and therefore
\[\tan \alpha \int_{v_{1}}^{v_{2}} \frac{\Delta(v) \cot v}{1 + \cot^2 \alpha \sin^2 v} \, dv = - \int_{v_{1}}^{v_{2}} \frac{\Delta(v) \tan \alpha}{1 + \cot^2 \alpha \sin^2 v} \, dv - K' - K_s \]
\[= - K' - K_s - K'_s \]
say. The equation therefore becomes
\[K' - K_s - K_s = - K' - K_s - K'_s \]
that is
\[K' + K'_s = 0. \]
This is
\[\int_{v_{1}}^{v_{2}} \frac{\Delta(v)}{1 + \cot^2 \alpha \sin^2 v} \left\{ \cot \alpha + \frac{\tan \alpha}{\sin^2 v} \right\} \, dv = 0; \]
or, neglecting the factor \(\tan \alpha \), we have the equation in the form
\[\int_{v_{1}}^{v_{2}} \frac{\Delta(v)}{\sin^2 v} \, dv = 0. \]

5. To evaluate this integral, we now introduce elliptic functions as in the earlier paper. Writing
\[v = \alpha m \, u, \]
and denoting by \(u_s \) and \(u_i \) the limits corresponding to \(v_s \) and \(v_i \), we find
\[\int_{u_s}^{u_i} \frac{dn'du}{nu} = 0. \]
But
\[\int_{nu_s}^{nu_i} \frac{dn'}{nu} = k^2 n - E(u) - \frac{\text{cn} u \, dn u}{\text{sn} u}, \]
as an indefinite integral; and therefore we have
\[k^2 u_i - E(u_i) - \frac{\text{cn} u_i \, dn u_i}{\text{sn} u_i} = k^2 u_s - E(u_s) - \frac{\text{cn} u_s \, dn u_s}{\text{sn} u_s}, \]
as the equation determining \(u_i \) when \(u_s \) is given.

One remark may be made about this result. Taking
\[\int_{nu_s}^{nu_i} \frac{dn'}{nu} = f(u), \]
we have \(df(u)/du \) a positive quantity, so that \(f(u) \) is continually increasing as \(u \) increases; yet the equation gives \(f(u) = f(u_s) \). The explanation is that \(f(u) \) passes through an infinite value—at \(u = 2K \)—and changes its sign from positive to negative; it then begins to increase again from \(-\infty\).

The equation can be taken in the form
\[k^2 (u_i - u_s) = E(u_i) - E(u_s) - \frac{\text{cn} u_i \, dn u_i}{\text{sn} u_i} - \frac{\text{cn} u_s \, dn u_s}{\text{sn} u_s} \]
\[= E(u_i - u_s) - k^2 \, \text{sn} u_s \, \text{sn} u_i \, \text{sn} (u_i - u_s) \]
\[- \frac{\text{sn} u_i \, \text{sn} u_s \, (1 - k^2 \, \text{sn}^2 u_i \, \text{sn}^2 u_s)}{\text{sn} u_i \, \text{sn} u_s}, \]
and therefore finally
\[\text{sn} (u_i - u_s) = \{E(u_i - u_s) - k^2 (u_i - u_s) \} \, \text{sn} u_i \, \text{sn} u_s, \]
is the equation to determine \(u_i \). It is evidently satisfied by \(u_i = u_s \); the required value of \(u_i \) is the root of the equation next greater than \(u_s \).
If preferred, the Zeta-function can be used instead of the second elliptic integral. For any argument, we have
\[Z(u) = E(u) - \frac{E}{K} \, u, \]
and, therefore,
\[E(u) - k^2 \, u = Z(u) + \frac{E - k^2 \, K}{K} \, u \]
\[= Z(u) + \frac{G}{K} \, u, \]
where \(G \) is the quantity introduced by Glaisher. The equation thus becomes
\[\text{sn} (u_i - u_s) = E(u_i - u_s) - k^2 (u_i - u_s) \]
\[= Z(u_i - u_s) + \frac{G}{K} (u_i - u_s) \]
\[= Z(u_i - u_s) + \frac{2\zeta' \, dK}{d\zeta} (u_i - u_s). \]

6. Taking the equation in the form
\[\text{sn}(u_1 - u_o) = \text{sn} u \text{ sn} u_o \left[E(u_1 - u_o) - c' (u_1 - u_o) \right], \]
we at once see that

- if \(u_o = 0 \), then \(u_1 = 2K \),
- and if \(u_o = 2K \), then \(u_1 = 4K \).

On account of the symmetrical undulation of the geodesic, it is sufficient to take into account values of \(u_o \), such that

\[0 < u_o < 2K, \]
in addition to the two limiting values already mentioned.

If we consider the curves,

\[y_1 = \frac{\text{sn}(x - u_o)}{\text{sn} x \text{ sn} u_o}, \quad y_1 = E(x - u_o) - c' (x - u_o), \]
the first value of \(x \) increasing from \(u_o \), for which \(y_1 = y_2 \) is \(u_1 \)

![Fig 1](image1)

![Fig 2](image2)

Now these curves, when traced, are as in figures 1 and 2 respectively; hence

\[u_o + 2K < u_1 < 4K. \]

If we take \(u_1 - u_o = 2K + \theta' \),
so that \(0 < \theta' < 2K - u_o \),
we have

\[y_1 = \frac{\text{sn}(2K + \theta') \text{ sn} u_o}{\text{sn} \theta' \text{ sn} u_o}, \]

\[y_1 = 2G + E(\theta') - c' \theta', \]
and \(\theta' \) is determined, between the above limits by the equation

\[\frac{\text{sn} \theta'}{\text{sn} (u_0 + \theta')} \text{ sn} u_o = 2G + E(\theta') - c' \theta'. \]

7. When the ellipticity of the oblate spheroid is small, \(c \) is small. Then \(G \) is small; and as

\[E(\theta') - c' \theta' = c \int_0^{\theta'} \text{sn} u du, \]
it follows that \(\text{sn} \theta' \) (and therefore \(\theta' \)) is small of the same order as \(c \). Consequently \(E(\theta') - c' \theta' \) is of the second order in \(c \); also

\[G = 2c \frac{dK}{dc} = \frac{1}{2} \pi c, \]
so far as regards the most important term. Hence, when second powers of the ellipticity (and therefore second powers of \(c \)) are negligible, we have

\[\theta' = \frac{1}{2} \pi c \text{ sn} u_o, \]
and consequently the excess of \(u_1 - u_o \) above \(\pi \) is

\[\frac{1}{2} \pi c \left(1 + 2 \text{ sn}^2 u_o\right) \]
to the first order of small quantities.

8. In what precedes, it has been assumed that the geodesic is not a meridian. The special case in which it is a meridian is given by \(\alpha = 0 \) and then \(k^2 = c' \); so that the preceding formulae apply on the understanding that the modulus of the elliptic functions is \(c' \) instead of

\[\frac{c' \cos^2 \alpha}{1 - c' \sin^2 \alpha}. \]

In particular, when \(u_o = 0 \) the conjugate is given by

\[u_1 = 2\pi \text{ or } \theta = \pi: \text{ that is, the conjugate of either pole is the other pole—a result to be expected.} \]