned function a2d!2 + &c,

constitute the complete system of the seminvariants of the cubic function; viz. every

other seminvariant is a rational and integral function of these. And so, in the general

case, the problem is to complete the series of the n solutions a, ac — b2y a2d — Sabc + 263,

ase — 4<a2bd + 6ab2c — S¥, &c. by adding thereto the solutions which, being rational but

non-integral functions of these, are rational and integral functions of the coefficients ;

and thus to arrive at a series of solutions such that every other solution is a rational

and integral function of these.

4. Note on certain Families of Surfaces. Report, 1871, pp. 19, 20.

See the paper numbered 538, of which this Note is a duplicate.

5. On the Mcreator's Projection of a Surface of Revolution. Report, 1873, p. 9.

The theory of Mercator's projection is obviously applicable to any surface of re

volution; the meridians and parallels are represented by two systems of parallel lines

at right angles to each other, in such wise that for the infinitesimal rectangles

included between two consecutive arcs of meridian and arcs of parallel the rectangle in

the projection is similar to that on the surface. Or, what is the same thing, drawing

on the surface the meridians at equal infinitesimal intervals of angular distance, wre

may draw the parallels at such intervals as to divide the surface into infinitesimal

squares; the meridians and parallels are then in the projection represented by two

systems of equidistant parallel lines dividing the plane into squares. And if the

angular distance between two consecutive meridians instead of being infinitesimal is

taken moderately small (5° or even 10°), then it is easy on the surface or in piano,

using only the curve which is the meridian of the surface, to lay down graphically

the series of parallels which are in the projection represented by equidistant parallel

lines. The method is, of course, an approximate one, by reason that the angular distance

between the two consecutive meridians is finite instead of infinitesimal.

I have in this way constructed the projection of a skew hyperboloid of revolution:

viz. in one figure I show the hyperbola, which is the meridian section, and by means

of it (taking the interval of the meridians to be =10°) construct the positions of the
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successive parallels ; I complete the figure by drawing the hyperbolas which are the

orthographic projections of the meridians, and the right lines which are the ortho

graphic projections of the parallels; the figure thus exhibits the orthographic projection

(on the plane of a meridian) of the hyperboloid divided into squares as above. The

other figure, which is the Mercators projection, is simply two systems of equidistant

parallel lines dividing the paper into squares. I remark that in the first figure the

projections of the right lines on the surface are the tangents to the bounding hyper

bola; in particular, the projection of one of these lines is an asymptote of the

hyperbola. This I exhibit in the figure, and by means of it trace the Mercators pro

jection of the right line on the surface; viz. this is a serpentine curve included

between the right lines which represent two opposite meridians and having these lines

for asymptotes. It is sufficient to show one of these curves, since obviously for any

other line of the surface belonging to the same system the Mercator's projection is

at once obtained by merely displacing the curve parallel to itself, and for any line of

the other system the projection is a like curve in a reversed position.

A Mercator's projection might be made of a skew hyperboloid not of revolution;

viz. the curves of curvature might be drawn so as to divide the surface into squares,

and the curves of curvature be then represented by equidistant parallel lines as above ;

and the construction would be only a little more difficult. The projection presented

itself to me as a convenient one for the representation of the geodesic lines on the

surface, and for exhibiting them in relation to the right lines of the surface; but I

have not yet worked this out. In conclusion, it may be remarked that a surface in

general cannot be divided into squares by its curves of curvature, but that it may

be in an infinity of ways divided into squares by two systems of curves on the

surface, and any such system of curves gives rise to a Mercators projection of the

surface.
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518. Ribaucour, G. R., t. lxxv. (1872), pp. 533—536, referring to my Note remarks

that the condition can be (by means of the imaginary coordinates of M. Ossian Bonnet)

expressed in a simple form communicated by him to the Philomathic Society, May,

1870. I reproduce this investigation, although it is not easy to present it in a quite

intelligible form. We take p =f(x, y, z) to represent a family of surfaces belonging to

a triply orthotomic system, and consider two neighbouring surfaces (A) and (A') corre

sponding to the values z and z + dz ; A and A' the two points where they meet the

trajectories of the surfaces; AT, A'T' the tangents to the curves of curvature of the

same system at A, A' respectively. Then according to the remark of M. Levy, it is

to be expressed that these lines meet, and this is done by expressing that along the

trajectory AA', the variation of the angle of AT with the osculating plane at A is

equal to the angle of the osculating planes at A, A' respectively.

Let B' be the spherical image of A\ the plane OBB' is parallel to the osculating

plane at A of the trajectory, and the angle of the two osculating planes measures

the geodesic curvature of BB' : denote this by dy.

Let (3 be the angle of BB' with BX, 6 the angle of AT with BX, 0-0 is the

angle of AT with the osculating plane at A of the trajectory: d/3 — dd = dy. Introducing

the symmetric imaginary coordinates x and y, we write

dp , dp 1 d2p 7o .^dadb7 7

a=-—rj-y 6= 0 7 , c=— 7 7 , as2^^2^—^-dxdy.
X2dx \2dy X2 dxdy dx dy a

But dx and dy being the increments of x, y corresponding to dz in the passage

from A to A', then by a theorem of M. Liouville

the condition thus is

c. vni. 72
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and the formula

e-2id _ ±

enables this to be written in the definitive form

/ da /db

V dx^\l dy'

, d ( db da\ , d 7 (db m da\ , ( d (?db\ d /. da\) _

dx \ dy dx) J dy \dy ' dx) \dz \ dy) dz \ dx)\

We have

dx (\p + c) + dy
db

dy

7 db ^

+ dz -=- = 0,
dz

dx c£ +dy ^p +G^+d*c£= °'

j fy4db m da

dx \ dy dx) ' dy " \dy

7 (db . >4M d / (db # i

\dy ' dx) ' dz \dy ' <

and thence eliminating dx, dy, dz, we have

d 7 (^ Adb da\ d 7 (db
-L. A * I / I __

dy ' dx,

db db

dy ' dz

da 1 da

dx > 2r > ^z

ip + o

\v + c

which defines the triply orthotomic system.

= 0,
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