and therefore

$$
\begin{aligned}
\tan \alpha & \int_{v_{0}}^{v_{1}} \frac{d}{d v}\left\{\frac{\Delta(v) \cot v}{1+\cot ^{2} \alpha \sin ^{2} v}\right\} d v \\
& =-\int_{v_{0}}^{v_{1}} \frac{\Delta(v) \tan \alpha}{\left(1+\cot ^{2} \alpha \sin ^{2} v\right) \sin ^{2} v} d v-K_{3}-K_{3} \\
& =-K_{1}^{\prime}-K_{3}-K_{3}
\end{aligned}
$$

say. The equation therefore becomes

$$
\begin{aligned}
K_{1}-K_{2}-K_{3} & =-K_{1}^{\prime}-K_{2}-K_{8} \\
K_{1}+K_{1}^{\prime} & =0 .
\end{aligned}
$$

that is
This is

$$
\int_{v_{0}}^{v_{1}} \frac{\Delta(v)}{1+\cot ^{2} \alpha \sin ^{3} v}\left\{\cot \alpha+\frac{\tan \alpha}{\sin ^{3} v}\right\} d v=0 ;
$$

or, neglecting the factor $\tan \alpha$, we have the equation in the form

$$
\int_{v_{0}}^{v_{1}} \frac{\Delta(v)}{\sin ^{2} v} d v=0
$$

5. To evaluate this integral, we now introduce elliptic functions as in the earlier paper. Writing

$v=a m u$,

and denoting by u_{0} and u_{1} the limits corresponding to v_{0} and v_{1}, we find

$$
\int_{u_{0}}^{u_{1}} \frac{\operatorname{dn}^{2} u}{\sin ^{2} u} d u=0
$$

But

$$
\int \frac{\operatorname{dn}^{3} u}{\operatorname{sn}^{2} u} d u=k^{\prime 2} u-E(u)-\frac{\mathrm{cn} u \operatorname{dn} u}{\operatorname{sn} u}
$$

as an indefinite integral ; and therefore we have

$$
k^{\prime 2} u_{1}-E\left(u_{1}\right)-\frac{\operatorname{cn} u_{1} \operatorname{dn} u_{1}}{\operatorname{sn} u_{1}}=k^{\prime 2} u_{0}-E\left(u_{0}\right)-\frac{\operatorname{cn} u_{0} \operatorname{dn} u_{0}}{\operatorname{sn} u_{0}}
$$

as the equation determining u_{1} when u_{0} is given.
One remark may be made about this result. Taking

$$
\int \frac{\operatorname{dn}^{2} u}{\sin ^{2} u} d u=f(u)
$$

we have $d f(u) / d u$ a positive quantity, so that $f(u)$ is continually increasing as u increases; yet the equation gives $f\left(u_{1}\right)=f\left(u_{0}\right)$. The explanation is that $f(u)$ passes through an infinite value-at $u=2 K$-and changes its sign from positive to negative; it then begins to increase again from $-\infty$.

The equation can be taken in the form

$$
\begin{aligned}
k^{\prime 2}\left(u_{1}-u_{0}\right)= & E\left(u_{1}\right)-E\left(u_{0}\right)-\left(\frac{\operatorname{cn} u_{0} \operatorname{dn} u_{0}}{\operatorname{sn} u_{0}}-\frac{\operatorname{cn} u_{1} \operatorname{dn} u_{1}}{\operatorname{sn} u_{1}}\right) \\
= & E\left(u_{1}-u_{0}\right)-k^{2} \operatorname{sn} u_{1} \operatorname{sn} u_{0} \operatorname{sn}\left(u_{1}-u_{0}\right) \\
& \quad-\frac{\operatorname{sn}\left(u_{1}-u_{0}\right)}{\operatorname{sn} u_{1} \operatorname{sn} u_{0}}\left(1-k^{2} \operatorname{sn}^{2} u_{1} \operatorname{sn}^{2} u_{0}\right) \\
= & E\left(u_{1}-u_{0}\right)-\frac{\operatorname{sn}\left(u_{1}-u_{0}\right)}{\operatorname{sn} u_{1} \operatorname{sn} u_{0}} ;
\end{aligned}
$$

and therefore finally

$$
\operatorname{sn}\left(u_{1}-u_{0}\right)=\left\{E\left(u_{1}-u_{0}\right)-k^{\prime 2}\left(u_{1}-u_{0}\right)\right\} \operatorname{sn} u_{1} \text { sn } u_{0}
$$

is the equation to determine u_{1}. It is evidently satisfied by $u_{1}=u_{0}$; the required value of u_{t} is the root of the equation next greater than u_{0}.

If preferred, the Zeta-function can be used instead of the second elliptic integral. For any argument, we have

$$
Z(u)=E(u)-\frac{E}{K} u
$$

and, therefore,

$$
\begin{aligned}
E(u)-k^{\prime 2} u & =Z(u)+\frac{E-k^{\prime 2} K}{K} u \\
& =Z(u)+\frac{G}{K} u
\end{aligned}
$$

where G is the quantity introduced by Glaisher.* The equation thus becomes

$$
\begin{aligned}
\frac{\operatorname{sn}\left(u_{1}-u_{0}\right)}{\operatorname{sn} u_{1} \operatorname{sn} u_{0}} & =E\left(u_{1}-u_{0}\right)-k^{\prime 2}\left(u_{1}-u_{0}\right) \\
& =Z\left(u_{1}-u_{0}\right)+\frac{G}{K}\left(u_{1}-u_{0}\right) \\
& =Z\left(u_{1}-u_{0}\right)+\frac{2 c c^{\prime}}{K} \frac{d K}{d c}\left(u_{1}-u_{0}\right) .
\end{aligned}
$$

[^0]6. Taking the equation in the form
$$
\operatorname{sn}\left(u_{1}-u_{0}\right)=\operatorname{sn} u_{1} \operatorname{sn} u_{0}\left\{E\left(u_{1}-u_{0}\right)-c^{\prime}\left(u_{1}-u_{0}\right)\right\},
$$
we at once see that
\[

$$
\begin{array}{ll}
\text { if } & u_{0}=0, \quad \text { then } u_{1}=2 K, \\
\text { and if } & u_{0}=2 K, \text { then } u_{1}=4 K .
\end{array}
$$
\]

On account of the symmetrical undulation of the geodesic, it is sufficient to take into account values of u_{0}, such that

$$
0<u_{0}<2 K
$$

in addition to the two limiting values already mentioned. If we consider the curves,

$$
y_{1}=\frac{\operatorname{sn}\left(x-u_{0}\right)}{\operatorname{sn} x \operatorname{sn} u_{0}}, \quad y_{2}=E\left(x-u_{0}\right)-c^{\prime}\left(x-u_{0}\right)
$$

the first value of x increasing from u_{0}, for which $y_{1}=y_{2}$, is u_{1} Fig. 1

Fig. 2

Now these curves, when traced, are as in figures 1 and 2 respectively; hence

If we take

$$
u_{0}+2 K<u_{1}<4 K
$$

so that

$$
u_{1}-u_{0}=2 K+\theta_{1}
$$

$$
\begin{aligned}
y_{1} & =\frac{\operatorname{sn}\left(2 K+\theta_{1}\right)}{\operatorname{sn}\left(2 K+u_{0}+\theta_{1}\right) \operatorname{sn} u_{0}} \\
& =\frac{\operatorname{sn} \theta_{1}}{\operatorname{sn}\left(u_{0}+\theta_{1}\right) \operatorname{sn} u_{0}}, \\
y_{2} & =2 G+E\left(\theta_{1}\right)-c^{\prime} \theta_{1} ;
\end{aligned}
$$

and θ_{1} is determined, between the above limits by the equation

$$
\frac{\operatorname{sn} \theta_{1}}{\operatorname{sn}\left(u_{0}+\theta_{2}\right) \sin u_{0}}=2 G+E\left(\theta_{2}\right)-c^{\prime} \theta_{1}
$$

7. When the ellipticity of the oblate spheroid is small, c is small. Then G is small; and as

$$
E\left(\theta_{1}\right)-c^{\cdot} \theta_{1}=c \int_{0}^{\theta_{1}} \operatorname{cn}^{2} u d u
$$

it follows that $\operatorname{sn} \theta_{1}$ (and therefore θ_{1}) is small of the same order as c. Consequently $E\left(\theta_{1}\right)-c^{\prime} \theta_{1}$ is of the second order

$$
\begin{aligned}
G & =2 c c^{\prime} \frac{d K}{d c} \\
& =\frac{1}{4} \pi c
\end{aligned}
$$

so far as regards the most important term. Hence, when second powers of the ellipticity (and therefore second powers of c) are negligible, we have

$$
\theta_{1}=\frac{1}{2} \pi c \operatorname{sn}^{2} u_{0}
$$

and consequently the excess of $u_{1}-u_{0}$ above π is

$$
\frac{1}{4} \pi c\left(1+2 \operatorname{sn}^{2} u_{0}\right)
$$

to the first order of small quantities.
8. In what precedes, it has been assumed that the geodesic is not a meridian. The special case in which it is a meridian is given by $\alpha=0$ and then $k^{2}=e^{2}$; so that the preceding formulæ apply on the understanding that the modulus of the elliptic functions is e^{3} instead of

$$
\frac{e^{2} \cos ^{2} \alpha}{1-e^{2} \sin ^{2} \alpha}
$$

In particular, when $u_{0}=0$ the conjugate is given by $u_{1}=2 \pi$ or $\theta=\pi$: that is, the conjugate of either pole is the other pole-a result to be expected.

25 January, 1896.

[^0]: * Quart. Journal, Vol. xix. (1883), pp. 145-157; ib., Vol. xx. (1886), pp 313-361.

