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PAPERS.

I. On the Graphical Construction of a Solar Eclipse.
By Pror. CaYLEY.

Read January 13, 1871.

—_—

THE present Memoir contains the explanation of a Graphical Construction
of a Solar Eclipse, which (it appears to me) is at once easy, and susceptible
of considerable accuracy: I think that if made on the suggested scale
(radius = 12 inches) we might by means of it construct a diagram such as
the eclipse-diagrams of the Nautical Almanac, with at least as much
accuracy as could be exhibited in a diagram on that scale. ‘

General Ezxplanation of the Construction. Nos. 1 to 8.

1. We may imagine the celestial sphere as seen from the centre of the
Earth stereographically projected at each instant during the eclipse—the
radius of the bounding circle of the projected hemisphere being a given
length, say twelve inches, which is taken as unity—in such wise that the
centre of the Moon is always at the centre of the projection, say M, and
the pole (suppose the north pole, say N) of the Earth on a given radius:
its position on this radius will in strictness be variable, viz. distance from
centre = projection of Moon’s N.P.D. = tan 4 A. Suppose, for a moment,

Rovar AstroN. Soc. Vor. XXXIX, B



2 Prof. CAYLEY, on the Graphical

that the position at each instant of the Sun’s centre were also laid down
on the projection, so as to obtain the projection of the Sun’s relative orbit;
this will be a terminated short line A’ B’ (fig. 1), nearly straight, and
lying near the centre of the projection (this relative orbit is not to be
actually laid down, but it is replaced, as will presently be explained, by a
relative orbit on a very enlarged scale); if at any instant the position of
the Sun on the relative orbit be denoted by S, then the straight line M §' is
the projection of the arc of great circle through the centres of the Moon
and Sun, so that E being the angular distance of the centres, the length
of the line M §' is = tan 4 E, or (E being small) it is = } E.

2. Produce S8'M through the centre M to a point Z, and consider Z as

representing a point on the Earth’s
fig.1  surface: to determine the geographi-
cal position of Z, we must consider
the projected meridian N Z which
passes through Z: the arc N Z, re-
garded as a projection, represents the
N.P.D. or colatitude of Z, and the
actual angle at N which the tangent
of NZ makes with the line N M is
equal to the celestial angle ZN M
which is = Moon’s hour-angle from
Z, or what is the same thing = dif-
ference of Moon's hour-angle from
Greenwich and of the longitude of Z
(as the figure is drawn, £ ZN M = Moon’s hour-angle E. of Greenwich,
less E. longitude of Z).

3. Now, considering the Moon and Sun as seen from Z, we may dis-
regard the parallactic depression of the Sun, and attribute to the Moon
a displacement equal to the difference of the parallactic displacements of
the Moon and Sun; that is, regarding the zenith distances Z M, Z S’ as
equal, we may consider the Moon’s centre as depressed by parallax in the
direction of the arc M’ through an arc M Q"= sin™ P’ sin Z M, where
P'=-99837 (¢ — #’) is the quantity thus designated in the Appendix to the
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Nautical Almanac for 1836, viz. it is = ¢ — #’, the difference of the
equatoreal horizontal parallaxes at the time of the eclipse, multiplied by
a factor ‘99837, which answers to a distance of Z from the Earth’s centre
= Earth’s radius for latitude 45°. And if we take Q' such that its an-
gular distance from S'= sum of angular semidiameters of the Sun and
Moon, the locus of Q is very nearly a circle about the centre S', and the
corresponding positions of Z give.the positions on the Earth where the
limbs are in exterior contact, or, what is the same thing, give the penumbral
curve on the Earth’s surface for the position S’ of the Sun.

4. Instead of
. Arc M Q/ = sin—* P'sin Z M,
we may write

Arc MQ'=P'sin ZM,
or, using ¢ to denote the linear distance ZM in the projection, we have
e = tan 4 ZM, and therefore sin ZM = ég—z_ﬁ , hence
/. 2¢
A MQ =P °F,

and the linear distance M Q' in the projection is = tan 4 arc M Q/, say
this is = 4 arc M Q/, or calling this linear distance " we have

5. Hence, if instead of the original representation of the Sun’s relative
orbit we consider an enlarged representation thereof and of the depressed
positions Q' of the Moon, obtained by increasing the several distances
from the centre of the projection in the ratio P’ to 1, and if instead of
A, B, ¥, Q,we use A, B, S, Q, as referring to this enlarged representa-

tion, then representing by r the linear distance M Q, we have r = %,r’ , and
consequently

= _2¢

We have here r representing the parallactic depression corresponding to
the zenith distance ZM, where ¢ =tan 3 Z M ; that is, ZM = oo°, ¢ = 1,
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and therefore » = 1; but for ZM = go° the parallactic depression is = P’;
that is, the scale of the enlarged representation of the Sun’s relative orbit,
or say simply the scale of the relative orbit (for on the original scale it
was never actually constructed at all) is such that we have P’ (= about 60')
represented by the radius of the bounding circle of the projected hemi-
sphere, = 12 inches.

6. The process is, construct the relative orbit on the scale P’ = radius
of bounding circle: take S for the position at any given instant of the
Sun in the relative orbit, and with centre S and radius = s + ¢ (sum of
the angular semidiameters, of course on the same scale) describe a circle.
The positions A and B of the Sun at the beginning and end of the eclipse
respectively are such that this circle just touches the bounding circle
externally, viz. the distances of A and B from the centre of the projection
are each = radius of bounding circle + s + . At any intermediate instant
the circle, radius s + o, lies wholly or partly within the bounding circle ; in
the latter case we attend only to the arc thereof which lies within the
bounding circle. Taking then Q any point whatever on the circle or arc
in question, we join Q with the centre M of the projection, and produce
this line through M to a point Z, such that the distances M Q, M Z, being
r, ¢ respectively, we have as above

2
r= c’_-f—l’
or, what is the same thing, writing 4 in place of 2, and regarding this angle
¢ as a variable parameter, the relation between r, ¢, may be expressed by
means of the two equations, p = tan 4, r = sin 4.

7. Practically the construction may be performed very easily by means
of a straight edge twenty-four inches long, graduated from the centre, one
half of it for the values of r, and the other half for the corresponding
values of ¢ (that is, the first half is graduated for sin 4, and the second half
for tan 44): we have thus, corresponding to the circle or arc of circle
which is the locus of Q, a closed curve, or arc thereof terminated each
way at the bounding circle, for the locus of Z:—which curve or arc of a
curve is the penumbral curve on the Earth’s surface for the position S of
the Sun in the relative orbit.
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8. The north pole of the Earth occupies in the projection a given
position, viz. it is situate on a given radius at a distance = tan § Moon’s
N.P.D.; which N.P.D. may be considered as being throughout the eclipse
constant, and equal to its value at the middle of the eclipse. But in order
to arrive at the geographical signification of the figure it is necessary to
lay down on the projection the position of the meridian of Greenwich ;
which position, it will be remembered, varies according to the position of S.
Supposing this done, we could of course (at least theoretically) draw the
whole series of meridians and parallels, and thereby determine the latitudes
and longitudes of the several points of the penumbral curve, or (if need
is) transfer it to a different projection of the Earth’s surface. The actual
description of the meridians and parallels would, however, be very la-
borious, and fortunately it can be avoided by means of a single blank
projection and a slight modification of the foregoing process, as will be
explained. But before considering how this is, it is proper to remark that
constructing as above a figure of the penumbral curves corresponding to
the several positions of the Sun:—by what precedes these different curves
may indeed be considered as belonging to the same position of the north
pole in the projection, but they belong to different positions of the meridian
of Greenwich; and thus they do not constitute a representation of the
penumbral curves each in its proper terrestrial position, but only a re-

presentation in which the penumbral curves are affected each of them hy
a different displacement in longitude.

Modification in order to the Applicability of a Single Blank Projection.
Nos. g to 13.

9. Imagine a stereographic projection of the meridians and parallels on the
plane of a meridian, radius of this meridian, that is of the bounding circle
of the projected hemisphere, being = 12 inches as before; and the poles
N, = being of course opposite points on the circumference of the bound-
ing circle—the meridians and parallels are, however, to be produced outside
the bounding circle; say this is the “blank projection,” and let its centre be
denoted by M. Then, if at any point M on the radius M N, we draw
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the chord C D at right angles to M, N, and on CD as diameter describe
a circle, this will cut out from the blank projection a new projection hav-
ing the last-mentioned circle for its bound-
ing circle, and in which N is the north
pole; viz. the meridians of the blank pro-
jection will be meridians, and the parallels
of the blank projection will be parallels,
in this new projection. And, moreover,
if the longitudes are reckoned from the
meridian N M M,, then the meridian of a
given longitude in the blank projection
will in the new projection be the meridian
of the same longitude—but the parallel
of a given colatitude ¢ in the blank pro-
jection, will, in the new projection, be
the parallel of a different colatitude ¢’,—
the relation of ¢, ¢’ being, however, a very
simple one, as presently explained.

Jig.2

10. The blank projection thus at once gives a projection in which the
north pole N has any assumed position whatever; and it is easy to see
that in order that its distance M N from the centre of the projection may
represent a given angle A, we have only to take M, M = cos A (that is
= 12 inches x cos A), the corresponding value of M C being M C = sin A
(that is = 12 inches x sin A). Hence A denoting the Moon’s N.P.D. at
the middle of the eclipse, we can by means of the blank projection construct
a projection such as that above referred to, only the radius of its bounding
circle, instead of being unity (12 inches) is in the reduced ratio of 1:sin A.

12. The figure of the penumbral curves as originally constructed re-
quires, therefore, to be reduced in the ratio r:sin A, viz. each of the
distances from the centre M should be reduced in this ratio; this could
of course be done easily enough with a pair of proportional compasses ;
but by means of a different graduation of the straight edge we may, in the
JSirst instance, construct the penumbral curves on the proper reduced scale;
viz. assuming that we have on the proper scale a proportional-scale figure



Construction of a Solar Eclipse. 7

such as is here shown, the line M r (= 12 inches) being graduated for
sin 4, and the line M A (also = 12 inches) for tan } 4, and a set of parallel
lines being drawn through the last-mentioned ,

graduations—then taking the distance M,
= sin A, that is =12 inches x sin A, and
drawing the line My, this line will, it is
clear, be graduated for sin A tan } 4: so that
we may from the figure graduate the straight
edge, the one half of it by means of the
line M r, and the other half of it by means
of the line M¢; and with the straight edge
thus graduated, at once lay down the pen-
umbral curve on the scale now in question.
And we thus obtain a figure containing as
well the penumbral curves, as the meridians
and parallels which serve to fix their terrestrial position.

13. It remains in the new projection to find the colatitude belonging to
any given parallel. Supposing that the colatitude in the blank projection
i$ = ¢/, then it may be shown that the colatitude ¢ of the same parallel in
the reduced projection is given by means of the equation

tan } e =cot § Atan ¢/,

from which ¢ might be calculated numerically: but the required value may
also be obtained graphically. In fact, considering the parallel which cuts
N = (see fig. 2) in a point R, then, if by lines drawn from C as a centre
we project N, R, =, on the circumference of the bounding circle of the new
projection —say the projections of these points are n, r, s, respectively, the
arc n s is a semicircle, and the arcs nr, s, are respectively the N.P.D. and
the S.P.D. of the parallel in question. It may be added that in the new
projection the equator is represented by the parallel through the points
C,D; so that if this cuts N 2 in Q, and the point Q be in like manner
projected on the bounding circle—say its projection is ¢, then the arcs
n g, s g, will be each of them a quadrant, and the arc ¢ » will be the latitude
of the parallel in question.
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As to the Construction of the Relative Orbits. Nos. 14 to 18.

14. It is convenient to notice that if e, ¢, be the values of the equation
of time at the preceding and following Greenwich Mean Noons (viz. e or e’
= G.M.T. of apparent Noon) then that the Sun’s hour-angle E. of Green-
wich at the Greenwich mean time ¢ is

k’=e+t(1 +°;;e)

and that if a, @', are the R.A.’s of the Moon and Sun respectively, then
K — h = a’ — a, which is also of the form A + B# In the reduced pro-
jection, the Moon is always at the centre M ; by means of the values of
k' — h we lay down at any instant the Sun’s position in R.A. and then by
means of the values of A’, the position of the meridian of Greenwich ; and
we thus at any instant read off the terrestrial longitude of any point of the
reduced projection, or say, of a point on the penumbral curve.

15. With regard to the construction of the relative orbit, it is to be
observed that if at any instant the hour-angle and
N.P.D. of the Moon are A, A, and those of the Sun,
K, A, then taking M as origin, and the axes Mua,
My, in the direction of N M produced, and perpen-
dicular hereto to the right (or eastwards), then the
rectangular co-ordinates of S’ are approximately z =
u 3 (A'=A),y =4 (K= h) sin A, where A'— h is equal
? to the difference of R.A. of the Sun and Moon.
__\ Hence, in the adopted relative orbit, the co-ordinates
¥ of S would be

_a—a K—h

x xr = P 12 1n. y= P

where, P’ being reckoned in minutes, A’— A and A’'— A are also reckoned
in minutes.

Sig.2

sin A .12 in.

16. Moreover, A may be considered as constant during the eclipse : and
the relative orbit, assumed to be a straight line, will be determined by
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means of two points thereof ; viz. knowing the values of A’— A, and 2/ -4
at about the time of the beginning and at about the time of the end of the
eclipse, we construct by these formulse two points of the orbit, and joining
them by a straight line, we have the orbit. Also the position at any
instant of the Sun in this relative orbit will be obtained by considering its
motion therein as being uniform. I think there is no advantage in the
adoption of a more accurate construction: for although we may for any
given instant use the accurate values of A, A, %', A', and so construct the
position in the relative orbit, and the corresponding penumbral curve, yet
if in the determination of the geographical significance thereof, we were to
use for each curve a different value of A, the simplicity of the construction
would disappear; and it is, moreover, doubtful whether the trifling cor-
rections would not be within the limits of the necessary errors of the
drawing.

17. But if M S be = E, and £ 2 M S’ = ¢, the accurate values for the
co-ordinates of S’ are x = tan 4 E.cos ¢, y = tan § E . sin 4, and the

values for the co-ordinates of Sare z = 5—— tany E.cosd. 12in.,, y =
. Plarc1 i

2 . . . . . o
ooy tan 3 E.sin 4. 12 in,, where P’ is still reckoned in minutes,

and of course arc 1’ =

g As the scale is considerable, it is worth

while to inquire whether the employment of the accurate formule would
produce an appreciable difference in the position of S.

We have sin 4 = sin A’ = sin (A’ — k) + sin E, that is, sin E sin ¢
= sin (A’'— k) sin A, and cos E = cos A cos A"+ sin A sin A’ cos (b — h);
or putting for shortness A'—A = &, '—h = 3, we have sin E sin ¢
= sin B sin A, and cos E = cos « — sin A sin A’. 2 sin* § 8. Hence, ob-
serving the equations cos’ 3 E = 2 (cos* 4 « — sin A sin A’ sin* § 8) and
sin 3 E = 2 (sin® § « + sin A sin A’ sin® § B), we find

tan } Esin 6 = et
n 4 Esin 0 cos’ § « — sin A sin A’ sin® } 8

and

tan § E wus 0 _‘/siu’ 3 « + sin Asin A’sin* } 8 sin® § @ cos’ § @ sin® A’
v cos* i « — 8in A 8in A’ sin* ; 8 (cos‘ i « — 8in A sin A’ sin® é 55;’

whence, considering «, 3 as small quantities of the same order, and neglecting
RovaL AstroN. Soc. Vor. XXXIX. c
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terms of the third order, we have tan § E sin 4 = sin 4 3 cos 4 B8 sin &/,
. or what is the same thing, = sin § @ sin A, or finally, = 4 B sin A, that is
4 (W' = 1) sin A, which is the foregoing approximate value, and thus in the

adopted orbit y = h; A 2in = approx. value. As regards the expression

for tan 4 E cos ¢, writing for a moment Q = sec? 4 « sin A sin A’ sin® § 6,
the quantity under the radical sign is

tan’ § « + @ sin® } 8 cos* } 8 sin® A
1—Q cost . (1 —Q) °’

and, taking this to the third order, it is

sin* § 8 cos® § 8 sin* A’
cos* § « ’

= tan*« 4+ O (1 + tan® } «) —

which, substituting for Q its value, is

sin® } 8 sin A’

cos* 3 (sin A — gin A’ cos® } 8),
®

tan® § « 4

where :
sin A — 8in A’ cos* } 8

= sin A —sin (A + «) cos* } 8,
or neglecting herein terms of the second order, this is
= sin A — (sin A + sin « cos A) cos* § 8
= —38in € 08 A = — 2 tan } = cos* } « cos A,
so that to the third order the quantity under the radical sign is

2 tan § « 8in* § B 8in A cos A
cos® } « ’

=ta.n’§¢—

and to the second order, that is finally neglecting terms of the third order,

sin®* § 8 8in A cos A
cos* & «

’

tan § E cos 0 = tan } « —

or what is the same thing,
=} «—sinAcosA.}g
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18. Hence, writing « = (A’—A) arc 1, 8 = (A'— &) arc 1/, and passing
to the adopted orbit, we have

’ ,

; 12 in. — } 8in A cos A

P

r =

12 in. x (A'— &) arc 1’,

viz. putting

y=-7v sin A . 12 in.

we have

B 12in. —y .} cos A x (A'—h)arc 1t

or say

a—A 12in. —y . § cos & (A’ —A) lo;oo'

The value of the second term may amount to about 15 of an inch, and
thus be sensible, but there is no difficulty in taking account of it.

As to the Equation r = Cf_‘f - No. 1q.

+ 1
the graduation of the straight edge was in effect obtained from the equations

19. It may be remarked that the equation r = c'_zL which served for

r=

tan } E, Psinz=3sinE, ¢=tan}z

i

by assuming therein tan § E = 1 E and sin E = E respectively. But the

elimination of E and z can be effected without this assumption, viz. we

2tan § E Pr 2tan } z

have sin E = - T 1E S 1T P and then as before, sin z = - iz

= l—:‘e_c" whence the relation between r and g is found to be
r - X4
l+i,P“'1'"_l+ev

which however assumes that P’ is reckoned in parts of the radius; reck-

P

oning it as before in minutes, we must, instead of P’, write P’ arc 1" = .-,
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viz. the numerical value is about &, and taking it to be this number, the
formula is

r _2¢
+ ! r* 1t e”
14400

where 7, ¢ are reckoned in parts of the radius (= 12 inches). Supposing

that 7, is calculated from the formula r, = li-l-_ce” then we have very nearly

, and 7, being = 1 at most, the correction is inappreciable:

r'l
144.00)
if however this were not the case, the more accurate formula might have
been used; the only difference being that the making of the graduation
would have been more laborious.

r=rl(1+

Remark as to the Geometrical Theory of the Projection of the Penumbral
Curve. No. 20.

20. The stereographic projection of the penumbral curve on the Earth’s
surface (assumed to be spherical) is, as I have elsewhere shown, a bicir-
cular quartic. It may be shown that the stereographic projection, as given
by the foregoing approximate method, is a bicircular quartic: we have, in
fact a circle, the equation of which in the polar co-ordinates r, 4 is

(r cos 6 — &) + r2sin® § = g¢,

2

c,—_l—};, that is

and where (¢ being unaltered) r is changed into ¢, where r =
% = i <¢ + cl) The equation of the circle is

% —2a7rc030+ a—48% =0,
or say

. 2« cos 0 a? — g2
r re

and the transformed equation is therefore

|—ucose(¢+-:-)+}(u'—,s’) (¢+¢1)‘=o,

that is
(=8 (¢t +1)* —4acosfe(¢*+1)+4¢*=0,



Construction of a Solar Eclipse. 13

" or in rectangular co-ordinates

4a
a® — g2

4
,z_pz

gt a(e+1) + e=o

that is,

4a 4 4= -
c‘—m3¢’+(2+¢,_ly) c’—“,_B,z+l =0,

where ¢* = 2" + y*; the form of the equation shows that the curve is a

bicircular quartic. Writing for shortness = m, the equation is

ot — 8¢

¢—z2maze®+(2+2m)gf+1—2max=o,

that is

{f—m@z—1)+1}—m (az—1F—2m = o,
or, what is the same thing,
{(z—iﬁ~)’+y'—im‘-’+m+ 1 —mi(az—1)f—2m =0,
which putting z + } ma for z is
(@F+yr—imattm 1P —m(ez+imat—1)f—2m = o,

viz. the terms of the fourth order being (2* + »*)*, and there being no terms
of the third order, the curve represented by this equation is a bicircular
quartic.

Practical Details and Application to Eclipse of December 21-22, 1870.
Nos. 21 to 30.

21. There are some practical details which it is proper to explain, using
to fix the ideas the eclipse of December 21-22, 18;0: the constant value
of A (see infra) is taken to be = 9o° + 22° 35'.*

I have a blank projection (radius 12 in. as above) with the meridians
and parallels each at intervals of 5°. And also another blank form which
has on it merely a circle, radius 12 in., graduated as to one quadrant thereof

* See Plate, which exhibits in dotted lines the blank projection under the other blank
form ; the part within the red semicircle, as seen through the tracing cloth, the rest really
hidden.
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with lines about 1} in. long, inwards towards the centre. It contains also
in a corner the foregoing proportional-scale figure.

22. On the blank projection I measure off, downwards from the centre, a
distance M, M = 12 sin 22° 35’ (= 4°61), distances all in inches; and then
with the centre M and radius M C = 12 cos 22° 35’ (= 11°08), describe a circle
which is the bounding circle of the reduced projection. With this same
radius I describe on the second form, concentric with the 12-inch circle and
above the horizontal diameter thereof, a semicircle : and, cutting out the in-
cluded area, replace it with tracing cloth. The form thus prepared is placed
over the blank projection, so that the semicircle shall coincide with the cor-
responding semicircle on the blank projection, and the two sheets are fixed
together by their lower edges, and by folding down the remaining sides.
We have thus the upper half of the reduced projection, represented by the
semicircle, with the meridians and parallels marked out thereon by lines
seen through the tracing cloth. See the Plate; the dotted line shows a
paper scale afterwards affixed to the second form or upper sheet. Observe
that so far the only eclipse-datum made use of is the value A = 9o° +22° 35'.

23. We have for the eclipse in question, taking ¢ for the G.M.T. in
hours, positive or negative according as the time is after or before G.M.
Noon, Dec. 22, and A’ also in hours,

k' = ooz + ¢ 9996,

and then taking the values of «, «', A, A’ from the N. A. we have as
follows: —

1

G.M.T. ht2b= A—A | K=k
1870, Dec.! K42t = | a= « = A=9o°+ 4 A'=90°+ (k' 428+ a'—a| inBinutes | 4 gyqy,
d b b m s h m s h m [ P b

22

21 22 0 1 13°42{17 56 184118 1 48°7zzz 27 8523 27 171{I o 7 o3o 601'143 — 86620
!

|

3 }s I 7°3718 9 26°74{18 2 44°2722 43 lzszs 27 13°9

and moreover
Moon’s Parallax ¢ = 60 3876

Sun’s ditto = 91

o —m = 6o 29 "5 = 6049
P = 60°39

4 54 24°90 | 44'023 |+ 100632
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Moon’s Semidiam. s = 16’ 33”2
Sun’s ditto § =16 179
s+ 8 =32 51°2 = 32"85
whence

8;8 12 in, = 653

viz. this is the radius of the circles used in the construction of the penum-
bral curves.

24. We have for z, y the formule

[— A

B

12 in. 4+ y (K — k) o-00006,

H

y= P,h 12 in. X 'sin A,
viz. I find Dec. 21, 22",

& = 119§ — 06 = 1189,

Yy —15-80,
and Dec. 22-3",

z= 875 4+ 11 = 88y,

y= +184s,

where I have taken account of the small corrections to the approximate
values of z: it may be added that, using the conjunction-value 52’ 94 of
A'— A, we have at conjunction,

z = 1036, y=o.

25. We thus lay down on the relative orbit the two points 22" and 3",
and the point of conjunction or intersection with the axis of x'; the three
points are found to be sensibly in a straight line: the distance between the
extreme points is about 34 inches, representing 5 hours, so that the scale is
nearly 7 inches to an hour: the line is then graduated to quarters of an
hour. We then, by means of the distance 12 + 6°53 = 18'53, mark off on
the relative orbit, the points B, E, which correspond to the beginning and
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end of the eclipse respectively: the times as read off from my figure, and
compared with the true times given in the N. A. are

From Figure. N. A,
Beginning 22b 12™g 22 13°6
End 2 40 °§ 2 41'1

26. With centre B describing a circle radius 653 this will of course
just touch the 12-inch circle, and the penumbral curve will be a mere point,
viz., this is the point B’ on the bounding circle, opposite to the point of
contact. And so with centre E describing a circle of the same radius 6°53,
that will just touch the 12-inch circle, and the penumbral curve will be a
mere point, viz., the point E' on the bounding circle, opposite the point of
contact.

27. I draw the circles correspond’ing to the times 22" 307, 45, 23" 0%, viz.,
so much of each as lies within the 12-inch circle. Each of these is then
transformed into a penumbral curve, drawn in the upper semicircle on the
tracing cloth. For this purpose we construct a straight edge of paper, the
one half graduated for 12 sin ¢, the other half for 11:08 tan } 4, by means of
the proportional-scale figure, as already explained: 4 = o° to go° at intervals
of 5° is quite sufficient; the points on any particular penumbral curve are
laid down in pairs with the utmost facility, and the curve is traced by hand
from 4 or 5 pairs of points.

28. We then graduate for latitude; viz., we see through the tracing
cloth, the equator cutting the vertical radius in Q, and a parallel cutting
the same radius, say in R; drawing lines from C, we refer these to the
points ¢, » on the bounding circle, viz., on the quadrant thereof which is
graduated by means of the graduation-lines of the r2-inch circle; and we
thus read off the latitude of the parallel in question; this latitude is
then marked for each parallel on the vertical radius from Q up to the
hounding circle, viz., not on the tracing cloth, but on the paper affix; and
we then on this same radius (on the paper affix) interpolate the positions
where this would be intersected by the parallels for the colatitudes, 5°, 10°
15° &c.  Or (what is perhaps better) we may without marking the lati-
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tudes of the parallels of the blank form, construct directly the last-men-
tioned graduations; viz., marking off on the bounding circle from the point
g, equal intervals of 5° and from any such mark drawing to C, a line to
meet the vertical radius, the point of intersection is the point belonging to
the parallel, latitude equal to the corresponding multiple of 5°.

29. Finally, we must (not on the tracing cloth but on the paper affix)
graduate an arc of the equator for the position of the meridian of Green-
wich, that is for &. 'We have

h m s h m s o 1
At 22t h=—2"4+0 7 o030=—1 52 §2'30 =—28 1308
At 3 h=—2"+4 54 2490 =+2 54 24°90 =+43 3620

The equator is already graduated in longitude by means of the meri-
dians of the blank projection: hence we lay down the marks for 22" and 3"
in the positions belonging to — 28° 13’, and + 43° 36’ respectively. And
then since the interval of 5 hours answers to 71° 49, that of 1 hour will
answer to 14° 22', so that, measuring off these intervals of longitude, we
have the marks for the intermediate times 23", o*, 1% 2"; or it might be
proper to find in this way the marks corresponding to each interval of 20"
of time, answering to about s° of longitude; the further subdivisions would
be proportional to the intervals of time.

30. I have in this way read off the positions of the points B’ and E’
belonging to the beginning and end of the eclipse; the values, as compared

with the true ones, are
From Figure N.A.

B latitude N. 34 35 37
longitude W. 47 45 44
E’' latitude N. 26 26 g
longitude W. 383 37 16

I remark that my figure, although drawn carefully, is not drawn with
anything like the degree of accuracy which would be easily attainable; and
I think that far better results might be obtained. I merely from a scale
lay down tenths and estimate hundredths of an inch, but certainly fiftieths
might be laid down from a scale.

Rovar AstroN. Soc. VoL, XXXIX, D
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1I. Les Variations de la Pesanteur dans les Provinces Occidentales de
. U’Empire Russe. Par A. Sawirsci. (Communicated by the Astro-
nomer Royal.)
Read January 12, 1872.

1. Instruments employés, méthodes de Calcul et d’Observation.

1. UN grand are du méridien ayant été mesuré en Russie® avec toute la
précision que comportent les nouveaux moyens d'observation, il était
intéressant d’examiner les changements qu’éprouvent l'intensité de la pesan-
teur dans ces contrées et de comparer la marche de ces changements avec
les variations qui se présentent dans les directions de la pesanteur, déter-
minées sur plusieurs points par les observations astronomiques et par les
opérations géodésiques. C'’est ce qui a engagé I'’Académie des Sciences
sur les diverses parties de I'arc qui s’étend de Tornea en Finlande jusqu’a
Ismail en Moldavie, en choisissant les stations dont les positions géogra-
phiques et les élévations au-dessus du niveau de la mer sont connues par les
travaux rélatifs aux mesures des dégrés du méridien. M. R. LENz et moi
nous avons fait les expériences durant 1'été de I'année 1865 entre Tornea et
St. Pétershourg ; pendant la méme saison des années 1866 et 1868 les
expériences ont été continuées par M. SuysLoF et moi, de St. Pétersbourg
3 Ismail sur le Danube.

2. Nous nous sommes servis du pendule a reversion,—instrument qui a
été employé avec tant de succés par les savants anglais. Deux pendules
de ce genre, construits par M. RepsoLp, 2 Hambourg, étaient mis 3 notre

* Arc du méridien de 25° 20’ entre le Danube et la mer Glaciale, ouvrage composé sur
différents matériaux et rédigé par F. G. W. STRUVE.

Rovar AstroN. Soc. Vor. XXXIX. E
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disposition ; ils différent des instrumens anglais par.leurs dimensions et
par les arrangements de leurs diverses parties. Ils ne battent qu’a-peu-prés
les § d’'une seconde du temps moyen et ne portent pas le curseur, on
petit poids mobile, déstiné & rendre égales entre elles les durées d’oscil- -
lation autour de chacun des deux axes de rotation. En se conformant &
la théorie de BEssEL, on a fait le pendule de telle sorte que sa figure est
gymétrique en-haut et en-bas par rapport & un plan horizontal passant par
le milien du pendule disposé verticalement ; mais les masses sont distri-
buées d’'une maniére inégale. Ainsi le pendule a deux lentilles, des mémes
formes et grandeurs : 'une est lourde et pleine, 'autre légere et intérieure-
ment vide. Les axes de rotation sont des couteaux ou les tranchants de
prismes en acier ; le support de I'axe est aussi en acier. Pendant les
expériences le pendule et son trépied étaient renfermés dans une cage ou
maisonnette, afin que les courants de I'air n’eussent pas d'influence sur les
oscillations du pendule.

Un étalon et un comparateur, construits aussi par M. REpsoLp, servalent
a évaluer la distance entre les deux couteaux du pendule; M. SMYSLOF a°
vérifié cet étalon en le comparant & I'étalon normal, exécuté 3 Londres par
MM. TrouGHTON et StMMS, qui se trouve a I’Observatoire de Poulkova et qui
a été examiné par M. BaiLy.*

Un excellent mécanicien de St. Pétersbourg, M. BRAUER, nous a fourni
deux appareils pour les vérifications de I'instrument. L’un sert &4 la déter-
mination du centre de gravité du pendule, et 'autre est un niveau sur un
patin convenable, qu’on peut placer sur le couteau inférieur quand I'autre
couteau s'appuie en-haut sur le plan horizontal du support ; il est destiné a
examiner le parallélisme des deux couteaux.

Sans entrer dans la description des détails, nous sommes heureux de dire
que nos deux pendules ont été envoyés dans I'Inde et mis a la disposition de
M. WALKER, pour servir & ses recherches scientifiques; ils ne pouvaient pas
étre placés dans des mains plus habiles.

3. Pour trouver la durée des oscillations du pendule, nous avons em-
ployé la méthode de Bompa ; elle consiste a4 noter les temps des coin-

* Memoirs of the Royal Astronomical Society, Vol. ix., “ Report of the New Standard
Scale,” by F. Bairy, p. 115, 1836.
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cidences de notre pendule et de celui d'une horloge, dont la marche diurne
se déduit des comparaisons de I'horloge aux chronométres ; la marche de
ces derniers en 24 heures du temps moyen a été vérifiée par les observations
astronomiques, a l'aide d’un instrument des passages établi sur une colonne
en briques.

Les amplitudes des oscillations et les températures de I'instrument ainsi
que de I'air qui I'environne, sont données pour les 3 ou 4 premiéres oscil-
lations, pour le milieu, et pour les 3 ou 4 derniéres oscillations de chaque
série d’expériences. Dans l'intérieur de la cage du pendule il y avait trois
thermométres centigrades, 'un placé vers le bout supérieur, 'autre vers le
milieu, et le troisiéme en-bas du pendule. L’échelle de ces thermométres
est divisée de L & + degrés; ces thermométres ont été vérifiés & I’Observa-
toire physique de St. Pétersbourg. Il nous a paru suffisant d’inscrire les
indications du barométre au commencement et & la fin de chaque série
d’expériences. '

Les réductions de la durée des oscillations observées i celles qui cor-
respondent & l'amplitude infiniment petite peuvent étre calculées par la
formule connue de Borpa, en admettant que les amplitudes décroissent en
progression géométrique, quand le nombre, d'oscillations s’augmente ew pro-
gression arithmétique. Sans recourir a cette supposition, on peut facile-
ment calculer les réductions par la méthode des quadratures.

Soit 2 ¢ I'intervalle du temps entre deux oscillations quelconques du
pendule, soient de plus «/, u”, u"”’, les angles d’excursion du pendule au
commencement, au milieu, et & la fin de l'intervalle 2 £; » le nombre
d’oscillations observées pendant cet intervalle, et », le nombre corre-
spondant doscillations infiniment petites. Prenant # pour I'unité de temps
et 3 ¢ pour un élément infiniment petit de temps, on peut exprimer », par

I'équation
+1
1
no=mn [ (14 —sintu)dt
[: 16

Calculons d’abord les valeurs numériques:—

1+ % sinte' =0, 1+ ;% sinf o’ =0T", 1+ % sint «” = U,

Ulu - Uu - (U"_ U') = A(!)’
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nous aurons alors sans erreur sensible,
(4 1
n,=n (U +3 A(”).

De la méme maniére on peut évaluer aussi l'intégrale logarithmique,

+1

2 gint )
-I:og (|+l6sm u).de

4. Les durées d'oscillations de nos pendules ont été réduites a ce
quelles seraient si la température était constante et égale a + 20° centi-
grades. Quant au coefficient linéaire de la dilatation des pendules par la
chaleur, nous I'avons déduit des expériences sur la durée des oscillations
dans les différentes tempéragures, telles que + 2%5 et +20°% +11%7, + 20°%
et + 30° centigrades. Soient N et N’ les nombres d’oscillations infiniment
petites correspondantes au mnéme intervalle de temps et aux températures
+0 et 20° centigrades, « le coefficient linéaire de la dilatation; on a alors

=Ny 1F=0 _ N ! (0= 20°) —
N_N‘/l+“'zo°_N(1+2¢(e 20°) )

.

5. On n’a pas des régles bien certaines pour les réductions au niveau de
la mer. Si » et n’ sont les nombres d’oscillations du pendule pendant le
méme intervalle de temps au niveau de la mer et a une élévation & audessus
de ce niveau, et si R est le rayon du globe terrestre, on peut admettre
I’équation

n=n' (.l-!--,—l-).
R

Dans ce cas on fait abstraction de Iattraction qu'exercent les couches
terrestres comprises entre la station de l'observateur et le niveau de la
mer. En considérant cette attraction, nous admettons, avec PoIsson,

' 5
n=mn (l+_8-.-ﬁ).

Comme les élévations de nos stations sont pour la plupart trés petites, il
est indifférent quelle formule serait choisie pour calculer les réductions au
niveau de la mer.
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6. Notre pendule & reversion est surtout rémarquable par rapport aux
corrections qui donnent la réduction am vide. La perte que le poids du
pendule éprouve dans l’air, et le mouvement d’une certaine masse d'air,
entrainée par le pendule, produisent une influence sensible sur la déter-
mination de la longueur du pendule. BessEr, Poisson, et M. StokEs, ont
expliqué les principes de la réduction au vide, que M. BArLy a vérifiés par
des nombreuses expériences. On peut voir dans 'ouvrage de M. BesseL*
sur ce sujet, qu'avec un instrument construit comme notre pendule 3
réversion on peut presque entitrement éliminer les incertitudes dans la
réduction au vide.

Supposons que les durées d’oscillation du pendule soient déjd réduites
au niveau de la mer, 3 une température constante et aux excursions
infiniment petites ; soit dans de cas—

A, la durée d’oscillation quand le bout lourd du pendule est en-bas:
a, la distance de I'axe de rotation au centre de gravité du pendule;
a, la densité de l'air lors des expériences qui déterminent A.

B, la durée d’oscillation quand le bout leger est en-bas; &, la distance
de I'axe de rotation au centre de gravité du pendule ; B, la
densité de l'air pendant les expériences qui donnent B.

P, le poids du pendule, dans le vide; p, le poids d'un volume dair .
égal au volume du pendule; m, la masse aérienne entrainée en
mouvement par le pendule.

m K, (a ': b) , Paugmentation du moment d'inertie du pendule A cause

du mouvement de I'air entrainé par l'oscillation du pendule; K
est un coefficient constant pour un pendule; il ne depend que
de la figure et des dimensions de ce dernier.

7, 1a durée d'une oscillation du pendule simple, dont la longueur est
a+b.

Admettant alors les principes de BESSEL, on parvient facilement & ex-
primer 7 par I’équation suivante: '

$ Untersuchungen ueber die Linge des einfachen Secundenpéndels, von F. W. BesseL,
Besonders abgedruckt aus den Abkandlungen der Akademie zu Berlin fiir 1826. Berlin,
1828, pp. 96-99, 126-129.
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= %( 14 Bz) + a + b) {A' Ba_ __ (a A — B")}

_i(‘;—i-:) . %.K.f’.(a—ﬁ);
« et B sont ici exprimés en parties de la densité de I'air, qui servait a déter-
miner le poids p.

Les expériences qui dounnent A et B se suivent les unes aprés les
autres dans le court intervalle d’'une heure; ainsi les densités « et 3 ne
sauraient &tre bien différentes et le dernier terme de I'équation précédente,
c. a. d. le terme qui dépend de K, se détruit a tres peu prés. On peut méme
éliminer ce terme d’une maniére plus satisfaisante : pour cela on n’a qu’a
faire les expériences dans cet ordre: 1. déterminer par ex. A; 2. immé-
diatement aprés déterminer B; et 3. de nouveau déterminer A ; ou, au
contraire, chercher d'abord B, puis A, et enfin B. Le tout n’exigera que
trois heures du temps ou un peu plus; les changements de la densité de
Vair dans cet intervalle sont pour la plupart presque uniformes et pro-
portionnels aux variations du temps. Ainsi la densité de l'air lors de la
seconde série d’expériences est a-peu-prés égale a la moyenne des densités
de l'air dans les premiére et troisiéme series. Donc en combinant B avec
le terme moyen de deux déterminations A, et A, correspondantes de A,
on parvient 3 un résultat qui fixe + d’une maniére presqu’indépendante
du coefficient inconnu K.  En faisant dans ce cas A = { (A, + A ) et en
calculant le poids p de I'air pour les états moyens des thermométres et du
barométre, rélatifs aux trois séries d’expériences qui donnent A, B et A ,
on trouve '

= (A B+ (""‘: (n -%) . (A*~BY).

Nos expériences ayant été faites dans I'ordre que nous venons d'expliquer,
nous nous sommes servi de la formule précédente pour calculer . Comme
A était toujours trés peu différent de B, on pouvait méme admettre sans
erreur sensible Péquation approximative

e m (1) (-F)a-v.

Pour faciliter les mesures des distances a et b, M. BRAUER a gravé sur
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v
la verge cylindrique du pendule, des deux cotés du centre de gravité,
quelques traits circulaires, paralleles entre eux et éloignés 'un de l'autre
d’'un demi-millimétre. A laide du cathétométre on peut déterminer les
distances de chaque couteau au trait moyen ; un appareil, construit aussi
par M. BRAUER, sert & trouver la position du centre de gravité du pendule
par rapport au trait moyen.

Le poids du pendule a été obtenu par des pesées immédiates sur une
balance ; quant au volume du pendule nous avons mesuré les dimensions
des diverses parties de nos instruments; leurs volumes se déduisent alors
par le calcul. '

7. I1 nous reste encore & dire quelques mots sur l'influence de la
figure des couteaux sur les récherches de la longueur du pendule simple,
oscillant de la méme maniére que le pendule & réversion. Pour éliminer
cette influence il est nécessaire de faire les expériences sur la durée des
oscillations du pendule autour de chacun de ces deux axes de rotation,
de chercher la distance entre les couteaux ainsi que la position du centre
de gravité, et ayant fini toutes ces opérations de transposer les couteaux.
Pour cela on détache ces derniers, on fixe au bout leger le couteau qui se
trouvait auparavant au bout lourd, et on place I'autre couteau au bout
lourd. Aprés cela on répete toutes les opérations qui ont été faites avant
la transposition des couteaux.

Supposons qu’ avant la transposition on ait trouvé: ¢ la durée d’une
oscillation infiniment petite, réduite & la température + 20° centigrades et
au niveau de la mer; a et 3, les distances du centre de gravité du pendule
au couteau qui est au bout lourd et au couteau qui est au bout léger.
Désignons par ¢, o, &', les mémes choses trouvées aprés la transposition des
couteaux ; par A, la longueur du pendule simple 4 seconde, et par z la cor-
rection qui dépend de la figure des couteaux. Les valeurs numériques
de A et de z se déduisent des équations

A=

a+b a+b z
—+(23) - F

_a+¥ (a’+ b’) x

= —\a=7) &

Profitant de l’assistance bienveillante de M. RikaTscHEF et de M. Gro-
'MADSKY nous avons fait & St. Pétersbourg les récherches nécessaires pour
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obtenir les élements ¢, a, b, #, @, &', @ + b et &’ + b’ rélatifs A chacun de nos
pendules.

2. Résultats des Expériences.

Ces expériences se rapportent & 12 lieux différents, situés entre 60° 51’
et 42° 20’ de latitude boréale. La longueur du pendule i seconde a été
trouvée & St. Pétersbourg égale & 440°958 lignes de Paris, sous la latitude
de 59° 56’ 30".

Notre but n’était pas tant de chercher la longueur absolue du pendule
que de rassembler des données nouvelles sur les variations de la pesanteur
et de les comparer 3 ce qui a été trouvé dans les autres régions de la
surface terrestre. On sait qu'd Londres la longueur du pendule simple
a seconde a été déterminée avec une grande précision par M. le Capitaine
KaTER et par M. le Général SABINE; les mesures exécutées par M. Biot
dans la Grande Bretagne et par les savants anglais en France s’accordent
parfaitement, dans le premier cas, avec ce qui a été obtenu par les savants
anglais, et dans le second cas avec les résultats de M. Bror. A ces travaux
s'attachent aussi, comme & des points des départs, les observations entre-
prises par les voyageurs et par les marins dans les différentes parties du
monde. Pour introduire nos expériences dans le systéme de ces récherches,
sans solution de continuité, nous préférons a notre détermination directe de
la longueur du pendule 2 St. Pétersbourg celle qui se déduit des oscillations
d'un méme pendule invariable, observées par M. le Comte LUETKE* &
St. Pétersbourg et & I’Observatoire de Greenwich ; la différence entre les
longueurs du pendule a seconde & Greenwich et 4 Londres a été exacte-
ment fixée par le Général SaBINE. Ainsi la longueur du pendule simple a
seconde étant connue a Londres, on peut calculer sa longueur i St. Péters-
bourg d’aprés le rapport des carrés des nombres d’oscillations infiniment
petites que le pendule de comparaison, réduit au méme température et au
vide, a fait dans chacun de ces stations en un jour moyen. De cette maniére
le calcul donné pour la longueur du pendule simple a seconde a St.
Pétersbourg 39'16975 pouces anglais ou 441°0319 lignes de Paris. Admet-
tant cette longueur, nous avons déduit de nos expériences les résultats
consignés dans le tableau suivant :

® Mémoires de U Académie des Sciences de St. Pétersbodrg, tome 3me, 12re et 2de livraisons.
1836. Observations du pendule invariable par M. le Contre- Amiral LUETKE, p. §1.
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Licux des Observations. | Latitude boréale, | 05 00 d Vorient i ot
lignes de Paris.
o ¢+ n . b m s -
Tornea 65 50 43 1 36 54 441°2525
Nicolaistadt 63 5 33 1 26 26 44171293
St. Pétersbourg 59 56 30 z 114 4410319
Réval 59 26 37 139 1 441°0190
‘Dorpat 58 22 47 1 46 54 440°9762
Jacobstadt §6 30 3 1 43 4 440'8900
Wilna 54 41 2 T 1 41 12 440'8353
Bélin 52 2 22 1 40 §2 4407268
Kréménetz ’ so 6 8 1 42 54 4406533
Kaménetz-Podolsk 48 4 39 1 46 18 440'5844
Kischinef 47 1 30 1 55 18 440°5278
Ismail 45 20 34 1 55 16 449°4479

Désignons par A la longueur du pendule & seconde sous la latitude
¢; par z sa longueur & l’équateur et par y un coefficient constant; la
théorie de l'attraction donne I'équation

A =1z + ysin®¢.

Le tableau précédent fournit 12 valeurs de A et autant d’équations de
condition, rélatives a des stations différentes. Pour calculer z et y nous
avons traité ces équations par la méthode des moindres carrés, et nous
avons trouvé (en lignes de Paris) —

Z = 439,2521; ¥ = 2,3779.

D’aprés le théoréme de Crairaut Paplatissement de lellipsoide terrestre

5 1 y 3
est égal a 2 . i Avec nos valeursde y et de z, cet aplatissement est

1 . . ’ . i 1
7 fraction un peu plus petite que laplatlssement moyen (7‘9) conclu de
toutes les expériences du pendule, faites dans les différentes contrées.

Cette discordance se concilie avec les recherches de M. B1oT; en combinant
ses observations du pendule entre Unst et Formentera, ainsi que celles de
Royar AstroN. Soc. Vor. XXXIX. F
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MM. KaTER et SABINE entre Paris et Unst, avec les observations de M.
SaBINE au Spitzberg et & Drontheim en Norvége, l'illustre physicien francais
trouve un affaiblissement successif du coefficient (y) du carré du sinus de
latitude & mesure que la latitude diminue. En méme temps les longueurs
du pendule & I'équateur, calculées au moyen de la formule analogue 2 la
précédente, sangmentent de plus en plus, et par conséquent I'aplatissement
correspondant s’accroit. Ces résultats semblent prouver, comme le remarque
M. Bior, que les intensités de la pesanteur sur le continent de I'Europe
écartent sensiblement des loix qu’elles devraient suivre sur la surface d’un
ellipsoide de revolution. C'est & cause de cette circonstance que I'on
obtient pour I'aplatissement diverses déterminations, selon les contrées ol
'on observe. Parbeaucoup d’expériences du pendule entre I'équateur et

le 45° de latitude, M. Bror trouve l'aplatissement égal a 77%-3-, tandis qu’il

’ 1 ° .
n'est que ——z pour la zbne entre 45° et go° de latitude.

Pour examiner la stireté de nos calculs nous avons comparé la longueur
du pendule a chaque lieu particulier & ce qui donne la formule

A = 439'2525 + 2°3779 sin®g.

Nous nommons écart la différence : longueur observée—longueur calculée
par la formule précédente. Voici les écarts pour nos 12 stations:

Lieux d'observation. Ecarts. Lieux d’observation. " Ecarts.
Tornea + o'0zo0 Wilna ’ — 00001
Nicolaistadt — o014l Bélin — 0'003§
St. Pétersbourg — 0'0017 Kréménetz + o'o017
Réval + 0°0033 Kaménetz-Podolsk <+ 00160
Dorpat - 0'0002 Kischinef + o'o030
Jacobstadt — o'0157 Ismail — 0'0071

La somme des écarts positifs est + 0'0440

La somme des écarts negatifs est — 00423

Ainsi la formule s’accorde bien avec les 12 équations de condition.
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Quant aux écarts particuliers, ils dépendent des erreurs d’observations et
d’anomalies dans les intensités de la pesanteur terrestre; mais il serait
difficile de découvrir dans ces écarts les traces certaines de ces anomalies
et des causes locales qui les produisent.

Dans I'ouvrage de M. W. STRUVE sur les mesures de degrés du méridien
on peut voir une discussion détaillée des latitudes des points principaux
entre le Cap-nord et le Danube. Les différences en latitude, trouvés directe-
ment par les observations astronomiques, ne s'écartent des différences en
latitude, déduites par le calcul des opérations géodésiques que de + 1”7s.
Quoique ces écarts surpassent bien décidément les erreurs d'observation,
ils ne sont pas aussi grands qu'on les rencontre dans les travaux rélatifs a
d’autres contrées. Nos stations sont dans le voisinage des points discutés
par M. STRUVE : ainsi il parait que dans les grandes plaines de la Russie
occidentale les directions et les intensités de la pesanteur ne sont pas sujettes
a des anomalies qui changent sensiblement d’une de nos stations a& une
autre.
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IIL. On the Geodesic Lines on an Ellipsoid.
By Prof. CayLEY.

Read January 13, 1871.

TrE fundamental equations, in regard to the geodesic lines on an ellipsoid,
were established by Jacost, viz., representing by a, J, ¢, the squares of the
semiaxes, that is, taking the ellipsoid to be

oyt
sty te=!
(where a>b> c¢), if we introduce the elliptic co-ordinates %, k, and write

at P #

ath T oA T oA
x¢ ¥ 22
oy Sl vy S ary S

or, what is the same thing,

z'~ . a(a+h)(a+h)

(a—b)a—c)

e _ b(b+h)(b+k)
V="t=ca®-a)’
zg=c(c+h)(c+lz_).
- c—a)(e—b)’

then, if 3 be an arbitrary constant, the differential equation of a geodesic
line is

i d
(). const. =ﬁ"\/(a+h) b+h) (k) B+ H) f/‘}"‘/(aﬂ) G+R) (c+F) (B+E
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and the expression for the length of any arc of the curve is given by

_ X)) ' LICE)
@ = fi ermeaneTm VY ernerheTh:

I propose in the present Memoir to develope the theory to the extent
of showing how we can, by means of the first of these equations, explain
the course of the geodesic lines; and for given numerical values of a, b, c,
calculate, construet, and exhibit in a drawing the course of these lines:
I attend more particularly to the series of geodesic lines through an
umbilicus (which lines pass also through the opposite umbilicus), and to
the case where the semiaxes are connected by the equation ac—6"=o, a
relation which simplifies the formule.

General Considerations as to the Course of the Lines.

1. It will be observed that % and % enter into the formule symme-
trically: it will be convenient to distinguish between these co-ordinates by
considering % as extending between the values —a, —b; and k as extending
between the values —b, —c. Thus:—

c h = const. denotes a curve
/U/_— _\U\ of curvature of the one kind,
- \\. /"", “ viz.—

/ \\\ yd h = — a, the principal sec-
A,/ \‘x"/ “-.; , tion ABA’ (or major-mean
PN /  section), h =— 5, the curves
K pd S /U U and U” U” (or portions of
\_/\ ™~ / the umbilicar section ACA’C);

v* / similarly,

CI
k = const. denotes a curve

of curvature of the other kind, viz.:—

k = — c, the principal section C B C’ (or minor-mean section), ¥ = —b,
the curves U U’ and U’ U” (remaining portions of the umbilicar section
ACA'C).
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2. To any given (admissible) values of k, k, there correspond eight
points, situate in the eight octants of the surface respectively; but, unless
the contrary is expressed, it is assumed that the co-ordinates z, g, 2, are
positive, and that the point is situate in the octant ABC.

3. The constant 3 may have any value from +a to +c¢; viz., if it has a
value between @ and b, or say, if —f has an A-value, then the geodesic
_lines wholly between the two ovals of the curve of curvature A = — @
(being in general an indefinite undulating curve touching each oval an
indefinite number of times). Similarly, if 8 has any value between 4 and c,
or say, if —3 has a k-value, then the geodesic line lies wholly between
the two ovals of the curve of curvature k¥ = —3 (being in general an inde-
finite undulating curve touching each oval an indefinite number of times).
The intermediate case is when 8 = b, or say when —@3 has the umbilicar
value: here the geodesic line is in general an indefinite undulating curve
passing an infinite number of times through the opposite umbilici U, U”, or
1/, U"”; to fix the ideas, say through U, U”.

Lines through an Umbilicus.

4. I attend in particular to the last-mentioned case, and ‘thus write
B = b. We may in the formula (1) fix at pleasure a limit of each integral;
and writing for convenience

A —dh h
nw=[ TV erherhy

—edk [ F
¥ (%) =/: siiY GIR G+ h)

the equation (1) becomes

Const, = 11 (k) + ¥ (k).
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5. It is to be observed, in regard to these integrals, that writing
h = - a + u; we have

a—u
n(h) /: a—b—u u(a—c—u)"

which, for % small, is

% du zdu a '
a—b‘/ —c‘/: a—c‘ :

By the assistance of this formula the value of the integral may be
calculated by quadratures; viz., the formula gives the integral for any
small value of %, and we can then proceed by the method of quadratures.
The integral becomes infinite for 2 = — b: suppose that we have by
quadratures calculated it up to 2 = —b —m (m small) then to calculate it
up to any value — b — m + w nearer to — b, we have

v dy b+m—u
o) =1(—b—m) +f m—uJ(a—b—m+“)(b—°+m_“)

——b————- % du
=0n(—b—m) +1/(a——;m./: m—u

=n(—b-—m) —‘/(_aTb)b(T——c) log (I _%),.

where the second term is positive, and the value thus increases slowly with
%, becoming as it should do = « for v = m or A = — b.

6. Similarly in the second integral writing k¥ = — ¢ — v, we have
v dv ce+v
Y(k)-—-./: b—c—vJ(a—c—v)v’

* Except when the contrary is stated, the symbol “log” denotes throughout the hyperbolic
logarithm.
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which, for v small, is
21/0 c
b—cJa—c/ T b—c¢ a—c,

which is of the like assistance in regard to the calculation by quadratures.
And if we have by quadratures calculated the integral up to A =—b+n
(n small), then, to calculate it up to any value —b + n — v nearer to — b
we have

v do b—n+v
w(k)=w(—b+n)+j: ,,_,,\/(,,_b+,,_.,)(b_c—n+v)

=v¥(— b+n)+‘/ b)(b_c)ﬂ ==

=v(—bfn)—\/m log (l—%).

where the second term is positive, and the value thus increases slowly with
v, becoming as it should do = o for v = n, or k = —b.

7. It may be remarked that in II (A) and ¥ (k) respectively the
coefficient of the logarithmic term has in each case the same value

= J (a—b)bm As regards the initial terms /z and /v, the coeffi-

. 1 a 1 c . g .
cients are ——; \/ — and ;— \/ -— respectively, which are equal if

a —1:
a [
@=br = ey OF @C— 0 =o.

8. We may consider the two geodesic lines IT () + ¥ (k) = const. ;
suppose that these each of them pass through the point P, co-ordinates
(h,, k) in the A B C octant of the ellipsoid ; then for one of them we have
Il (k) — ¥ (k) =II (b)) — ¥ (k,), and for the other of them we have
II () + ¥ (k) =1I(h,) + ¥ (k) : I attend first to the former of these,

II (h)—¥ (k) = C (where Cis = II (h)) — ¥ (k) ); and I say that
this denotes the curve U PU”. In fact, by reason of the equation II (A) and

RovarL AstroN. Soc. Vor. XXXIX. G
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¥ (k) must both increase or both diminish ; they both increase as A passes
from A to — b, and as & passes from k_to — b: we may have A= — b + %,
k = — b + v where u and v are both indefinitely small, the functions IT and
¥ heing then indefinitely large, but II —¥ = C; and we have thus a series
of points nearer and nearer to the umbilicus U ; that is, we have the portion
PU of the curve. Tracing the curve in the opposite direction, or con-
sidering 4 as passing from % to — a, and % as passing from k_ to — ¢, then if
C be positive, & will attain the value — ¢, before 4 attains the value — a, say
that we have simultaneously A = %, k = — c; the equation is IT (4,) —

¥ (—c¢) =C, thatis, IT (A,) = C; and the geodesic line then arrives at a
point P, on the arc C B of the minor-mean principal section. The function
¥ then changes its sign, viz., cpnsidering it as always positive, the equation
is now IT (k) + ¥ (k) = C, k passing from the value — ¢ towards — b, that
is, ¥ (k) increasing, and therefore IT (%) diminishing, or A passing fromn
h, towards the value — @ ; until at last, say for k¥ = k, we have h = — aq,
that is, C =TI (—a) + ¥ (k,), or C = ¥ (k,); the geodesic line here
arrives at a point P, on the arc B A’ of the major mean principal section.
The function IT then changes its sign, viz., II denoting a positive function as
before, the equation is — II (%) + ¥ (k) = C; h passes from — a towards
—b, that is II () increases, and therefore ¥ (k) must also increase, or & pass
from k, towards —b: we have at length h = —b—u, k= —b + v,
u and v being each indefinitely small ; and thexefbre IT and ¥ each indefi-
nitely large (but — II + ¥ = C); that is, we arrive at the umbilicus U",

completing the geodesic line U P U”.

9. If instead of C = + we have C= —, everything is similar, but the
geodesic line proceeding from U in the direction U P will first cut the arc
B A of the major mean section at a point P ; then the are B C' of the
minor mean section at a point P_; and, finally, arnve as before at the
umbilicus U"”.

1o. The intermediate case is when C = o, viz., we have here
II (k) — ¥ (k) = o; the geodesic line here passes from U in the direction
U P to B (extremity of the mean axis, h = — a, k = —¢); Il and ¥ then
each change their sign, so that, considering them as positive, the equation
still is II (A) — ¥ (k) = o, and the geodesic line at last arrives at the
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umbilicus U”. It will be easily understood how in the like manner
II (A) + ¥ (k) = C refers to the line U’ P U"".

11. Reverting to the equation II (k) — ¥ (k) = C, or as I will now
write it

(k) —Y (k) =1 (k) — ¥ (k)

which belongs to the portion UP of the geodesic line U P U”, we require
when A is = —b—w, and k = —b+v (v and v indefinitely small) to know .
the ratio of the increments %, v ; this in fact serves to determine the direc-
tion at U of the geodesic line through the given point (&, &

e’o

|12 For this purpose writing A = — b — u, we find

a—bdy , b +u
.n(h):./: 7‘/(a—-b—u)(b—c+u)’

which is

a=>d du u ;b
—/ = {‘/(a—b—f‘).:b—c+u) ‘/(a—b)b(b-‘)}

a—b

b
+ ‘/(a—b)(b—c)log u

and, when u is indeﬁnitely small, this is

_bd“ b+u 7 b 5 . a—b
T f (“"b—“) (b—c+u)” ‘/(_b—b)(b—c)}-'. J(a—b)(b—c)log u

Similarly, when & = — & + v, where v is indefinitely small

= do - —F 5, -
rw=f T {‘/(a-b+bo)(:-c-o>-‘/<a—b>b(b—c)}+‘/(a-b)(b-c)b‘ =
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13. Each of the integrals is of the dimension — } in a, 6, ¢, and the
difference of the integrals may be represented hy

. b .
M ‘/(a—-b)(h—c)’
we have therefore

(k) — ¥ (h) = ‘/(a—_b)f(_b—_c—) {M+lo az? ’-},

_ where

Y A S a=d —ﬁ
‘/<a'—_b> =0 =/: i ‘/(a—b—bu-)’-(;:-—c+u) - J@:z,—)m}

- _ .
‘/: ‘.1,1\/(,,_“1:,)(:_0_.» ‘/(T——b'?'(b_—c)'

14. Suppose the inferior limits replaced by the indefinitely small

positive quantities ¢, ¢ respectively; and for the variable in the second
integral write — u; then

a—b —_—
M=£(b—c) {?‘/(a—b—b“;-(:—0+ u) Jm}'

it being understood that the values # = — ¢’ to u = + ¢ are omitted from
the integration : this is

/‘“—b du b+ u ‘/ b : a—% ¢
= log
(b—e) u a—b—rc)(b—c+u) (a —0)(b—¢) e b—c¢

with the same convention as to the integral; or if ¢’ = ¢, then

b a—b&
—3 I—
M=M ‘/(a—b)(b—-c)logb—c

where

J b M,_/“‘“" d_uJ b+u _ [ dh h
@—06)(b—¢) ~J_—p— uV (a=b=u)(b—c+u) J _, btk (a+n)(c+h)’
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the omitted elements being from # = — ¢ to # = + ¢; that is (in the lan-
guage of CaucHY) we take for the integral its principal value. And hence

n(h)-—w(k)=‘/(—-a—_b)b(b—:—) {M'+ log 5}

15. By what precedes this is = II (b)) — ¥ (k,); or if we write simply
(h, k) instead of (A, k), that is, consider the geodesic line UP, which
is drawn from the point P, co-ordinates (A, k), to the umbilicus U, the co-
ordinates of a point consecutive to the umbilicus are — 6 —u, — b + v,
where u, v are connected by the last-mentioned equation, in which M’ is
a transcendental function depending on (a, b, ¢) but independent of the par-
ticular geodesic line.

16. If for the geodesic line through the point B, or say for the

B-geodesic 5 = Zi, then M’ = — log %‘i , and we have in general
b vy,
n(h)—‘lf(k)=‘/(a—_-b)—(b_c)log;”—°,

a result which I proceed to further transform as follows :

If 2,9, 2z, refer to the umbilicus U, then considering first the con-
secutive point P on the geodesic line (co-ordinates — b — u, — b + ) and
next the consecutive point Q on the umbilicar section, we have for these
two points respectively,—

dz, = 4.1/521,
Via—b)(a—e)

Vb y/ur

vd = —,
P Ve—bG-0

dzo= é\/;(“—v) ,
NV EICED)

}va

axo al————— -
Via—b)(a—o)

Byo =6

Sz, = — 3y

yvb—c)(a—c)
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say these are «, 8, 7, and &/, 8/, ' ; and then

' / P { a ¢ -— —{(v—u)f a i
80y =gyt g ama) 0 eme et o)

3b(v—u)

S@=8)@—o)
. . . a ¢ a buv
<+ ity _{(a-—b)(a—c)+(b—c)(a—c)}'i(u—v)+(a—b)(b—c)
b 2
=(———a_b)(b_c).}(u+v),
LI Y S N
V'S @=b)@G—=c *
whence
- g A+ o)
Va4 Bt Va?t figy = le=0—9)’
and hence

— -_ai'iﬁﬁ’+71' S L (180° )_u_,,
¢—‘/ag+ﬁg+71‘/a”'f'ﬂlg'l')ﬂ—v-l-u' it 18, CO8 —¢ _u+v,

Cos

or
1 _u .
tan® 3=
where if U is the umbilicus, P the consecutive point — & — u, — b + v,

and UQ the element of the umbilicar principal section, ¢ = 2 PU Q,
18°~ ¢ = £ PUQ'. For the B-geodesic we have

1 3 .tt‘!-: ’
zlogta.nz%..log % M.

17. The foregoing equation for IT (k) — ¥ (k) now becomes

_ b tan? } ¢
(k) =¥ (&) -‘/(a —b)(6b—¢) log tone 3o

viz, @, is the south azimuth of the B-geodesic at the umbilicus, a mere
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function of (@, b, ¢) and ¢ is the south azimuth at the umbilicus, of the
geodesic line under consideration, so that we may consider the geodesic line
to be determined by the south azimuth ¢ as its parameter.

Formule for the case ac — b*= o.

18. I annex the following investigation in regard to the case
ac —b'=o.

We have in general

1 , ,1_1 V—z(a—-b)(b—c)+1/—b(a+'z)(.c.+x).
Vb(@a—b)(b—c)dz By/—z(@a—b)(b—c)+ V—ba+a)(c+ta)

1 1
b 4yx(a+z)(c+2x)

11 z
+$b+éJ(a+z)(c+z)

1 z
+bz+ac‘/(a+a:)c+.r)°

In fact, denoting the looarlthm by log 5— s g, we have

dl P+Q_ 2(PQ—PQ)

®P-Q~ T PF-@
where '
2(PQ — PQ)—zPQ(%——-li) Vx(a+z)(c+z)b(a—-b)(b—c){a+x+c—+—;—i}

VE@=8) G —0)
\/.c(a+:n:)(c+:r:)(:':2 ad);

P—Q=—z(a—b(b—c)+b(a+z)(c +x)

=(bx + ac)(d +z);
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that is
2(PQ— P'Q) \/b(a-b)(b—c) 2 — ac
P—Q@ " rata)ta) bz +a)@ta)
_YEe=hG=o( 1, : )
Vz(a + z)(c +z) b(b+=) t be ¥ ac)’

which proves the theorem.

19. Hence in the particular case a¢ = 5* we have

1 g V- R@=86—c)+V—b(a+h)(c+h)
VE@—86(6—c)  V—h@=8—c—V—-b@a+h(+h

1 A dh
5J _cvh(a+h) e+ k)

a/n 0‘1,‘13 (a+h)(c+la) ("‘"%"("))’

that is
» dh 1 b v =k (a—=b)(b—c) + v/ —=b(a+k)(c-.
mw = / V'k (a+h)(c+h) ‘/(a—b) (b—0) log V—h———(a—b) (b—c)— V' =b(a+h)(cA
or say
1 A dh 1 b 1+ H
=;\/‘_a1/h(a+k)(c+h)+ ‘/(a—b)(b-c) -a’

where

i b (@a+ k) (e + h)

T (a=0b)(b—¢) k ’

viz. we see that II (4) depends on the more simple integral

h - dh )
./:a Vk(ath) (c+4)
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20. Similarly

' oy YEG@=B) (6=0) + VE @D 1 H)
VE@=0)(b—c) Cv—k(a—b)beo)—~ —b(@th (cth)
1 — dk
= 3./: JE@+B (et B

— dk 2
, 614 (a+k)(c+h) (=+3“’("))’

that is

N 2k ‘/ 3 VR @8 b—o)+ v B @+ B+,
= : vk('a+k)_(c+'k') @5 =3) log 7 Nk (a=b) (b—c)— —5 (b4 F) (o1 %

or say

__1 — dk l b 1+K’
*0== [, Grverst iV eonemo it

where

Kt = b (a+k)(c+k)’
T (a=b)(b—0¢) k

that is, ¥ (k) depends on the more simple integral,

dk .
r YR(@a+k)(c+k)

Write A = —b—u, ¥ = —b + v, where » and v are indefinitely small, then
_1 dh 1 b 1+0 1=V
n(h)-y(k)—,z _.n/h(a+ll)(c+h) ‘/(a—b)(b—c) LR ; 1+v

Royar AstroN. Soc. Vor. XXXIX. ' H
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where
(5%3) (ot
v2 —-b b — but )
U = a ) > ¢)= '_(a—b)(b:c)(b+u) (attending to ac = 0?),
|+Z
and
v v
Vi_(l+a—b) (l_-b—-c)_l b ot
= v - —(a—b)(b—c)(b__ﬁ)’
'~}
=rr dh 5 v
. n(h)-w(k)_’f—a vmﬁ\/@_b)@_c)'o&u-

21. Comparing with the result obtained for the general case the two
agree, if only

—~ dh % o dh
S wamen =), e

where on the left-hand side the integral has its principal value: a result
which must therefore hold good when ac = b*.

Calculation of the Umbilicar Geodesics for Ellipsoid a:b:c = 4:2:1.

22, As a specimen of the way in which we may, on a given ellipsoid,
calculate the course of a geodesic line, I take the semiaxes to be as
2: 4 2:1, or, for convenience, @ = 1000, b = 500, ¢ = 250; and, considering
the geodesic lines through the umbilicus, I calculate by quadratures the
functions

. A —dkh A
I (. )= loo’ooog/’_mm 5o+ A Y (1000 + 4) (250 + h),

—150  Jk &
nk) = 100,000/: 500 + &V (1000 + k) (250 + k)
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The results do not pretend to minute accuracy: I have not attempted
to estimate or correct for any error occasioned by the intervals (1o units)
being too large; and there may possibly be accidental errors.

TasLe L
—hk= n’ 1 (k) — A o II (k) -4 n’ n (k)
1000 ® o 840 27°6 6746 630 51°5 13972

999 | 2314 462 830 27'8 7023 620 5471 14499
998 1640 659 820 279 7301 610 59°2 15066
997 134°2 809 810 281 7582 600 655 15689
996 1165 934 800 284 7865 590 721 16377
995 1044 1044 790 287 8151 580 809 17142
990 746 1492 780 29'2 8440 §70 93°0 18011
980 540 2135 770 29°7 8735 560 |. 1068 19010
970 45°1 2630 760 30'3 903§ 5§50 1276 20183
960 40°1 305'6 750 310 9341 540 159°1 21616
950 | 366 | 3439 | 740 31°8 9655 | 530 | 211°5 | 23469
940 342 | 3794 730 32°6 9977 520 | 3167 | 26111
930 32°§ 4127 720 336 10308 [31) 632°7 30858
920 312 4446 710 347 10650 505 | 12650 35602
910 302 4753 700 360 11004 504 [15812 | 37014
goo 29'4 5051 690 374 11371 so3 | 21077 | 38834
890 288 §$342 680 39'0 11754 | 50z | 31623 41398
880 284 5628 670 40°8 12153 o1 [ 63241 45792
870 281 5911 660 420 | 12567 500 o ®

860 27°9 6190 650 45'4 13005
850 27'8 6469 640 482 13473
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Tasce II.

—k v Y (k) —k v ¥ (k) -k v Y (k)
250 ® o 320 45°S 4655 440 107°'1 | 12207
251 232°2 462 330 461 Si14 450 127'9 | 13383
252 165°5 661 340 47'3 5581 460 159°2 | 14818
253 1360 811 350 489 6062 470 2116 | 16673
254 118:6 939 360 51°1 6562 480 3167 | 19314
255 106°8 1051 370 538 7086 490 6327 | 24062
260 781 ‘1514 380 57°2 7641 495 1265°0 | 28806
270 6o's 2207 390 614 8235 496 1581'2 | 30218
280 51°7 2768 400 667 8875 497 21081 32037
290 482 3268 410 73°2 9575 498 31623 | 34602
300 46'3 | 3741 420 816 | 10349 499 | 62341 | 38995
310 45'5s | 4200 430 914 | 11214 500 ) o

23. But it is obviously convenient to revert these Tables so as to
have for the common arguments a series of uniformly increasing values of
II or ¥, viz., we obtain by interpolation the values of A and % belonging
to the given values of IT or ¥, and thus obtain the following Table.
Here, in any line of the Table the values of A, k, are such that
II (k) — ¥ (k) = o, viz., the values in question belong to successive points
And to obtain the values for any other geodesic line
II (h)—¥ (k) = + 500 m, we have only to take each value of % from the
line m lines above or below the line from which A is taken; and simi-
larly the table gives at once the values belonging to a geodesic line

of the B-geodesic.

II (&) + ¥ (k) = 500 m.
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Tasce III.
=¥= h D. k D. |[n=¥= h D. k D.
o 1000 250 13000 650°1 446°7
12 1'4 , 206 7
500 | 9988 . 2514 L | 0 | 625 | o | ases |
1000 | 9954 3 : 254'§ 3 15000 6112 ] ; 4616 g 5
: 5 52 Iee 3
1se0 | 9899 | g | 2597 - 16000 | 595°5 | 56 466'3 9
2000 | 9821 267'0 g 17000 5819 s | 47T s
. 2 . .
2500 9726 9’5 275°2 18000 §70°1 4750 3
11-s 9% 10'0 38
3000 961°1 2846 19000 560°1 4788
128 103 8 26
3500 948°3 2949 20000 5516 4814
145 107 7°3 22
4000 | 9338 305°6 21000 544°3 483°6
156 11°0 62 2’0
4500 | 9182 316'6 22000 5381 485°6
16°5 109 49 22
§000 9o1°7 327°§ 23000 5332 487°8
17°2 10'8 46 21
§500 884°s 3383 24000 | 5286 4899
17°7 10°4 81 z°1
6000 866-8 . 3487 26000 5205 492°0 :
: ‘ o'1 : 2°1
6500 8489 79 3588 ! 28000 51670 3 4941
181 9's 42 1'7
7000 8308 3683 30000 s11°8 495°8
oo 812° 79 377° 92 20%0 088 e ‘0 e
75 9 17°6 75 g6 | 3 5 2 497 o8
8000 7953 3861 34000 5067 4978
17°3 80 2°0 0§
8500 | 7780 | o | 3947 77 36000 | 5047 || 4983 | s
9000 7612 63 4018 38000 503§ 1o 4988 | -
' 16 71 .
9500 | 7449 | | 6 4089 66 | 39°°° 499°
10000 | 7293 5% 4155 40000 §02°§
149 62 o6
10500 7144 42147 42000 501°9
) 143 59 . o5
11000 | 700°1 4276 44000 | sorI'4
135 . 53 o4
11500 | 6866 g 432°9 p 45800 5o1°o
12° ‘0
120 6738 . oo
2000 73 257 437°9 88 ® 500 5
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Graphical Construction : Projection on the Umbilicar Plane.

24. The most convenient mode of delineation of the geodesic lines is
obtained by projecting them orthogonally on the umbilicar plane: the

contour of the figure is here the umbilicar section, or ellipse % +3:- =1;

and the curves of curvature of each series are projected into elliptic arcs
lying within the ellipse in question, the one set cutting at right angles the
axes A A’, the other cutting at right angles the axes C C’; the equations of
the complete ellipses being

, a=—2> e—b _
¥ a(a+h)+z‘c(c+b)-. -

o

and
, (a=1b) c—b

Ia(a+k)+ m—l:&

25. I constructed, by means of the table, a drawing of this kind for the
ellipsoid @, b, ¢ = 1000, 500, 250, the lengths v/a and v/¢ being taken to be
12 inches and 6 inches respectively : the process consists in taking from
the table for a series of values II = ¥ (say II = ¥ = 1000, = 2000 &c.),
the values of % and k, laying down for such values the elliptic ares which
represent the two curves of curvature respectively, thus dividing the
bounding ellipse into a series of curvilinear rectangles, and then obtaining
the geodesic lines by drawing the diagonals of these rectangles, and of
course rounding of the corners so as to form continuous curves. The
Plate shows on a reduced scale so much of the drawing as is comprised
within a quadrant of the bounding ellipse (viz. it is a representation of an
octant of the ellipsoid).

Elliptic- Function Formule.

26. I have in all that precedes abstained from the use of elliptie

functions, since obviously the form v/1— %" sin* ¢ of the radical of an elliptic
function is in nowise specially appropriate to the present question.
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But (more particularly in the above-mentioned case a ¢ — 4* = o, where the
radical is VA (@ + k) (¢ + k) without any exterior factor b + & in the
denominator) the formule are expressible easily and elegantly by elliptic
functions, and it is desirable to make the transformation. Reverting to the
formulee which, in the case in question (viz. when ac—6* = o), give the
values of II (k) and ¥ (k); and writing therein A = —a + (a —c) sin® ¢,
k=—a+ (a—c)sin’ 4, also

c c
K=Jl——, or — = 1—«k? = k¢
a a

we have

A
F (s, ¢)

_¢~/h(a+h)(c+h) o \/a—(a—-c)sm¢¢ 7

— dk E dy 2
i nern =Sy vememami - RO -F 69}

27. Hence

1 1 1+ H

(k) = —F(x, — ] >
Q)] 7 ("¢)+z¢(.—x') 8 g

where

(1 —«) 8in @ cos ¢

H= —t—
U —«2s8in% @
(observe, as h passes from —a to — b, ¢ passes from p=o to sin’* p = - -li-n
and H from H =oto H = 1.)
Similarly
__ _ 1+ K
v® == {R@0-Fev} + o
where
k=(l + «') sin ¢ cos ¥)
V1—«tsinty
and as k passes from —c¢ to —b, 4/ passes from -:: to sin* 4 = ; -ll-r’ and

K from o to 1.
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28. The before-mentioned identical equation

— dh A 1 dh
./.:. b+hY @a+h)(cth) 2 ) _,vh@ath)(cth)
is by the same transformation converted into

;l—(l-lc')sin’¢’ de =
/: 1= +n)sin®® /1 _@sintyp

To prove this, remark that the equation is

il 5—-—(1—1+n'sin’o)+z—‘l
0= 'sd¢l+l<' ; 14« 1
— 1 —(1+«)sin?p A9
viz. this is
1—x 2k

=I+K’F‘+ l+'?n,(—1—|<),

or what is the same thing,

l—x’F’

HI(-I—K')=— paye |

where II, (— 1 — #') denotes the principal value of the integral

;d 1 1
_/: A 1—(1+«)sin®p Ap’
Now (Leg. Fonct. Ellip. t. i. p. 71), we have

1
Il,(—x’sin’ﬂ) + l'l, (— Bi_n—’O) = F,,

where, upon examination, it will appear that II, ( - si_nlz_e)’ in fact, represents
the principal value of the integral.
.e s a2, 1 1, K 14
Writing herein sin* ¢ = ———» and therefore cos® ¢ = - T ortan’d =2
" this is

n(—1+4+«)+0(—1—«)=F,
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and the formula (p'), p- 141, attributing therein to 4 the foregoing value,

becomes

m(—1—¥)=E +5 {F E (6) — EF (0)}.

But ¢ is the value for the bisection of the function F, viz., we have

2F (6) = F,
2E0 =E,+I—K/.

whence
FE@G—EF@®)=3(1—«)F,

or the formula in question gives

1+«
0o(—14«)= - E,
whence
m, (— 1 —k)=— I:KIKI F/,
the result which was to be proved.
4 3 b —
28. The value of M’ (observing that TE—HE— =

1 .
= a—wp)

1 M= — dh
Vva(1—x) 2J _aVh ath)y(c+h)

which is
that is, we have

or, what is the same thing,

11—k
2

log tan % o, = F, (x),

RoyaL AstrON. Soc. Vor, XXXIX.

(Va— oy
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that is,
1 —«

log tan i ?, = F, (x),

that is,
1 —«

2

tan 2 ¢, = ( F, (),

(¢, the South azimuth of the B-geodesic at the umbilicus).

29. I purposely calculated the Table by quadratures as being a method
available where the equation ac — b* = o is not satisfied; but in the present
case, where this equation is satisfied, the table might have been calculated
from LEeGENDRE’s Tables of Elliptic Integrals. Observe that a = rooo,

b = 500, ¢ = 250, gives x = # or angle of modulus = 60°. As an instance

of the comparison,* suppose h = — 800, then sin* ¢ = % = nis’ log sin ¢

= 9'71298, ¢ = 31°§5'.

b _ 500 _JB__
J(a—b)(b—c)—Jsoo.zgo— 50 06326

e __ 500.200.550 110

He = 800.500.250 200 og. = 1°§7018, H = ‘7416
l'|‘H_l'74,|6_ ‘
1—H 2584 6'7582.

(k) = 03163 F (31°§") + 03163 h.1. 6:7582
3 § 3103 5

F31° = -56166
163
F31°¢' = -56329

h. 1 67852 = 1'91075

24744
x by ‘03163

‘0782043

* In the present calculation, log. denotes an ordinary logarithm, the hyperbolic logarithm
being distinguished as h. 1.
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or multiplying by 100,000 (factor introduced into my Table) this is
= 7%20'43. The value II (— 800) = 7864 given by my Table agrees
sufficiently well with this, the correct value.

30. I calculate also the angle ¢, viz. we have

h.l.tani¢°=-'._—KlF,x, =

3 F, (60°). Lec. Vol. iii. Table viii.

1=

2°15651 = 53913

+ -

whence by Lic. Table iv.

o, =45+ 4 .29°29"64
= 59° 4482

9, = 119°29"64

This exceeds 9o° and since at the umbilicus the tangent plane is at
right angles to the plane of projection, the B-geodesic should in the drawing
proceed (as it in fact does) from U in the sense U C, touching the bounding

ellipse at the point U.
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IV. The Second Part of a Memoir on the Development of the Disturbing
Function in the Lunar and Planetary Theories. By Prof. CAYLEY.

Read January 12, 1872.

THE present communication is a sequel to my paper, “ The First Part of
a Memoir on the Development of the Disturbing Function in the Lunar
. and Planetary Theories,” Memoirs R.A.S., vol. xxviii. (1859), pp. 187-215,
and I have therefore entitled it as above, but it, in fact, relates only to the
Planetary Theory. In the First Part, I gave in effect, but not explicitly,
an expression for the general co-efficient D (7, 5") in terms of the co-ethi-
cients of the multiple cosines of 4 in the expansions of the several powers
(r* + 7" — 277 cos §)~*~% or say (a¢* + a”* — 2aa’cos 9)7*}; viz, at the
foot of page 208 I speak of the term involving cos (U + ;’ U’) as having
a certain given value; the term in question is D (7, ') cos (U + ;' U’);.
and consequently the expression for D (j, j') is
DG =208 s PR

the omission was, however, a material one, inasmuch as this expression for
the general co-efficient serves to connect my formule with LEVERRIER'S
development, Annales de U Obser. de Paris, t. 1. (1855), pp. 275-330 and
358-383, and I resume the question for the purpose of supplying it.

Formula for the general Co-efficient D (j, j).

In the First Part, the feciprocal of the distance of the two planets, or

function
{r* + r*— 272" (cos U cos U’ + sin U sin U’ cos @)} —4
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is taken to be developed in multiple cosines of U, U’, the general term
being
D (j,j) cos G U +5 U,

where 7, 5/, have each of them any integer value from — o to + o« (zero
not excluded), but so that j, s/, are simultaneously even or simultaneously
odd. We have D (—j,—7) =D (5, ) and D (y, ) = D (4, 5’); and it
hence appears that the really distinct values of the co-efficient may be
taken to be those for which ; is not negative, and as regards absolute
magnitude is not less than j'; and for such values of 7, 5 we have the above-
mentioned expression

D (jjy=3 =

e m® R?
ne " MRS

which I proceed to explain and develope.
- II,(#—3%) and IIx (¢ being a positive integer) denote respectively
L.3...(x—%),and 1.2.3...2; in particular for # = o, the value of
cach factorial is = 1.

n denotes sin § ®.

The co-efficients R} are those of the multiple cosines in certain develop-
ments, viz. we have

PPt 4 — 277 cos (U — U')}—=—4=Z R, cos i (U — T'),

where, as usual, ¢ extends from — o to o and R;* = Ri. Writing with

LEVERRIER
(a* +a*—~z2ad’ cos H 1=} = A cos i H,

aa (a*+a*—z2aa cos H7 1=} 3 BicosiH,
a*ad*(a*+a'*—2ad cos H 8=} 3 ClcosiH,
dal(a*+a*—z2ad cos H I=} = Dicosi H,
then 2R}, 2R!, 2 Ri, 2 R{, are the same functions of r, 7/, that A’ B,
(", D%, respectively are of q, @'.
The expression of M} is

o=z Mz .
My (x—j—=3 M (z+j+3) N} @—j+9 0} @+;-3)°

M3 =(=)z—20U+

and, finally, in the expression for D (7, '), = has every integer value from
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o to o, and, for any given value of z, 3 extends by steps of two units from
the inferior value — (2 — ;) to the superior value z — j.

It is convenient to write 2 = 4 (s + ) + s; we have then ¥ extending
from — 4 (j—j)—sto -3 () —J) +sorwriting 3= -5y —5) + 4
¢ has the s + 1 values s, s — 2,8 —4, ... —s, viz. for s = 2p + 1 the
values are + 1, + 3,... + (2p + 1), and for s = 2p, they are o, + 2,
+4...+2p

Making these changes we have

oIS s} it ga—b =Nt o—bG—D+4
DGy =2 lH{%(i+j')+s} " EMyiin+s RiGrn+t o

where

{3 +j)+s} m{3(j +J) + s}

LI_§(]—”+' =(_), . ] ) - )
MFE—O 3G +7+sF6) TIG+OMI(+)i+s—6)

G+ +s

viz. thisis (=)' into the product of two binomial co-efficients, each belong-
ing to the exponent § (j + ) + s.

Particular Cases, j + J' = o, 2, 4, 6, being those required in the
Planetary Theory.

Considering successively the cases j + j' = o, 2, 4, 6, we have, first,

IIs

. . Hl (‘, _ i) [ * ) -
D =) =2 =5 2(-) {’Iﬂ G—onErol "

which, developed as far as 7°, is
. 1
(%) D(—j)= AT
— el (B=i+r 4 B-i-y)
2 2
+ l_.3. ,141(0-—]'4-2 + 4_C—j + C—j—z)
2.4 2
_;_:_%:_g.nG_:_(D—H-; + 9D-—j+x + 9D—j—x + D—j—;’

where, and in what immediately follows A, B,- C, D, are used to denote
functions (not of (a, a’), but) of r, 7.
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Secondly,
s+  f oy M(s + 1)
DG—i+ ) =25y 2 ) g 6 T
ﬂ(s.'-]) —j+1+4
NFEFO TG =0 1 e }

which, developed to 7% is

(%) DG—j+ 2 =n L. lpie
_Hn".i(zc—j-i-z_’_zc—j),
+i:i:é’"4'§<3D‘“’+9D—1+'+ 3D—J'—x)}.
Thirdly,
D‘*’“”+*)=2‘Ifr*fiif>z""E"““—)'{ns<s_'3>ifii<§)+e>+,
"ﬂ&(a+r;)(;;(zs)-—e)+z R

which, developed to »’, is

(%) DGi—jta=n{ =3 Gk
_;:i:gnc,.;_(ﬂ)—jﬂ+3D—j+x)}:
and, fourthly,
.. _ eI (s+ %) Y (s + 3)
DG=i+ 6= 2 gy " 2 ){M(s—e)ns(sw)ﬂ
(s + 3) Ritite)

MG+ Ub(s—0)+3 ++3  J’
which, developed to »°, is simply

. _.¢1:3-5 —i+3
(%) D ( J+6)—nz.4'6.&DJf

The foregoing formuls, although obtained on the supposition j = o, or
positive, apply without alteration to the case j = negative. and the entire
series of terms of an order not exceeding 6 as regards » may be written,

D (G—J) cos (j U —; T
+:2D(—j+2) cos(jU+ (—j5+2)TU)
+2D0Gi—j+4) co(GU+(—j+4T)
+2D(,—j+6) cs(jT+(—j+6)T)

where 7 has every integer value from — o to + .



Function in the Lunar and Planetary Theories. 59

Comparison with LEVERRIER.

This is in fact what LEVERRIER’S expression becomes on putting therein
e =¢e=o. To verify this, observe that LevVERRIER having defined his
Ai By, C, D, as above, writes further

E'= J(Bi=t+ Biv)

G'= %(Ci—*++c"+c"+z),

Hi= 2 (Dims4 g Di+ 14 g Di+1 4 Divs),
L= 2 (G- +0),

Si= :—g(D‘—s-{-'g’Di—l + Di+1),

(Consequently E—* = E, G™ =G, H™*= H}, L="**= L §~**= 8§
T-i+4+=T and that the terms in question, putting in the coefficients
e =¢ = o, are with him
{0+ (o)'n* + (17)' n* + (20)n®}  cos (il —iN),
f(zr2)yn* + (218) n* + (221)'n%} cos [{l' — (i — 2)A — 2 7],
{(372)'n* + (375)' 6} cos [il — (i —a)X—47],
{(449)n*} cos[il—(i—6)x—67],

where, substituting for (1)}, (11), &c., their values, the coefficients are
L CR ) TR EPUIN- c QRIPCES :
2 2 2 2

At —qt. i(Bi-l 4 Bit1) 4. 1—?‘6 (Ci—2 + 4 C' + Ci+7)

%(De_;_'_ gDi—1 4 gDi+14 Di+3);

Royvar AstrON. Soc. Vor. XXXIX. K

N -

— .
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.o Bi=t— . L4 1S S,
2
=7, %Bi+l . (%Ci——z 4+C) + 5. :_g(Di—! 4 3Di—1 4 Di+1);
4 3 i—2 6
n. ‘8'0 —n Tt,

=t 3Ci—z_ 6 15 pi—s i—1).
_.n.SC 2 "'16(D + Di-1);
and
6 5 i —3
n.—l6D .

Writing herein 7 in place of i, and for A/, B/~ &c., the equal values A,
B—i*', &c., we have precisely the foregoing coefficients D (s, — ),
.. D (4, =g +6)

The Development in Powers of e, €'

The complete expression of the reciprocal of the distance is obtained from

D@G=y) s (U—;T)
+2D(j —j+2) cos (JU+(—j+2)U)
+2D(h—j+4)cos U+ (=j+4)TU)
+2D(j,—j+6) cos (jU+(—j +6) U,
by writing therein for r, 7/, U, U’, instead of the circular, the elliptic values,
that is, the values
r = aelqr (¢, L —1II) , =a (1 + ),
7 = a’elqr(¢, L'—1I) , =d (14 2),
U=HN—06+elta(e, L—TI), =T —0 +,
U= II'— '+ elta (¢, L'— IT), = II'— '+ f;

L, II, ®© the mean longitude in orbit, longitude of perihelion in orbit, and
longitude of node ; and the like for L/, II', ®’; “elqr "= elliptic quotient
radius, “elta” = elliptic true anomaly ; or what is the same thing, if we
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write elta (¢, L—II) =L —II + eltt (¢, L — II), and the like for
elta (¢, L’ — II’),. then

U=L—0+eltit(e, L—II),=L—0+y,
U=L—0o+elt(d,L'—1I), =L'—0'+ y.

The process for doing this is explained, First Part, pp. 205207, viz,
writing 7 = a (1 + x), 7= @’ (1 + 2’), and restoring ;' instead of its value
(=4 +.+.—J+6, as the case may be), we have a general term

f d \= o ’ ’ .
() () PG e s @ =0 + )+ W= 0+ 1))
where D (j, ;) now denotes the value obtained by writing a, o’ in place
of r, 7/, and f, f' are the true anomalies elta (¢, L — II) and elta (¢/, L' — IT').
And the second factor, z* 2« into the cosine, is given as a series

22 ([cos]* + [sin]’) ([cos]” + [sin]*) cos [i (L — M) + ¢ (L' —1II') + j (1 — ©) — 5/ (II' — ©)], '

where [cos]’, [sin]’ are functions of e, [cos]”, [sin]* functions of e
Or, what is better, the term 2= 2~ into the cosine may be written
r* 2’ cos [j(L-O+ y)+ 5 (L'— @ + )], and the expansion then is

23 ([cos] + [sin]*) ([cos]” + [ein]") cos [{ (L — M) + #(L'— ') + j (L—©) + j'(L' — ©')],

where as before [cos], [sin]’ are functions of ¢, [cos]”, [sin]¥, are the same
functions of ¢/, viz. the e-functions are those given in the two  datum-
tables” (2°...27") cos jy and (2°...27)sin jy, taken from LEVERRIER,
which I have given in my “ Tables of the Developments of Functions in the
Theory of Elliptic Motion,” Memoirs R.A.S. vol. xxix. (1861), pp. 191~306.
In order to better show which are the symbols referred to, we may, instead
of [cos]’, &c., write [2=* cos j y]}, &c., the formula will then be

2 cos [jL—O+y)+ (L —0 +3)]=

22 ([2"cos jy]' + [ sinj y]) (@ cos /'y’ )+ [ sing'y']")
x cos [{(L—TM) + ¢ (L' = ') + j (L — ©) + j/(L'— )]
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and if we attribute to 4, i’ any given values, that is, attend to any particular
multiple cosine,

cos [i (L —1) + ¢(L' = 0')+ j(L —©) + j/(L' — )],

the coefficient hereof will be

v

1 . d...': d\« .. . .'. ' ] & sy
“nena’ (d"a) d (d_a) D (5, ) - ([ cos jy]' + [2® sin jy]) ([«* cos 7 y/]" + [2® sin ;' y'T"),

where «, o each extend from zero to infinity, but to obtain the expressiou
up to a given order p in e; ¢, we take only the values up to « + o’ =p.

Particular Case.

~ Thus, for instance, in cos [ (L — ®) —j (L'~ ©)] the terms inde-
pendent of ¢ are

D (j, — j) {[=°cos jy]° + [2°sinjy]°},

+ Lo (5,) DU =) {2 conjyT + [ sinjuT},
) DG — ) L2 cos jy° + [=tein j3 T},

which, observing that in the present case the sine terms vanish, is
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e e e
! 3 38_4. 46080
1 —8,2 + 964 — 12805
—s545°  +39207* 1
— 34407°
1 d
+ 4 — 48j° — 3602 7 ¢ =
+4 —965%  + 19205 1 rd )2
— 13202 12 ¢ (da
- e ! s(i)s
+ 144 2880 .23 a da
+14¢  — 57605 — 1)‘
1.2.3.4 \da
+ 14400 ! a-’(i)5
1.2..§ da
1 of @ \°
+ 14400 1.z..6° (da)
o ! al i !
1.2..7 (da)

3

viz. the term in €' is

" li‘l(ig} -
e’{ Ftoeqty da) D@ =)

viz. writing 7 = o, and therefore D (4, —7) = } A/, the term in ¢* is

1 d 1 d\\ 1 A
—_ g% -a — —a?(— _ A~/
e’{ J +zada+4,a ((zla)}zA

which conformably with LEVERRIER'S subscript notation
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I write
el—jts Otz (O )ra™
e Y apa—i g L a—s A
_en{ SPAT AT oA }
The term in question is given by LEVERRIER as (3e)’ (2), = €. 4 (2), A =1
and K = AY, =¢* . 1(—2¢" A" + A} + A)), which agrees.
Similarly the term in e* is

€t

382 {961"— 5472 — 4872 ( h—967%( Je+ 144 ( )s + 144 ( )‘}é A,

. | _ B B
= (967 = 54/ A7) — 4877 ATT — 967 AT + 144 AT+ 144 AT ).

and the term in question is given by LEVERRIER as (i e)‘(4)‘=e‘. % (4),
h =1iand Ki= Af

1 [ . ;
=e"-l—6{§ (—9@+ 168 A —® Af— 22 A+ 3 A+ 3A“},

which agrees. I have not made the comparison of any more terms.

LEVERRIER'S Results expressed in terms of the Arguments,
L'-e,'-1I,L -6,L -1

The angles which LEVERRIER uses in his arguments are /', A, w, =’, and 7'

viz. we have, .
I=0'+ (L'-9),
A=6+ (L —o)
o'=0'+ (II'- 6),
w=0+(I—86),

=6

where L, II, ®, are the mean longitude of the planet m, its perihelion and
the mutual node, all in the orbit of m; and similarly L/, I, ® are the



.
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mean longitude of the planet =/, of its perihelion and of the mutual node,
all in the orbit of m'. On substituting the foregoing values of 7, 3, &c.,
@), as it should do, disappears, and the arguments are all of them linear
functions of L' @, II'—- @,L — ©, I — ©; or, if we please, of L' — @,
L'—1I, L — ©, L — II, that is of the distances of each planet from its own
perihelion and from the mutual node. It is, I think, convenient to use
these last angular distances, and accordingly I wrote in LEVERRIER’S argu-
ments, write,

I=0'+ (L'— o),

A=6. . . . .+(@L-e),

@=0'+ (L'— 0) — (U—1IT),

w=20. . . . .+ (L—06)— (L —-1),

=0,

and for the purpose of reference form as it were an Index to his result as
follows : —

Reciprocal of Distance = as_follows :

Terms of order zero: terms of orders 2, 4, 6, having the same arguments.

L—eo|v—1| L—e |L—m:
(1)} (r .. 20) .. | cos i o| —i o
(z1) (3e) (3 €) (zr .. 300 .|, S -1
(31) (3e) (3€) (31 <. 34) .| i |42 | —i —2
(35) (3 e)* (3 ) (35 .- 350 | & i 43| =i -3
(36) (A &) n* (36 .. 39) .. , i o| —it+z2 | —2
(#o) (3e) ) n* (40 .. 43) .. | i | =1 | —itz | =1
(44) (3 &) n* 44 .- 470 | o i | —2 | —it2 o
48y (3e) (3e)n* (48 .. 48) .. | i {41 —itz | —3
(49 Be) (3 €Y7 (49 .- 49) .. | i | —3 | —i+z2 |41




66 Prof. CAYLEY, on the Determination of the Disturbing

Terms of the first order : terms of orders 3, s, 7, having the same arguments.

f :L’—e’fL'—n' L—o |L—mu
(s0) §e (50 .. 69) .. | cCoO3 | 1 o | —i + 1
(70) 4 ¢ (70 .. 89) .. » i +1 | —i o !
@) Be*(3e) (90 .. 99)  .u | w | i | #1 | —i —2
(100 (e) (3 €)* (1co .. 109) .. » i +z | —i -1
(110 (3 e (3 &) (110 .. 113) .. » i +2 | —i -3
(114 (3e)* 3 €)Y (114 .. 117) .. ” i +3 | —i —2
(118 (Je)* (3 ¢)* (118 .. 118) .. » i +3 | —i —4
(9 ey (3e)* (19 .. 119) .. | . | i |44 —i —3 |
(120) (3 e) o (120 .. 129) R i o | —i+2z | —1
(130)" (4 €) n* (rzo .. 139) .. ; » i -1 | —i+2 o
(140) (3 e)} n* (140 .. 143) » i o| —i4+z | —3
(144) (e (Be)n* (144 .. 147) .. | i+ | —it2z | —2
(148) (3 e)* (3 €¢) n* (148 .. 151) R i —1 | —it+ 2 | —2
(152) (3 e) (3 €)* 0" (152 .. 15%) A i —2 | —i42 | —1
(156) e (3 e)*n* (156 .. 159) .. ” i —2 | —i42 | 41
(160) (L e') o* (160 .. 163) .. ' i —3 —i4 2 )
(164) (3 e)* (3 €) n* (164 .. 164) . » i +1 | —i42 | —4
(165)' (3 e’ (3 €)n* (165 .. 16%) .. ” i +2z | —i4+2z | —3 l
(166) (3 &) (b &)Y > (166 .. 166) .. | ., i | —3 | —it+z | 42|
(167) (ye) (J&)*n* (167 .. 167) .. | Pl —4 ! —itz | 41
(168) (3 ey n* (168 .. 168) .. | , | i o —it2 | —3 |
(169 (3 e)* (3 &) n* (169 .. 16g) .. » i -1 | —it+4 | =2
(170) (A e) 3 &)* n* (170 .. 170) .. » i —2 | —it+4 | =1
(71) 3P gt (171 .. 171) . » i —3 | —it+4 o
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Terms of second order : terins of orders 4, 6, having the same arguments.

L'—-¢/|L'—-1'| - L—6 L—n
(172)' (3 ¢)* (172 181) cos i o | —1 + 2
(182)' (3e) (3€) (182 191) » f +1 | —i +1
(192) (3 €)* (192 .. 2zor) » i +2 | —t o
(z02)' (3 ;)’ (3e) (202 .. 205) » i +1 [ =1 -3
(206)' (3 ¢) (3€)® (206 .. 209) ’ i +3 | —1 -1
(2100 (3 e)* 3 ¢)* (210 .. 210) » i +2z | —¢ —4
(z11) 3e* 3 €N (211 .. z211) » t +4 | —¢ —2
(z12)! o (212 221) » i of| —i+2 o
(222 (A e) (3 &) n* (222 225) » i +1 | —i4+2 | —1
(226)' (3 ¢) (3 €) n* (226 .. 229) » ) -1 | —i4+2 | 41
(230) (3 e)* n* (230 .. 230) » i o| —i+z | —4
(231) (3 e)* (3 &) 0" (231 .. 231) » i | —1 | —i+2 | —3
(232f (30" A&V n* (232 .. 232) o | i | —a | —itz |2
(2330 (3e) 3 €)' n* (233 .. 233) » i | =3 | —i+z | -1
(230 G (234 .. 234) W | i | =4 =itz ]| o
(2350 3 e)* Qe n" (235 - 235) » ¢ [ +2 | —it2 | —2
(236} (3 e)* (3 €)*n* (236 .. 236) » i —2 | —i4+2 | +2
(237)' (3 ¢)* #* (237 .. 237) » i o | —it4 | —2
(238 (1) A ¢) o* (238 .. 238) wo| i = | i | =
(239) (3 €)* n* (239 .. 239) » i | —z | —i+4 o

Terms of third order : terms of orders s, 7, having the same arguments.
I'—¢'|L'=I'| L-—6 L-11
(240)" (3 ¢)° (240 .. 249) ws | i | o|—i |43
(250) (Re)* (3€) (250 .. 259) ” i |+ | —d +2
(260) (3 ¢) (3€)* (260 .. 269) » i +2 | —¢ +1
(270) (3 €)* (270 .. 279) ” ¢ | +3 | =i °
Rovar AstroN. Soc. Vor. XXXIX. L
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Terms of third order (concluded) : —

L'—e'|L'—I'| L—e |L—II
(280)' (e)* (3€&) (280 .. 283) cos i +1 | — —4
(284) (de) (Re)* (284 .. 287) » i | +4 | =i -1
(288)' (3e)® (3 ¢)* (288 .. 289) » i +2 | —i -5
(290) (3 e)* (3 €)* (290 .. 299) » i o —i4+z | +1
(300)* (3 ¢') * (300 .. 303) ” i +1 | —i42 o
(310)' (3 e)* (4€) n* (310 .. 313) 1 i | =1 —it2 | +2
(314)' (be) 3 ) n* (314 .. 317) » i | 4+z2 | —i4+z |-
(318) (3 ¢)* n* (318 318) » i o | —it+z | —5
(319) (A e)* (3 &) n* (319 319) » i | =1 | —itz | —4
(320) (4 €)* (3€)* * (320 320) » i | —2 | —itz | —3
(321) (R &)* (3 €)’ 1" (321 321) » i | —3 | —it+z|—2
(322)' (3 e) R )*n* (322 .. 322) ” i | —4 | —it+z |-
(323)' (3 &) o* (323 .. 323) ” i | =5 | —it2 o
(324)' (3e)’ 3 &) 0" (324 .. 324) » i | —z2 | —id+z | +3
(325)' (§)* (3 &)’ n* (325 325) » i | +3 | =itz | —2
(326)' (4 e) n* (326 .. 329) » i o | —id+4 | =1
(330) (3 ¢) »* (330 .. 333) » i =1 | =ity o
(330 (3 e)* A &) n* (334 .. 334) » i |41 | —itq | —2
(335)' (3 e) (3 &) n* (335 335) » i | =2 | —idtg | +1

Terms of fourth order :

lerms of order 6, and of same argument.

L'—e'|l'—I| L—e |L—nu
(336) (2 )* (336 .. 339) cos | i o | —i +4
(340)' (3¢)’ (3€) (340 .. 343) » i |4+ | =i +3
(344) Qe (3 €)Y (44 - 347) » i |4z | —i +2
(348)' (k) (3 €) (348 351) » i | +3 | =i +1
(352)' (3 €)* (352 .. 355) » i | +4 | =i o
(356) (e’ (4¢) (356 .. 356) » i |4 =i -
(357)' () (3 €)* (357 357) ” i | +s5 | —i—1 o
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Terms of fourth order (concluded) :—

L—e'|L'=’| L—e |L-—n
(358) (4 e)* n* (358 358) cos i o| —it+z | +2
(362) (Y e) (3 &) n* (362 364) » i |4+ | —itz |+
(366) (3 ¢)* o* (366 .. 1369) » i + 2 — i 4 2 o)
(370) (3 ¢)* (3 €) n* (370 379) » i | =1 | —itz | +3
(371)' () ()’ n* (371 371) » i | +3 | —itz | —1
(372) n* (372 375) » i o| —i+4 o
(376)' (3 e) (3 €) n* (376 376) » i |41 | —i+g | —1
(377)' (A e) (4 &) n* (377 377) » i | =1 | —it 4| +1

Terms of fifth order : terms of order 7 having the same arguments.

L'—¢|L/'—I'| L—e |L-mI
(378) (Y ¢)® (378 381) cos i o | —i +5
(3%2) (3 e)* (3¢) (382 385) » i+ | =i + 4
(386)' (3 ¢)* (3€)* (386 .. 389) » i | +2 | —i +3
(390)' (3 e)* (3 €)* (390 .. 393) » i +3 | i +2
(394) (3e) 3 €)* (394 .. 397) » il +4 | —i +1
(398) (4 €)° (398 4o1) » i+ | —d °
(402)' (3 e)® () (402 402) » i+ =i -6
(#03)' (3e) (3€)S (403 .. 403) b | 8|6 —i -1
(404) (3 €)* n* (404 .. 407) » i o —it+z | +3
(408)" (3 e)* (4 €) n* (408 411) » i |+ | —it2 | +2
(412)' (3e) (B €)' n* (412 .. 415) » i | +2 | —it2 | +1
(416)' (3 €)' n* (416 .. 419) » i | +3 | —i+z °
(420)' (Je)* (3 &) n* (420 .. 420) » i —1| —it2z | +4
(4z1)' (3e) B &) n* (421 .. 421) » i +4| —i+2z2 | —1
(422)* (3 e) n* (422 .. 42%) » .2 o| —i4+4 | +1
(426) (3 €) »* (426 .. 429) » i |+ | —it4 °
(430 (3e)* (3€) n* (430 .. 430) » i | —1 | —it4 | +2
(431)' () (3 €)* n* (431 431) » il +z2 | —itg | —1
(432)' (3 e) n° (432 .. 432) » i o | —i+6 | —1 |
(433)' (3€) n* (433 .. 433) » i | —1 | —it+6 °
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Terms of sixth order.

L'—o'|L'—IT L—o L-I1
(434) (3 &) (434 .. 434) .. | cos i o | —i +6
(435 Be)* (3e) (435 - 435) .| | & [+1 | —i +5
(436)' (3e)* (3e) (436 .. 436) .. | i 42| —d + 4
(437) (Be)* (B (437 .. 437) .| o, i | +3 | =i +3
(438 (3e)* (Ae)* (438 .. 438) .. | il +4 | —i + 2
(439) (3e) (3€)° (439 .. 439) .. | i +s5 | —¢ + 1
(440) (3 )® (440 .. 440) .| i | +6 | —i °
(441)' (3e)* n* (441 .. 441) .| i o| —it+z | +4
(442)' (4 e)* (3€) n* (442 . 442) .. | i+ | —it+z | +3
(443) B3 e*(3€)n" (443 .. 443) .. | » i |4z | —it2 | +2
(444) (3e) (3€)n" (444 -« 444) .o | » i | +3 | —i4+z | +1
(445) (3 ) 0’ (445 -+ 445) .| » t | +4 | —it2 °
(446) (3 €)* »* (446 .. 446) .. | i o —i+4 | +2
(447 (3e) (B €) n* (447 - 447) oo | o i |4+ | —it+gq | 41
(448)* (4 &)* o* (448 .. 448) .e » i + 2 —i+4 <)
(449)" n® (449 .- 449) .| » i o| —i+6 o

Terms of seventh order.

L'—o' L- L-e |L-n
(450)" (3 &) (450" .. 450) .. | cos | & o —i +7
(45s1) (A (A e)* (451 .. 451) .. | » i N + 6
(452) Qe (A€)* (452 .. 452) .. | » ¢ 2 | —i +5
(453)' (Re)* (3 €) (453 .. 453) .| » i 3 | —i + 4
(454) (Be) (3 e)* (454 .- 454) o | = ¢ 4| —i +3
(455 (e)* (4€)° (455 .. 455) .- | » i 5| —¢ +2
(456) (3e) 3 e)® (456 .. 456) .. | » i 6 | —¢ +1
(457) (3 €Y ()57 .. 457) | » i 7| —¢ o
(458)" (de)* n* (458 .. 458) .| 5 ¢ o =itz | +5
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Terms of seventh order (concluded),

L—e'|L'=r| L—e |L-I
(459) (A e)* (2 €) v* (459 -- 459) .. | cos i |+ | —itz | +4
(460) (3e)* (3 €)*n* (460 .. 460) .. » i +2z2 | —i+2 | +3
(461 (3 e)* (3 €)Y n* (461 .. 461) . » i +3 | —i+z | +2
(462) (3 e) B &) n* (462 .. 462) .. ’ i +4 | —t4+2 | +1
(463)" (3¢)° n* (463 . 463) .. | i +s5 | —ita2 °
(464)' (3 ¢)* n* (464 .. 464) .. | , i o| —it+4 [ +3
(465)' (Y e)* (3 €) n* (465 .. 465) .. | i+ —itg | +2
(466) (3 e) (3 €)* n* (466 .. 466) .. ” i +2z | —i+4 | +1
(467) (3 ) n* (467 .. 467) .. | i | +3 | —i+4 o
(468)* (3 €) n° (468 .. 468) .. » i o| —i+6 | +1
(469)* (4¢) n° (469 - 469) .. | » i | +1 | —i+6 o

Here the several coefficients are ultimately given in terms of the
before-mentioned quantities A’, B}, C, D}, E, G, H}, L, S, T* (functions of
of a, a’), and their differential coefficients in regard to a -

*

1 d 1 a
(A"=-l G(EA‘, A"‘=.l._2 02? A‘, &0.),

as follows:—we have LEVERRIER, pp. 299—330, a list of functions (1), (2), . . .
(154) of the form (1)=34 K', ()= —2A*K'+ K+ K}, (3)= —2¢'K'+ K} + K |
&c., involving i, A, and K, and its derived functions K* K‘ &c. The
coefficients of the several cosines are given by means of the functions in
question, thus, first coefficient, above denoted as (1) (1...20), is

=Y+ @)\ A+ (3)e)... + (2078

where (1)'= (1), (2)'= (2)....writing in the functions (1), (2)....(10),
h =1, and K'= A%

(1) = (1), (12)'= (2), &e., writing » = { and K*=— E},
(zo)‘ = (1), writing A = ¢ and K =— H,

and 8o on for the various component coefficients (1), (2)'. ... (469)".
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But the resulting expressions, for the several integer values ¢ = — 10
to + 10, are worked out in the Addition II. (Numerical Tables Sor the
Calculation of the Coefficients of the Development of the Disturbing Func-
tion), pp. 358—-383. And this Addition contains also, indicated by the letters
¢ and A respectively, the expressions of the terms which experience an
alteration in passing from the development of the reciprocal of the dis-
tance to those of the disturbing functions m’ upon m, and m upon m’
respectively.

We have—

Disturbing Function m’ upon m
___m,{_rcos H+l}

12

r ¢

Disturbing Function m upon m’

_m{_""OSH_*_ﬂ
= o Cj.

7 cos H

e ?

rcos H

7
in the excentricities and inclination, are given, LEVERRIER, pp. 272 and 274.
Expressed in the terms of the foregoing arguments L’— @', &c., and in

The expressions of — and — developed to the third order

. a
terms of a, @' in place of @ and e, = -, these are as follows:—

—'co'H--iinto , ,

i gl L'—¢'|l'—IT'| L—6 | L—II
—1 43+ e+ .. .o <« | cos 1 o | —1 1)
—eée .. . . . . ” +1 |41 | =1 | =1
+3ie—gee*—3ent .. . A +1 o|—1 |+
—jetdee "+ 3+ 3en .. . » +1 o|—1 | =1
—2éd+ e +3et+zen .. .. » +1 |41 | =1 o
—3é¢e . . .. . » +1 | +1 | =1 | =2
+ S5 .o .e e .o " —1 | +2 | +1 | =1
— $ilee” .. .. .. .e » +1 |42 | =1 ]| -1
+3eq .e .. .o . ” +1 ol|l41 | —1
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r cos H a .,

- poc7 =a—,,mto L'—¢'|L'—1| L—o | L-1
—3é cos | +1 o|—1| 42
—3e . .. » +1 o|—1 | —2
+ 3e€ .. . s +1 |41 | —1 | +1
e i .. e s —1 | 4+2 | +1 o
— e . .. » +1 | —2 | —1 o
-n .. .. s 41 o| +1 o
—&e .. . e »» +1 o|—1 |43
—ié .. .. ” + 1 o|—1|—3
—%ée . .. . +1 |41 | -1 ] 42
— fse” . w | =1 |4z |+ | +1
+ §tee” ’ +1 | 42 | —1 | 41
-}’ ‘ . w | —1 | 43 |+ )
— 15¢3 .. .. » +1 | +3 | —1 o
—jen? e » +1 ol 41 |41
—2¢ 9 » +1 | 41 o | 41

rcosH 4,

I L'—o'|l/~I'| L—6 | L—II
—14+3(E+ )+ cos 1 o | —1 )
—ece .. » +1 [ 41 | —1 | —1
—2e+ee” +3e+z2en » +1 o| —1]—1
+%e,_%eze’—%e’"z ”» —1I + 1 +1 (o]
—de+iee+ 3l + e w |+ | +1 | =1 o
+ e w | +2 | —1 | =2 ]| +2
"’H'e‘e' ”» +1 +1 —1 -2
o .. .. w | +1 | +2 | —=1]=1
+3en . .. w |1 | =1 | +1 o
-} .. » +1 o | —1 | +2
-4 .- » | +1 ol —1]—2
+ 3ee w | =1 | 4+1 | +1 | +1
—%e* w | —1 | 4+2 | +1 o
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—'Jc“H=-E-into , ey ,

= P L'—¢'|L/—I'| L—6 | L—II
— 3 .. .. .. o f cos pF1 | +2 | —1 o
-7 . . .. .. ” +1 ol +1 o
—1é .. . .- R +1 o|—1|+3
— 16 ¢} .. .. .. .o » +1 of| =1 |—3
+ 8léte e . .. .o » -1 |41 | 41| +2
— e . . . .. » +r {41 | =1 | 42
— lee? .. . . .. » —1 |42 4+1 | +1
— e .. .o .. .. » -1 | +3 | +1 )
-1 . . .. . » +1 {+3 ]| =1 o
—zen* .o .. .e .. »” +1 ol 41| 41
-3y ’ +1 {41 | 41 o

It is hardly necessary to observe that, to obtain the expressions of the
Disturbing Functions, these additional terms are to be combined with the
corresponding terms in the expression of the reciprocal of the distance:
thus, in the Disturbing Function Q (m’ upon m), the entire term depending
oncos [L'-@ - (L-0©)] is

=m’{z (1, ... 20), +:—,,( -1+ i(e’ + €Y+ n‘)} cos [(L'— @) — (L — @)],

where, however, the supplemental term is taken to the third order only.
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V. On the Law of Facility of Errors of Observations, and on the Method
of Least Squares. By J. W. L. Graisegg, B.A., F.R.A.S,, F.C.P.S,
Fellow of Trinity College, Cambridge.

Read April 12, 1872.

Tae American Journal of Science and Arts for June 1871 contains a his-
torical note by Professor CLEVELAND ABBE, the object of which is to point
out that Professor RoBERT ADRAIN, of New Brunswick, published the
method of Least Squares in 1808, having been independently led to its
discovery.

It is well known that all the proofs that have been given of the method
of Least Squares contain, to say the least, some points of difficulty, and on
this account any new investigation of the result is necessarily a matter of
much interest. Although some of the investigations of the law of facility
e~™# are far from rigorous, still there is not one that is not of some
importance, as throwing additional light on the properties of this law ; so
that a fresh investigation, and one, moreover, by which the law, not pre-
viously known to the author, was discovered, might be expected to be a
real addition to, or at all events confirmation of, the known processes.
Dr. ApraiN’s proof, however, seems to me much inferior, both in point of
rigour and counclusiveness, to any of the usual investigations; but, for the
reasons stated above, it appears worth while to notice the reasoning by which
he obtained the law of facility.

Since the method of Least Squares was first proposed by LEGENDRE and
Gavuss, there have been several demonstrations given, some of which have
had for their object to prove the law of facility, while in others it was only
sought to prove the method of combining linear equations, known as that
of least squares.

Rovar AstroN. Soc. Vor. XXXIX. M



76  Mr. GLAISHER, on the Law of Facility of Errors of Observations,

Some of the most important investigations were carefully analysed and
improved by LesLie ELLis, in a memoir in the eighth volume of the Cam-
bridge Philosophical Transactions, but with no special reference to the law
of facility. Much has subsequently been written on the subject by HERSCHEL,
Eiris, Boore, DE MorcaN, &c. I propose, therefore, after noticing Prof.
ADRAIN'S proof, to give an account of the manner in which the law e—*#
follows from the different assumptions that have been made with respect
to the nature of errors, &c., and to examine how far these assumptions are
consistent with one another; it will also be necessary to notice the manner
in which Gavuss and Encke, Laprracg, Poisson, ErLis, DoNkIN, &c., have
considered the subject, and to discuss at some length the @ priori evidence
in favour of the assumption that the arithmetic mean is the most probable
result of a number of presumably equally good discordant observations,
The matter will be throughout considered chiefly with reference to its
fundamental principles and assumptions, but in treating of LapLacE's
method, the peculiarity of which consists as much in the analysis as in the
suppositions, it will be necessary to examine the mathematical part of the
subject. The paper will conclude with a few remarks as to the most
probable results, if the law of facility were known to be e~™v%, a form,
which, besides being @ priori very natural, was, in fact, the one assumed
by LAPLACE in one of his earlier memoirs.

It will be convenient to state Dr. ADRAIN'S proof as briefly as possible
and in differential (not fluxional) notation, and then to notice the points of
interest contained in it. I fear that it will be thought that the comments on
the investigation extend to a far greater length than the importance of the
proof deserves; but several of the points suggested seem of sufficient
interest to merit discussion, independently of the proof under consideration.

Dr. ADRAIN enunciates the question thus, “ Supposing A B to be the
true value of any quantity of which the measure by observation or experi-
ment is A b, the error being B b ; what is the expression of the probability
that the error Bd happens in measuring AB?” The investigation is then
as follows: “ Let A B, BC, &c., be successive distances of which the values
by measure are A b, bc, &c., the whole error being C ¢ ; now, supposing the
measures A b, b ¢, to be given, and also the whdle error C ¢, we assume as a
‘self-evident principle, that the most probable distances A B, BC, are pro-
portional to measures A b, bc, and therefore the errors belonging to A B,
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BC, are proportional to their lengths, or to the measured values A, éc.
If, therefore, we represent the values of A B, B C, or of their measures A b,
bc, by a, b, the whole error C ¢ by E,* and the errors of the measures A b,

b ¢, by z, y, we must for the greatest probability have the equation ; = %.”

Let ¢ (a, )t express the probability that an error x occurs in mea-
suring a distance @, the probability of the occurrence of errors z, y, in
measuring distances a, b is ¢ (a,2) . ¢ (,y). “If now we were to determine
the values of z and y from the equations « +y = E and ¢ (a,z) . ¢ (4, )

= maximum, we ought evidently to arrive at the equations ; = % and

since # and y are rational functions of the simplest order possible of a, b,

and E, we ought to arrive at the equation ~ = £ without the intervention of

‘roots ; in other words, by simple equations ; or, which amounts to the same
thing in effect, if there be several forms of ¢ (a, ), and ¢ (, y), that will
fulfil the required condition, we must choose the simplest possible, as having
the greatest possible degree of probability.” .

For ¢ (a, 7) . ¢ (b, y), to be maximum subject to the condition 7 +y=E,
¢ (a, 2) ¢ (5 )

we evidently have ¢ (a, x) dz + ¢ (b y)

dy =o,dx + dy = o, whence

# (09) _¢(by)
4 @2 ¢ 3

“ Now this equation ought to be equivalent to :—: = %; and this circum-

¢'(a,x)___n2
¢(az)” a

; m being any fixed number which the question may

stance is effected in the simplest manner possible, by assuming

¢ Gy _ my
and 0=
require.”
ma?
By integration, we have at once ¢ (a,7) = ¢“*3a. Dr. ADRAIN notices
that m must be negative, and that ¢ the probability that the errors z,y, z. ..

: . .o ma mi met
happen in the distances a,b,c...is e *¥** -+ *5* 3¢+ -+ &e.” and

the investigation concludes with the remark that “ we have, on choosing the
constants properly, y = e”*~* for the equation of the curve of probability,

* This is misprinted C in the paper. 1 The notation is changed.
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or putting JS?=o0, y=e~, which is the simplest form of the equation ex-
pressing the nature of the curve of probability.” Prof. ABBE extracts the
account, which has in substance been given above from the Anal_yst an
American journal, for 1808, and adds that the general solution is followed
by its application to four problems, whose enunciations only are given.
Reference is also made to two papers by Dr. Apralx, in the Transactions of
the American Philosophical Society for 1817, which Prof. ABBE states were
written in 1808. The Analyst is not accessible to me, but, on referring to
the American Philosophical Transactions, vol. i., new series, 1817, p. 119,*
I see that Dr. AprAIN has made use of the method of least squares, and, as
he only refers to his own paper in 1808, it is to be inferred that he dis-
covered this mode of treatment of observations, in ignorance of LEGENDRE's
and Gauss’s writings. The manner of application is as follows:— Having
a table of the lengths of the pendulums vibrating seconds in different
latitudes, we ought, by CrLairauT’s theorem, to have the equation
r = x + y sin® A satisfied exactly, 7 being the length of the pendulum, A the
latitude, and « and y constants. This not being the case, Dr. ADRAIN de-
termines z and y so as to make (z+y sin* A, —7 )+ (x+y sin* A —r )" +
a minimum.}

Returning to Dr. ADRAIN’S reasoning, the assumption at the beginning
is, that if we measure consecutive distances a and b, and know from other
considerations that E is the total error committed, then the most probable

distribution of the error over the two measurements is when 2 = %’, x and y

being the errors in @ and b, so that « + y = E. This seems very far from
being evident, not to say very far from being true, generally : it seems
scarcely likely that the error should be directly proportional to the distance
measured. In whatever manner the measurement is effected, one would
expect a less relative error in a greater distance. If the distances were
measured, as in the determination of a base line, the error ought certainly to
be relatively less, the greater the length measured to allow for the neu-

tralisation of positive and negative errors, and =7 b would seem a more
* «Jnvestigation of the Figure of the Earth and of the Gravity in different Latitudes.”

t An identical application of the method of least squares is given by Puissant, T'raité de
Géodésie, vol. ii. p. 341, 1819.
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natural assumption. If AB, BC, were angular distances in a horizontal
plane measured by a theodolite, there would be no reason to anticipate a
greater error in the measurement of a greater distance, and we should
expect the most probable error to be independent of the distance measured.
(This case agrees very well with the condition assumed in the question :
If the angle between objects A and B were observed, and then travelling
round the circle, the angle between B and A, the whole errpr would then
be known as the difference between 360° and the sum of the observed
values of AB, BA.) If, however, as seems likely by one of the examples
to which he has applied his method, Dr. ADRAIN had in his mind the
distances obtained in a field survey, the assumed relation might be as likely
as any other, as though the error of the theodolite reading might be
independent of the arc, a greater angle might in general be supposed to
correspond to a greater distance. The majority of observations, however,
are not of this class; they are generally readings of an instrument. On the
whole, therefore, the assumption that we must for the greatest probability

have the equations E:% seems most arbitrary, whether it is intended asa .

result justified by experience or self-evident @ priori. The only sort of
reasoning by which a result of this kind could be justified would be some-
what similar to the following:— It is moderately clear that in general the
most probable error will depend on the length measured, so that we have
Z =Y
Ja b
results agreeing pretty nearly with the error our judgment would lead us
to assign. We are, however, utterly unable to assign any one form to f as
more likely than another, unless we know something of the manner in
which the measures are made. Knowing, therefore, nothing at all about f;
we take, in order to deduce a rule, the form which will be most simple in
appearance, anticipating that, by doing so, the succeeding analysis will be
rendered more convenient. It is, however, to be remarked that, in the
choice of the simplest, where several algebraical formule seem in rerum
naturd to be equally probable, we are really doing rather more than merely
suiting our own convenience, as it is matter of experience that, as ex-
pressions of natural laws, less complicated formule occur more frequently
than the more complex ones, just as simple equations are more common

f—'_fa_) = fs(/b—)‘ In some cases we see that g = %, &c., would give
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than quadratics, &c., so that, in a hypothetical case, where no reason of any
kind (such as an analogy, &c.) exists for preferring one form to another,
we might be more or less justified by the Theory of Probability (regarded
as drawing inferences from experience) in taking the simplest algebraical
formula. This reasoning, however, is very slight, as we are thrown on all
the fundamental difficulties of the subject of probability, viz., from what
class the observed results are to be selected, so as to apply to the class
under consideration, &ec.; and it should only be admitted in the total
absence of every reason which might indicate a likely form for the expres-

sion. It is thus clear how vague and arbitrary is the assumption of = =¥
a b

as the most probable equation, and, which is of more importance in inquiries
of this kind, how difficult it is to determine the exact nature of the assump-
tion made. Even assuming that the most probable errors are proportional
to the lengths, one other point is worth notice. As positive and negative
errors are (or clearly ought to be supposed) equally likely, we might take

one negative, and write z = % where z—y = E; this would, however, require

x and y to be greater than in the case when x + y = E; and as the proba-
bility of errors decreases as their magnitude increases, the former case is
the more likely of the two. It will appear further on, that the truth of the

equation }: = ‘% is not at all necessary for Dr. ADRAIN’S subsequent meaning,

so that the above remarks, though bearing upon a statement in the proof,
are not relevant to the ultimate result obtained.

In the second portion of the investigation we have to determine the form
of ¢ from the sole condition that ¢ (a,x). ¢ (b,y), subject to the condition

z +y = E, shall be a maximum when E:%: the condition for the
maximum we may write

¥ (a, z) =1+ ®, y)
(¢ being put for %), and this must be equivalent to
z v\
_ F(%)=F(})
F being arbitrary: all that can be learned from this is the manner in which

< involves & and z, viz., J must be a function of ;; therefore,
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ed=r() w rea= GO

the complete solution of the equation. It is important to observe that what
is specially sought is, not the manner in which z and a enter into the
equation, but the form of the facility function ¢ (2); and, by taking (),
proportional to x, the very form which it is required to find is assumed.
As the deduction of the form e~*+ is dependent simply on the propor-
tionality of 4 () a.nd z, the result would have been the same if the

equation had been — instead of =Y It is needless to comment

S ( )~ F (5)
on the arbitrary assumption that gives the form e Tt {x ( ;) }a; it cannot

°~I

even be justified (in the manner previously mentioned), as the simplest

form, for why make %' simple in preference to ¢? If anything, the simplest

and most suitable form should be given to {x (Z)}a, and we have no

means of doing this. These objections would apply with equal force if
any number of distances a, b, c¢... had been measured subject to
z+y+2z+...=E. Itiscurious to note that the author of the investi-
' gation seems not to have been aware that the probability of the occurrence
of any given error must be infinitesimal; he continually speaks of the

probability of an error # as being equal to e“*3r. The same mistake has
been made by others (including Ivory). This may explain why the relation
between the constants is not determined by jntegration between + oo, 80 as

to find —- e~ for the law of facility.

The very slight and inconclusive nature of Dr. ADRAIN'S reasonmg would
lead one to believe that he first remarked the convenience of treating
equations by the wmnethod of least squares, and subsequently endeavoured to
justify it, as above described, by the Theory of Probabilities. Whatever
may be thought, however, of his reasoning, we must in Prof. ABBE’s words,
“ credit Dr. ApraIN with the independent invention and application of the
most valuable arithmetical process that has been invoked to aid the progress
of the exact sciences.”

I pass now to the other investigations of the law of facility and the
method of least squares that have been given. The method, as is well
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known, was first proposed in print by LEGENDRE, in his Nouvelles Méthodes
pour la Détermination des Orbites des Cométes (Paris, 1806), as a conve-
nient way of treating observations, without reference to the Theory of
Chance. In his preface, LEGENDRE remarks, “ La méthode qui me paroit la
plus simple et la plus générale, consiste & rendre minimum la somme des
quarrés des erreurs . . .. et que j'appelle méthode des moindres quarrés .. .”
In an Appendix (p. 72), in which the application of the method is explained,
LecENDRE’S words are, “ De tous les principes qu’on peut proposer pour cet
objet, je pense qu'il n'en est pas de plus général, de plus exact, ni d'une
application plus facile que celui dont nous avons fait usage dans les re-
cherches précédentes, et qui consiste & rendre minimum la somme des
quarrés des erreurs.” It may be noted that LEGENDRE recommends the
rejection of observations which differ too much from the results obtained by
the method.

Though first published by LEGENDRE, the method of least squares was
applied by Gauss, as he himself states,* as early as 1795, and the method is
explained, and the usual law of facility for the first time found in the
Theoria Motus Corporum Celestium (Hamburg, 180g): this is the first
investigation in which the theory is developed from the principles of Pro-
bability. In examining the proofs that have been given, it will be con-
venient to group them as follows: —

1. Gauss's original investigation, including ENckE’s, DE MoreAN’s, and

ErL1is’s remarks on the principle of the Arithmetic Mean. -
2. LAPLACE’s method, including Porssox’s and ErLis’s simplifications, and
Ivory’s criticisms.

3. Gavuss’s second demonstration, and its connexion with Larrace’s.

4. Sir Joun HerscreL's proof, with Erris’s and BooLe’s criticisms

thereon.

5. Professor Ta1r’s, and similar proofs.

6. DoNKIN’S proof.

Besides the above, three demonstrations have been given by IVOrY in
Volumes LXV. and LXVIILf (1825 and 1826) of the Philosophical
Moagazine (TLrocE’s). These seem to have received quite as much atten-

® Theoria Motus, lib. ii. sect. iii. ch. 186.
t ELL18 incorrectly says lxvii. Camb. Pkil. Trans., vol. viii. p. 217.
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tion as they deserve at the hands of Erris, who has pointed out very clearly
their unsatisfactory character. Ivory endeavoured to establish the principle
without recourse to the Theory of Probability, and, as a consequence, his
reasoning is inconclusive. His first method depends on an analogy with
the principle of the lever in mechanics, and the other two apparently in-
volve confusion of thought. As they seem to have been sufficiently dis-
cussed by ELLis, no formal examination will be made of them in this Paper,
although they will be referred to incidentally. Demonstrations have also
been given by Besser, Mr. CrorToN, &c., to whieh reference is made on
p- 119.

Gauss deduces the law of facility from the assumption, that if apparently
equally good observations z,, z,, . . z, are made of a certain quantity, then
the most probable value of that quantity is the arithmetic mean of the

z’,-i-z’-l- oo By

observations, m

Suppose a is the true value of the quantity,

then #, — a, 2, — a . . . are the errors, and if ¢ (x) be the law of facility
the @ priori probability of these errors is proportional to ¢ (x, — a)
@, —a)...p(, —a); whence it follows that, after the observations
have been made, the probability that a was the true value is proportional
to this same expression; which, therefore, in order to find the most probable
‘value of «, must be made a maximum. Differentiating with regard to q,
there results

¢I(zn—a)_
+..'.m—0 (l)

¢’ (ze — a)
¢ (z:. - a)

ﬂﬂ:ﬂ

oz =aT

By hypothesis this must be satisfied by a = - S(z,+ =z, + . ..), whatever

integer value n may have. Writing then for brevity, { () for: 2 ;, Y is to

determined from this condition. Let z,= #,=...= &, = 2, — 7 «, there-
fore @ = z,~ (n — 1) @, whence . '

Hn—na}+ @ —1¥(-a=o
or

yin—1)a} \1/(

C(r—1)a

, whatever a may be,

4'()

therefore —— is constant = m say, and ¢ (x) = A e e ; we must have m
ROYAL AsTtroN. Soc. Vor. XXXIX. N
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negative (= — A°) in order that (1) may give a maximum; and since

the error must lie between + o J “gv (x)dx = 1, and therefore, since

$E) = e, @)

We infer from this that the arithmetic mean is only the most probable
result when the law of facility is given by (2), so that if it eould be generally
shown that the arithmetic mean possessed this property, we should have
a demonstration that (2) was the only law of facility.

That we have no right to assume as an axiom that the arithmetic mean
is the most probable result of every series of direet observations (presumed
to be equally good) of the same quantity is quite clear ; and if it were not
clear per se, the above investigation which shows that this supposition
requires the existence of a special law of facility proves that it cannot be
true in all cases, as it is certainly possible to conceive observations subject
to laws of facility different from (2).* This reasoning is effective as showing
that we cannot assert universally that in every series of observations the
arithmetic mean is the most probable result, and that certainly this is not
an axiom; but it does not prove that of all the methods that could be
proposed of combining observations, this one will not in the long run
give the most accurate results. To illustrate this point more fully : suppose
one set of observations only is about to be made, it certainly will not follow
that to take their arithmetic mean will be the best method of combining
them ; but it may be true that if 10,000 sets of observations of different
kinds were made, the arithmetic means would on the whole be nearer to

* All this is to be understood on the hypothesis that no assumption whatever is made
with regard to the nature of an error. Those who have asserted that the arithmetic mean is
the most probable value and taken this as a basis for the treatment of observations, have done
8o on the supposition that we know nothing whatever of an error except that it is as likely to
be positive as negative; and this is all the knowledge assumed in the text. It will appear
farther on that the consideration of the manner in which an error no doubt does arise leads
to Gauss’s law; but this does not justify the above assumption that the arithmetic mean is
the most probable result, but shows distinctly that this cannot be evident per se independently
of the nature of an error.
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the truth than any other series of results obtained by a uniform system
of treatment, independent of the observations themselves. -

In introducing his investigation, GAUuss makes no attempt to prove the
principle of the arithmetic mean ; his words are, “ Quz quoniam a priori
definiri nequit, rem ab altera parte aggredientes inquiremus, cuinam func-
tioni, tacite quasi pro basi accepta, proprie innixum sit principium trivium,
cujus preestantia generaliter agnoscitur. Axiomatis scilicet loco haberi
solet hypothesis, si qua quantitas per plures observationes immediatas,
sub ®qualibus eircumstantiis zqualique cura institutas, determinata fuerit,
medium arithmeticum inter omnes valores observatos exhibere valorem
maxime probabilem, si non absoluto rigore, tamen proxime saltem, ita ut
semper tutissimum sit illi inhzerere.”* Gauss’s view of the subject seems
to have been as follows : we wish to find the best method of combining
linear equations of the form

ax+by+cz+..=V T (3)

(V being directly observed), and judging of the relative precision of the
results deduced for z, y, z.... Now if the equations are of the form

x—V =o, it is known that to take the arithmetic mean and write
V,4+V,...+ V.
x = -

gives a very good result, and we shall be contented if

we can find as good a rule for determining x, y, z . . . from equations of
the form (3) as this is for determining = from equations of the form = — V.
Gauss therefore proceeds to find the law of facility (2) which makes the
arithmetic mean the most probable result of a series of direct observations,
and then makes use of it to find the most probable values of x, g, 2. . . .
from a system of linear equations. It follows from (2), taken in connexion
with the reasoning by which it was established, that for the most probable
values of 2, ¥, 2 . . .

e—h’(a,:+bly+...—V,)’—h’(a,z+b,y+...-V,)’—...
must be a maximum, whence
@z+by+...=V)V+(az+by+...—Vo) +...
must be a minimum, the same result as LEGENDRE's. ;

* Theoria Motus, lib. ii. sect. iii. ch. 177 (p. 212 of the Original Edition).
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In the Berliner Astronomisches Jahrbuch® for 1834, ENCKE has at-
tempted to prove that the arithmetic mean of a series of direct observations
is the most probable value of the quantity observed: the method, briefly
stated, is as follows. If we have to determine x from two observations,
a and b, we must take as the most probable value z = } (a + b), as there is
no reason why we should suppose x to have a value nearer to the result
of one observation than to that of the other, positive and negative errors
being equally probable. Suppose now, three observations a, b, ¢ are made,
then we must have z = a symmetrical function of a, b, c.t The first two,—
or generally two,—observations considered alone would have given, accord-
ing to the arrangement taken, as the only results to be chosen

d@+d), @@+, b+

to these the third observation adds ¢, b, 2. Now we shall no longer be
allowed to connect symmetrically both quantities in any single arrangement,
as the one depends on two observations, the other on one. But there must
unquestionably be some form for the connexion of both, which would also
produce the result to be preferred from all three observations, and this

form, which may be denoted by +/, must be the same for all three. There-
fore we have for x the three values

z=v{}(a+0),c}
=v{i(a+o),8}
=4{§(®+c¢),a}

Writinga + b +c =35 2 =4 {4 (s —¢), ¢} =4 (s c), &, but 4 (s, ¢),
¥ (8, 8), ¥ (s, @) cannot be identical unless x = + (s) simply; then, putting
a=b=c¢c a=+(3a), whencex = § (a+b+c). The method is extended
by induction to the case when there are n observations.

The objection to this investigation is obvious. Why should the most

* ¢« Ueber die Methode der Kleinsten Quadrate.”

t Jahrbuch, p. 265. As the next twelve lines contain the critical portion of the proof they
are translated quite literally.



and on the Method of Least Squares. 87

probable result from a, b, ¢ be a function of the most probable result from
a and b, and from ¢ ? What would be thought of the assumption that the
~ position of the point equidistant from three points A, B, C, depended only
on the position of the point equidistant from A and B, and on the position
of C? Yet this seems quite as evident as the assertion made in the proof.
ENckE’s investigation is reproduced by CHAUVENET in his Appendix on the
Method of Least Squares with great confidence; he concludes with the
following remark:* “ The principle here demonstrated, that the arith-
metical mean of & number of equally good observations is the most probable
value of the observed quantity, is that which has been universally adopted
as the most simple and obvious, and might well be received as axiomatic.
The above demonstration is chiefly valuable as exhibiting somewhat more
clearly the nature of the assumption that underlies the principle, which is
that, under strictly similar circumstances, positive and negatlve errors of
the same absolute amount are equally probable.”

EnckE has remarked that the principle of the arithmetic mean may
either be regarded as proved by his mathematical demonstration, or by
experience, as this method of combining simple observations has been
universally adopted with uniform success; but it is almost needless to
remark that though experience has shown that the principle gives very good
results, it certainly cannot have shown that it gives the best possible, for
the obvious reason that generally this method has been alone tried ; while
to establish that the results were the most probable it would be necessary
to employ every possible method repeatedly, and even then the decision
would be impossible. What was in effect GaAuss’s view, viz., that the
arithmetic mean is practically the best mode of combining simple obser-
vations, and that experience has justified its adoption by the accuracy of
the results obtained, so that we shall be satisfied with an equally good
method of treating linear equations, was quite reasonable and consistent,
but he was very far from asserting, as a result deduced from the Theory
of Probability, that the arithmetic mean is the most probable value of the
quantity observed.

Eruis{ has pointed out that the rule of the arithmetic mean gives a

* CoAuvENET'S Practical and Spherical Astronomy, vol. ii. p- 475.
t Camb. Phil. Trans., vol. viii. p. z05.
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result which certainly coincides with the true value when the number of
observations is increased sine limite. Let a be the true value, x= the
observed value, s the error, then

T —a=g

z,—a=g¢g
&ec. = &ec.
therefore '
' Z2(z—a)=3e=0
and
=z,
n

since, in the long run, there being no permanent cause tending to make the
sum of the positive errors differ from that of the negative errors, s = o.*
But exactly the same considerations, ELris proceeds, would show that
= f(¢) =o, f being any odd function, so that we should have 2 f(x—a)=o.

There is no discrepancy between these results; both are true at the
limit, and neither when 7~ is finite, and “no satisfactory reason can be
assigned why, setting aside mere convenience, the rule of the arithmetic
mean should be singled out from the other rules which are included in the
general equation £ f (x — a)t = o.”

It might for a moment appear that, if the error was very small, the two
results would always coincide, since f(s) = As + B¢+ . . . of which the
first term need only be retained ; but in the case of A = o we should have
2(x —a)>=o; or Z(x — a)’= o, &c., or we might even have fractional

i
powers and take = (x — a) = o, &ec.

* We can scarcely say that = ¢ must be zero when = is infinite, but it is clearly true that

S ¢ will be infinitesimal with regard to , so thati Zeis zero. This is all that is required

for a = i Sz 4+ 22 e= i 2z, and in the general case =& can be neglected, when n is in-

finite, compared to the terms involving a in 2 f (= — a).

t An investigation of ELLIs'S (loc. cit. p. 207) to show that it does not follow that,
because the arithmetic mean is the most probable value when 7 is infinite, therefore it is so
when 7 is finite has not been noticed in the text, as the conclusion seems sufficiently evident
without it. It is only here alluded to in order to correct a misprint.. The sentence “ where &
is that portion of K which is derived from observations of a, ” should be ‘ where k, is that
portion of K which is derived from observations of a,.”
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To equate to zero the sums of any power of the errors except the first,
would be practically out of the question, as the equations would not admit
of convenient solution. Professor Tarr has given an excellent illustration
of what an assumption for the sake of simplicity may amount to, in his
remark that the principle of the arithmetic mean has been adopted from a
multitude of others “just as we might suppose a calculator to insist on
gravity varying as the direct distance instead of the inverse square on the
ground that the problem of Three Bodies would then become as simple and
its solution as exact, as they are now complicated and at best only approx-
imate.”* ‘

Erris states that Ivory gave three demonstrations of the Method of
Least Squares, but he really gave four ; the reasoning of the secondt one,
however, is of so loose a character, that ELLis may have passed it over inten-
tionally, though Ivory undoubtedly regarded it as a demonstration. It
seems to amount to no more than the following, and would be scarcely
worth noticing if it were not that the concluding sentence expresses Ivory’s
opinion of the rule of the arithmetic mean. If a number of observations
be made, the sum of the errors will approach zero, but the mean of the
squares of the errors will approach more nearly to a determinate value as
the observations are more numerous, and this limit may be taken as a mea-
sure of the precision of the observations. If, then, several sets of obser-
vations are made, that one deserves the preference, the mean of the squares
of the errors of which is least. *Now, in solving a system of equations
of condition in several different ways, the errors will acquire different mag-
nitudes, just as happens in several sets of observations of unequal degrees
of precision. . . . That mode of solution is therefore to be preferred
in which the mean of the squares of the errors is the least,” whence the
method of least squares. ‘

It is unnecessary to point out that one might as well assume the whole
method at once, as assume that the mean of the sum of the squares is the
measure of precision. IVory does acknowledge that everything which has
been said of the squares of the errors might have been said of any even
powers of them, and the principle on which he justifies his choice of the
second powers may in its simplest form be stated thus. For (x, — a)*"

* Edinburgh Transactions, vol. xxiv. p. 140.
1 TiLrocw’s Philosopkical Magazine, vol. 1xv. (1824), pp. 6 and 7.
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+ (z,— a)* + ... to be a minimum, we must have

can—1

@—a)  +(@m—a) ..

]
o

or

but “it is universally admitted that in a series of observations made in
like circumstances, the simple sum of the errors is equal to zero, and not
the sum of their cubes or fifth powers, or any other of their odd powers.”
Whether universally admitted or no, this is certainly not true.

Perhaps the most important contribution that has been made to the
theory of the arithmetic mean is contained in a Paper by DE Morgan On
the Theory of Errors of Observation.® It is there pointed out that the
mean value of all the given values is also the mean supposition of all
possible suppositions as to the mode of obtaining value. The investi-
gation is too long to reproduce, but the result may be stated thus. If
¢ (x, , ...x,)is the most probable result of the discordant observations,
x,x,...x,then

T 4+ 2.+

¢ (z, Tgy ... 3,) = . x"-{-QEE"-l-RES‘Sj-i-SEE"

+ T2¢¢+ US55+ ...

the ¢'s being small quantities, and Q, R, S . . . dependent on ¢; *“hence
p(z,,...x,) is;i 2 ¢ augmented by terms of which we have no know-

ledge whatever, either as to sign or value, and no means of getting any :
we are therefore wholly without reason for supposing that the value of
¢ (x, . ..) lies on one side of the average rather than the other, and must
take this average as the most probable value @ priori.”

1t is not perhaps very easy to estimate at its true value the above result;

it shows that ;l‘ (¢, + =, ...+ x,) is the mean value of different forms of

@, but scarcely that it is the most probable value. For instance, to ‘recur
to the simpler case, we might say £ (x — @) = Z¢, and if we know nothing
and can find nothing about = ¢, there is no reason why = (z — ) should

* Cambridge Philosophical Transactions, vol. x. pp. 416, &c.
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lie on one side of zero rather than the other, therefore we must take
2 (x—a) = o; but similar reasoning would lead us take = (z — @)= o &ec.
In this case indeed we do know something more about =, viz., that it is
s, +6 ...+ &; and it can be shown that the most probable value of this
sum is equal to zero, positive and negative values of the errors being equally
likely.* I the case considered by DE MorGAN (denoting all the terms
involving ¢'s by A) the evidence that A = o is the most probable value of
A is not so strong. It is perhaps as well to take the extreme case and
notice that'if # = p + A, where we know nothing about A and have no
means of knowing anything, then because we have not the slightest reason
for supposing x to be greater than p rather than less than p, it does not at
all follow that # = p is the most probable value of z, any more than it
follows that if we are told that a point lies somewhere on the line between
two given points « and (3, the middle point of « 8 is a more probable posi-
tion of the point than any other. This fallacy does not, I think, enter into
DE MoreAN’s theorem, though at first sight it certainly seems to do so.
Before leaving the subject of the arithmetic mean, a remark of ENcke’s,*
taken from LaMBERT'S Photometry, should be noticed. If we regard the
lengths of the perimeters of the inscribed and circumscribed polygons of =
sides as two observations of the length of the perimeter of the circle, the
arithmetic mean is not the most probable value, as it is a better approxi-
mation to add to the perimeter of the inscribed figure the third part of the

* That is to say, that:[/t ..dg . ..dg, subject to the condition ¢, + €;. ..+ ¢, > l and

< U + & (h being an infinitesimal constant) is 4 maximum when [ = o; if the errors are sub-
ject to laws of facility ¢ (¢), such that ¢ (¢) decreases with increase of ¢, the probability of the
zero value is increased. This is clear on general grounds: it follows analytically from the con-
sideration that if the integral be denoted by + (1), then ¥ (I) = ¥.(— 1), so that ¢ (o) must
be either a maximum or a minimum, and as it cannot be the latter, it must be the former;
or more fully thus '

¢(l)=$£“{/:.¢,(e)c0350d5} ...{fnqp,(e)coseede}coslede

and since cos J 6 passes over its period more rapidly as [ increases, the positive and negative
portions of the integral cancel each other more nearly as ! increases, and ¥ (J) is a maximum
when ! = o. See pp. 98, 110, and Phil. Mag., March, 187z.

t Berliner Astronomisches Jahrbuch, 1834, p. 263.

RoyaL AstroN. Soc. Vor. XXXIX. o



92 Mr. GLAISHER, on the Law of Facility of Errors of Observations,

difference of the perimeters. The answer is obvious, viz., that the lengths
in question are not of the nature of observations ;* other reasons could also
be given.

If there are only two observations, the arithmetic mean is, as is evident
from general considerations, the most probable value; this also follows
from the theory, for in this case, ¢ (¢) being the law of facility,

'(z, — a '(2zg— a
Fematrema @

(i L]
and since ¢ is an even function, ¢’ is an odd one, therefore %— is an odd func-

tion, and (4) becomes on writing #‘ for a,

' (xv _z' rﬁ) ¢/ (zl —z 1’1)
(‘tl - zz) - (zx - zi) =
2 2

o,

which is true.

Although the principle of the arithmetic mean regarded as a postulate
from which to deduce the law of facility, will not be considered again in
this Paper ; still all the remarks applicable to the method of least squares
will have reference to it as a particular case of that general rule.

Whatever may be thought of the rigour of the method by which Gauss
was first led to assume the general truth of the law of facility e—*%, it is
undoubtedly to him that the treatment of observations by the method of
least squares (including under that title the determination of the mean
error, &c.) is due, but whatever strictly philosophical basis the subject has
must be attributed to Larrace, who proved the usual theorems for the
combination of observations (supposed numerous) without assuming any
special law of facility for the individual observations.

LarLAce’s investigations are rendered difficult, partly by want of full-
ness of explanation, and partly by the peculiar character of the notation
used and the novelty of the methods, which, though great examples of analy-
tical skill, appear now so different from the way in which it is natural to
consider the subject that it is not easy to feel any great confidence at first
in the results as stated by LarLace. This difficulty has produced com-

* This will appear cven more clearly from the discussion of the nature of an error on pp.
105, 120,
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mentators who have rendered portions of LArPLACE's work far easier to
follow. A great part of DE MoraaN's “ Treatise on Probability ” in the
Encyclopedia Metropolitana, is translated and adapted from LAPLACE,
enriched by comments. The manner in which LarLACE’s principles lead
to the method of least squares, when there are more than two unknowns,
and the relations of Gauss’s second demonstration to LAPLACE's occupy a
conspicuous place in Erris's Paper, already referred to, and a commentary
on the whole work is supplied by ToprUNTER'S History of the Theory of
Probability (Cambridge and London, 1865).

Larrace only proves the method of least squares in the case where
there are but two unknown quantities to be determined, and remarks that
the same mode of proof will apply, whatever be the number. The neces-
sary extension of the analysis was made by Erris, who, however, showed
that the results obtained were the same as those found by making the sum
of the squares of the residuals a minimum, only by an @ posteriori verifica-
tion. This slight blemish can easily be removed by the aid of determinants,
and it seems worth while to restate LAPLACE’S principles for the treatment
of linear equations, following ErLris generally, but making this alteration,
and keeping the reasoning distinct from the analysis on which the law of
facility of the aggregate of the errors depends.

Let the equations of condition be

aiz+by+ez+...—Vi=¢g

g+ by +coz+...—Vy=¢,
&e. &c.

azx+by+tez+...=V, =¢,

- n equations, involving p unknowns z, y,z. . ., (» being > p). a,b,...a,
b,.. . are known quantities given by theory for each observation, and cal-
culable if necessary before the observations are made; V,V, ... are
quantities determined by direct observation; and ¢,¢,...are the errors
committed in observing V, V_. .. and are of course unknown.

To solve these equations multiply by w, @, . . . g, and add, thus

(Mo + M. . +pa)z+ (byoo.+pb)y+...
=@V V) + (e ..+ pe);
choose w,, w,, . . . so that
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e+ peae. .. +u,a,

1
B by + pebe. .. + b, o\ s)
Micr+ HgCs. . + flaCa=0]
&ec. &ec. )

(p conditions between n quantities) ; we then have

z=[nV]*+[pe]
Suppose that the laws of facilityt for the observations V,V, ... were
¢, (2), ¢, @) . . . and let us calculate the chance that w, s, + @, ¢,. . .+ @, ¢,
shall lie between the limits /and — /. This, of course, cannot in general
be done unless ¢, (z), ¢, () ... are given; but it is found] that if.the
number (z) of equations be very large, the probability in question will take
a certain limiting form, whatever functions ¢, ¢, .. . may be, and when n
is large the probability that [w ¢] lies between — / and / is equal to
!

2z [V
VT e—"dx )

o

Now (5) gives p conditions hetween the 7z quantities w, w ... w,: let
therefore the n — p conditions to which we may still subject them be used
in making (6) a minimum, so that we shall have the greatest probability
. that [w ¢], the error of x, may lie between / and — L '
For (6) to be a maximum [w'A*], must be a minimum, viz., &’ p*
+ kPpt. ..+ Kk’ p, must be a minimum, this and the equations () give
Remdp + kfpedps ... + R pdu,=o0
aduyy+  agdpg ...+  a,dp,=o
bydu, + bydug ...+ p,du,=o
&e. &e.

* [uV] is written for u, Vi + e Vo. .. 4, V,, a notation introduced by Gauss, and
generally adopted in the Tkeory of Errors. [ab] is clearer than = (a b).

t If the observed value of a quantity be z, and the chance of an error between ¢ and
¢+ debe ¢ (e)de, then ¢ (z) will be called indifferently the law of facility of the obser-
vation z, or of the error &. Also since it is only the form of ¢ with which we are concerned,
A ¢ (z) A being any constant will be called the law of facility indifferently with ¢ (z); the

constant being always determinable by the condition A f p(x)dz=1

1 See pp. 96, &c.; k"=ﬁ 2% ¢y (2) daz.
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Multiply the first of these equations by — i, and the second, third, &c., by
A, A, &c., and add ; therefore

RPuy=a,; M+ b he+ .. ‘
ke po= oAy + beNe+ . - . (7
&e. &e. [

&c., and add, therefore
=+ [ an

Similarly by multiplying by %— ) :—’2&0., and adding
1 £

o_[ ]>\1+[

Multiply by g— el

write these equations

a M+ agde+ .

Bihi+ Beret ... =

it yere+ ... =0
&e. &ec.

so that «_ = 8, ¢, = v, &c., then solving for 2 ,
M A1= Al
M ).9= Ag &c

a;, Qg, Qg o« . -

Blr 669’ BS e

Y Y2 Vs - - -

where M =

and A, A, &c., are the minors of «, «, &ec.
Therefore, from (7)

b
Ml‘l—k,Ar" hlgA9+
andsincex =@, V, + 5, V, + ..
b,
Ma:_—V,A.,+ 1V, A+ .

kg
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b
+ Z‘nggAl'}"k:iVSAQ'!‘ LI

+ e
= [%v] A+ [%V] Ak ...
which is the value of  we should obtain from the system of equations

a
a,z+a,y+a,z+...=[FV]

b
oty +hzt... =[5V ]
&ec. &e.

or, writing for «,, «, &c., their values,

a ab a
[ﬁr]$+ ﬁ]y"'...:[pv]
ab bt b
[F]$+[F]y+-..=[z-"r]
&ec. &ec.

the same equations as result from rendering a minimum the sum of the

squares of the errors multiplied by the weights =, iz e viz.
1

1 1
k—l-g(ala:+b,y+...-—V,)’+k—,—2(aga:+bgy+...—Vg)'-l-...

A similar treatment of y, z &c., would lead to the same result, whence the
method of least squares follows. If¢ = ¢ = &ec. (as LAPLACE supposes
the case) k* = k° = &c.

The above is the method of Larrack, who, however, as previously
remarked, contented himself with giving the process when there were but
two unknowns = and y ; the extension to any number is due to Eruis. I
proceed now to the analysis requisite to the determination of the proba-
bility that @, s, + ... @, ¢, lies between 4+ /. This LarrLace effects by
considering the coefficient of ¢ ‘¢ in the expansion of

(O (57T e () ()

* LarLaCE's Théorie des Probabilités, pp. 333, &c. All the references will be made to
the National Edition (t. vii. of the Buvres de Laplace), 1847.
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and obtaining its value by means of his well-known theorem for approxi-
mating to the values of integrals involving quantities raised to high powers.
"Eruis was the first to replace the algebraic determination of this coefficient
by a multiple integral which he evaluated by means of the double integral
of Fourier’s Theorem. LAPLACE investigates several different causes, viz.,
firstly, when the law of facility is a constant, so that errors of all amounts
are equally likely ; secondly, when the law of facility at each observation
= ¢ (), positive and negative errors being equally likely ; and lastly, when
the law of facility is the same for all the ohservations, but positive and
negative errors need not be equally likely or have the same ranges. Poisson,
however, in the Connaissance des Tems, 1827 (p. 284 et seq.), has proved
a more general case which includes all of these ; the investigation is repro-
duced by ToDHUNTER, pp. 561 to 566 of his History of Probability. The
analysis resembles that of LAPLACE in this respect, viz, that the errors are
treated as integer multiples of a certain quantity » which is ultimately
made infinitesimal. This seems rather to complicate the matter, as it
renders the investigation, in effect, an evaluation of a multiple integral,
quite from first principles. In the Philosophical Magazine, for March,
1872, I somewhat simplified ELris’s analysis by replacing Fourier’s double
integral by a single integral first made use of for the evaluation of definite
integrals by LEeJEUNE-DiricHLET, and I now propose to prove Porsson’s
general theorem by means .of the same principle.
It is required to find the value of

fff..qs.(e,)cp,(ez)...¢(e,)deldez...d£,, . . (8)

where ¢, ¢, ...¢ may have all values subject to the condition that
@, € + 6 ... + W&, lies between ¢ —5 and ¢ + 2. The facility functions
@, (¢) - - - @a (s.) may be discontinuous to any extent ; (to take a case that
probably very nearly represents the physical fact, ¢;(s;) may be equal to
JSi(&) from ¢, = o to ¢, = a;, and to F; (¢;) from ¢,= o to ¢, = — b, and vanish
except between the limits @; and —&;. This corresponds to the case when
positive and negative errors are not equally probable and nave ot equal
ranges, the law of facility being different for each observation.)
The integral LESEUNE-DIRICHLET made use of is

2 “gin 0
;/: Tcos-yﬂdﬂ
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which =1, if y lies between — 1 and 1, and =o if 9 transcends these
limits.

If then we multiply (1) by

if s_m_ﬂcos(y,e,+...+p,,e,,—ce)d0
L A 0 n

or, which is the same integral transformed by assuming 4= »¢, by

f/ smr'eeos(pt,e,...-}-;1,5‘,—¢:)(9d(9,
T /o (0]

we may take all the integrals in (8) with limits + oo, as this factor will leave
(8) unaltered unless w,s,. .. +@,s, — ¢ transcends the limits +#, when it
reduces it to zero, (8) thus becomes

f‘:/‘.f co.p(g). . .9 (g)cos (u,€ +.. .,u,,&,,-—c)Osm:OdOde,. ..dg,

which is equal to the real part of

LY AT L P R
et |

f ¢ (€a) €O8 &, Bde, = p, COS T, 0 (€) M€ ud € = pg 8iD 7,

L

therefore
f ¢ () & de, = p ™,
whence (g) becomes

f- P Y A ""'”)‘——si';" 8 20
o

the real part of which is

sinn 6

n
edO

L]
/ PPy~ -pnCOB(r, 47, ... +7,—c0)
L]
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a result arrived at by Poisson in the course of his investigation. The proof,
therefore proceeds from this point exactly as he has given it; that is to
say, it is shown that ¢ ¢ ...pg, in the above integral may be expressed
approximately by e=~'# and r, + ... r, by /4, «* standing for [w*A*] and !
for [w k], A’ and k; being certain constants, depending on the laws of
facility ; thus we have ultimately '

;f'e""cos(z—c)es‘"o’”’do (10)
=1irf‘{ f’cos(l—c+t)9dt}e"”d0
° —n
(l—c+th
=zz:/r ‘/:-:e— orar (11)

If the laws of facility are such that positive and negative errors are
equally probable, l =o, ¢ = o, and is the quantity previously denoted by /,
go that (11) becomes

S -
e 4"d = — c—pdt
2x /% —n ¢ T o

which since x* = [u’ "] agrees with (6).
The investigation of the method of least squares, when (11) instead of
(6) is used, is very similar to the above. The result is somewhat different,

as the final conclusion is that [h—l‘ (e —#)*] instead of [;—:] must be a mini-

mum,{ so that the usual treatment of equations, by rendering a minimum

* In this investigation TODHUNTER’S notation has been followed, with only trivial excep-
tions. In ome part of the work it was more convenient to write p,, &c., for p, &c., as i was

used in the same expressions for,/—1. TODHUNTER uses vifor ;. From (10) we see at
once that the result may be written Jl—"{Erfc (122—”:'—-") — Erfe ‘_l:zi—:")§ (Phil. Mag. Dec.

1871, p. 421), a form easily seen to be identical with (11).

t Additional theorems on thc method of least squares not included in the scope of this
paper are given by LAPLACE in his First Supplement. LaPLACE’S method, as there described,
has been extended by ToDHUNTER in vol. xi. of the Cambridge Transactions.

Royar AstroN. Soc. Vor. XXXIX. . P
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the sum of the squares of the residuals, not only assumes equal weights for
the observations, but also that positive and negative errors are equally
probable. '

It has been pointed out by Erris and TopHUNTER that LAPLACE’s
proof does not show the method of least squares to give the most probable
values of the elements to be determined. This LarLAcE himself draws
attention to : he usually speaks of the method as the most advantageous.
The concluding words of the fourth chapter of the Théorie Analytique des
Probabilités are “ cette méthode .. . donne. .. les corrections les plus pré-
cises, du moins lorsqu’on ne veut employer que des équations finales qui
soient linéaires, condition indispensable, lorsqu’on considére & la fois un
grand nombre d’observations; autrement I’élimination des inconnues et leur
determination seraient impracticables.”

Ivory has attempted to show that LAPLACE’s investigation tacitly as-
sumes the law of facility ¢ (x) to be e=*'#, and that, * whatever merit it may
have in other respects, it is neither more nor less general than the other
solutions of the problem.”*

As Ivory’s criticism bears directly on the subject of this paper, and has
not been discussed by ELLis, it is necessary to examine it here, although
every reader of LAPLACE’S analysis must feel perfectly certain that no
assumption with regard to the form of ¢ (2) is either openly or tacitly made.
Ivory does not attempt to point out where in LAPLACE's work the alleged
restriction is introduced, or even to examine the analysis of the latter at all,
but he justifies his statement by an investigation the object of which is to
show that it follows from LAPLACE’s results that the arithmetic mean is the
most probable of all results, whence, since this is only true when the law of
facility is e=#'<, it follows that LaPLACE must have implicitly assumed this
form for ¢ (x). V,V ... being the observed values of a quantity x, and
6,6, . . . being the errors,

-V =¢
z—V =¢,

z—V,=¢,

Multiply these equations by w, @, ... and add, g, p, ... being chosen so
that [»] = 1, and we have

* Philosophical Magazine (‘T1LLoca’s), vol. 1xv. (1825), p. 165.
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z=[nV]+ [ne]

LaPLACE’s investigation shows that the chance that [w ¢], # being very
great, lies between » and » + du is
R
he 4[«*]
VRt

%:ﬂ”fﬂ@m

Suppose, for clearness’ sake, that we regard a quantity as accurately
determined if the error lies between zero and a fixed infinitesimal quantity
k, then the chance taht by taking the system of factors wip, . . . the cor-
rect result is obtained, is

(12) ,

in which

hk 1
v T (13)

The system of factors, therefore, that renders the probability of the
result obtained by means of them greater than the probability of a result
obtained by means of any other system of factors is that given by making
[#'] a minimum. This condition, taken together with [u] =1, leads to
gy = w, = &c., whence the arithmetical mean is the most probable value
of z.

Now, as was proved by Gauss and also by LaApLACE himself, the
arithmetic mean is only the most probable result if the law of facility for
each observation is e—*'+, whence it follows that LAPLACE must have im-
plicitly assumed this to be the law.

The fallacy in this reasoning is to assume that, because LArrLAcE’s
result is the most probable obtainable by linear combination of the equa-
tions, therefore it is the most probable result of all. It is necessary that
the law should be e—*'< only if the arithmetic mean is the most probable
of all values; LarLAaCE merely shows the arithmetic mean to be the most
probable among values obtained by means of different systems of factors.
Another point ignored is the fact that LAPLACE’s analysis requires » to be
very great, an assumption of which no use is made in the above reasoning.
Ivory does, however, allude to this in his remark “that it [LAPLACE’S inves-
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tigation] is confined to the case of a great number of errors, in order to
render the calculations practicable.”* That is to say, that

f oo o(E) ... 0(e) de,. . ode,

subject to the condition that [w¢] lies between z and = + dx is always
of the form A e—#'+' d x, whatever » may be, although, owing to the imper-
fections of our analysis, this is only capable of proof when 7 is great:
a statement palpably untrue, for suppose » were equal to 2 or 3.

I propose now to examine the exact sense in which LAPLACE's factors,
and by implication the method of least squares, give the most probable or
the most advantageous results.

Resuming Ivory’s reasoning, we have the chance of obtaining the correct
result by means of the factors w, @, ... given by (13). If, therefore, we
call that system of factors the most probable by the use of which the
highest probability of an accurate result is obtained, then LAPLACE's is the
most probable system of factors, and among linear combinations the arith-
metic mean is the most probable result.

On the other hand, it is perfectly clear that, even among linear combi-
nations, the arithmetic mean a of » presumably equal good observations
V., V....cannot be the most probable result; for since a—V,,a—V,...are
not identical, we must suppose that an observation for which this difference
is small was better than one for which it was larger, so that the result
contradicts the assumption that all the observations were equally good. In
fact, a is but a first approximation, and for a second we ought to weight the
observations as suggested by the values of a—V,,a -V, ...; and so on.

The consistency of these two different results is apparent on considera-
tion. If we, with LAPLACE, assume the same law of facility for each obser-
vation (viz. assume that the law of facility is known to be ¢ (z), and that
it is known to be the same at each observation), then, whatever form ¢ (x)
has, so long as 7 is large, the arithmetic mean is the most probable value.

* This remark shows conclusively, I think, that Ivory failed to understand properly

LAPLACE’S investigation, as it certainly appears from it not only that A~ dg is the
limiting form of the above integral when n is very great, but also that this is not generally
the form unless such is the case.
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Next suppose that the law of facility is known to be ¢, (x) for the first
observation, ¢_(x) for the second, and so on, then it follows from ELLis’s

analysis that the most probable system of factors are %, —kiz, . . . where

ke = f 2 g,(2) d .

Now the case that actually occurs is this: n observations are made,
and V. V_. ..V, are obtained, but there is no information given as to
¢1(z), ¢, (x) . . . except such as the observations themselves afford. Thus
the actual case does not coincide with that supposed in the analytical
investigation. We have, as it were, not only to determine the most pro-
bable system of factors, but also the most probable values of 4 A, ... or,
which amounts to the same thing, the most probable weights. If there
exists no reason to prefer one observation to another, we assume, by way
of getting an approximate result, that all the observations follow the same
law of facility, this being of course a very different thing from knowing
that they do so ; we are then in a position to make an approximate estimate
of the relative value of the observations. DE MorgAN has described such
a process. ‘ Assuming the weights as nearly as they can be found, ascer-
tain the most probable result, from which find the weights of the equations.
If these agree with the assumed weight the process is finished ; if not, re-
peat the process with the new weights, and so on, until a result is obtained
for which the assumed and deduced weights of the equations are sufficiently
near to equality.” (Encyc. Metropol. ** Theory of Probability,” p. 456.)

Thus, if the law of facility of each observation were given, the method
of least squares (weighted) leads to the most probable results, but, practi-
cally, as it is part of the question to find the weights also, the result is only
approximate.

The above distinction between the two cases, viz. (1) when the law of
facility is known to be the same for each observation, and (2) when such is
presumed to be the case, simply because we have no @ priori reason to
prefer one observation to another, though it must have been clearly appre-
hended by LArLACE (as witness his ‘method of situation,’ described in his
Second Supplement), I have not been able to find stated explicitly anywhere.
ErLis seems to allude to the same idea in his illustration to show * that the
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results given by what LaprLacE called the most advantageous system of
factors are not strictly speaking the most probable of all possible results ;”
he points out that since LAPLACE’s system of factors w w_ ... are indepen-
dent of V, V_.. ., the conclusion is wholly irrespective of the value of
V.V, ...s0 that the comparison is merely one of methods ; while when
V.,V....aregiven we can compare results.* If by the values LApLACE assigns
to'w, @, . . . ELLIS meant the values which Laprack absolutely did assign to
@, &, . - - the objection is valid, though hardly worth stating, as others more
important could be urged. But if, as seems more probable,t ELLIS meant
the factors which he himself assigned, extending L.APLACE's principle to the
case when the laws of facilities are different, the matter seems not quite
accurately stated (since k; depends on ¢, (), for all knowledge of which we
are indebted to V. V_...). The method does give the best results if we

use the system of factors —

1
k'“ —k:i ..
series of observations are unknown, and at best only admit of probable
determination, so that the question is not, Given k &, ...find g @, .. ., but,
Given V.V, ,..findp w,...and £ k,... The usual practice is to take
k=Fk=.. .’(unless the observer assigns an arbitrary weight to an obser-
vation, viz. guesses a value for k;), and the result is not the best obtainable.}
I do not think that in any place LAPLACE has assumed, except by way of
illustration, that the law of facility of a single error is e~**'; he proves
that the law of facility for p, «, + w2 + ... p,x, (n very great) must be
of the form e-*'+, whatever be the laws of , «, . . ., if positive and negative
errors be equally probable ; but nowhere does he assume that if one obser-
vation only is made its law of facility is e-#'+,

It follows from LAPLACE’s analysis at once that the law of facility of
the arithmetical (or weighted arithmetical) mean of any large number of
observations follows the law =", so that, if we were to regard any given
observation as if it were the arithmetic mean (or the result of the linear
combination) of a large number of observations, we should be justified in
taking this to be the law. Or, we shall obtain the same law e="# if we

. , but unfortunately %, %, . . . in any

* The reasoning is developed at much greater length by ELLis.

t+ ELL1s is not likely to have enlarged on defects he had remedied himself.

1 In all the above explanation one quantity only is supposed to be determined from the
observations, but the remarks are of general application. :
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regard each actual error as formed by the linear combination of a large
number of errors due to different independent sources. This latter point
of view of the nature of an error seems most natural and true. In any
observation, where great care is taken, so that no large errors can occur,
we can see that its accuracy is influenced by a great many circumstances
which ultimately depend on independent causes ; the state of the observer’s
eye and his physiological condition in general, the state of the atmosphere,
of the different parts of the instrument, &c., evidently depend on a great
number of causes, which each contributes to the actual error. The above
supposition not only seems to be a true one, but also to include all that
can be asserted with anything approaching to certainty of the nature of an
error. It will be observed that the law follows, whether the errors from
the independent sources are small or not, provided that the actual error
§ =, & + W € ... + e, ¢ being an elementary error supposed subject
to the law ¢; (x); but, unless the errorse,e, ... are very small, we are not

entitled to replace
e=f(g,€...8)

by
E=p € 4+ ME ..o+ M E, .

We thus bave as a consequence of what appears to be a true conception‘
of an error the form e=*# for the law of facility, and the great accuracy
with which the errors in a set of observations made apparently under
similar circumstances agree with this law, strongly confirms the hypothesis.*
It has sometimes been thought that, owing to the indeterminateness of 4,
the above law might be assimilated approximately to any other law, but the
general closeness of the approximation seems to negative such a conclusion,
and the preceding reasoning seems to place it beyond doubt that this
function does in rerum naturd represent the law of facility ; and then, of
course, the rule of least squares, &c. follows. The difficulty of the deter-
mination of 4 still remains, as it is impossible for the observer to say
whether the circumstances of two observations are the same or no. Asa
first approximation, they are, of course, assumed to be so, if there appears
no reason to the contrary, and the result generally justifies the supposition

* It is for this reason, no doubt, that the numbers in so many statistical tables follow this
law ; the deviations from the average being due to the combined action of a very great number
of causes. '
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very nearly ; then, in a second approximation, we should deduce values of the
weights,orof & A ..., and so on. It does not even follow that ~ need be the
same in a set of ohservations made at one time, as the physical state of the
observer may change from fatigue, &c. As before remarked, LArLACE does
not seem to have regarded an error in this light, although one would have
thought his analysis would have suggested it to him ; it has sometimes been
supposed that this was the method of proving the rule of least squares
adopted by LArLACE.

Reverting to LAPLACE’s investigations, one very important property of
the law e—", viz., its continual reproduction of itself, follows as a conse-
quence of its being a limiting form. If the law of facility of X be e=,

and that of Y, e~*%, then that of X + Y will be e—#%+# which is of the
standard form. This is a consequence of LaprLace’s Theorem, for if the
value of X be regarded as formed of the combination of m observations,*
subject to any laws of facility, so that the error, p s + w5 . ..+ putn
would be subject to the law e~*, and the error of Y, viz., u"¢... + p, ¢,
be subject to the law e =¥, then the error of X +Y, viz., p, &2... + p ¢’ ...,
will be subject to the law e~"<.+ And, since from (6),

4lh‘=yl'fz’¢,(z)dz+....+y,,’f 2 ¢ (x)dx

4lkz=l‘-"/ z’¢,(z)dz+....+p,.”‘/; FY (2)dx

while
4_‘P=,¢,=‘/:';=¢,('x)dz+....+,¢/: 29, (@) dz+ ...

we have
1

< Ll
P

IS

+

=)~

The fact that the assumption of the law e~"= for a single observation
also leads to the same law for every linear combination of observations, has

* Or, if we take the view of the nature of an error which has just been described, and

which seems undoubtedly correct.
+ Larrace himself has devoted an article to the discussion of a case, when “ the method of
least squares becomes necessary,” in which reasoning of the same kind as the above is made use

of. Théorie, pp. 373, &c.
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often been regarded as confirmatory of its truth, and the above reasoning
affords, directly from fundamental principles, a complete explanation of this
remarkable property. »

It also results from being a limiting form, that, if one law is to be
adopted, this must be it ; for, admitting the necessity of combining results
linearly, the ultimate results must follow the law.

After explaining the manner of treating equations, described on pp. 93-46,
LaPLACE proceeds to view the matter in a different light ; we have for the
error of the result, p ¢ + ... + @, ¢, = u, say. Regarding this as a loss, the
“ disadvantage ’ (used in this sense opposite to advantage) is

'/:';,s(u)du

/ ") du
¢ (u) being the law of facility of . This quantity is equal to twice what

LAPLACE calls the mean error to be apprehended (I’erreur moyenne a
craindre), and since

)

w

o) =Ae “WF]

its value is ?z—;J [¢®%*], which is a minimum when [x®4°] is so, and leads

to the same conclusion as before.

Gauss,* adopting this view of the matter, remarked that i# involved the
postulate that the detriment to which the error [us] gave rise, was pro-
portional to [we¢]. Now, strictly speaking, the detriment does not admit of
arithmetical evaluation at all, and we may just as well suppose it repre-
sented by [u¢]® So long as the detriment is represented by a function of
[we] such that both vanish together, one supposition is not more arbitrary
than another. If then the detriment = [ ¢}, then the mean value

=[w [ en@ac]+[[um S [een@n@acad]]
= 2 [ #].

* In this brief explanation of GAUss’s second demonstration, which was published in the
Theoria Combinationis Observationum Erroribus minimis obnoxie (1823), I have followed
ELuis closely, whose account differs but slightly from Gatss’s own.

Royar AstroN. Soc. Vor. XXXIX. Q
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The second series of integrals vanishes since the positive and negative
portions of them cancel one another, and the result is the same as LAPLACE's.

Of this investigation, ELLis says, ¢ Nothing can be simpler or more
satisfactory than this demonstration. It is free from all analytical difficulty,
and applicable, whatever be the number of observations, whereas that of
LAPLACE requires the number to be very large.” With this remark, I
cannot at all agree. There seems no great difference in principle be-
tween assuming that the mean value of (u ¢ ... + w,¢,)* must be a min-
imum, and assuming the whole method at once in the shape of making
(@z+...Vy+(az+...-V)+..a minimum. To take the square of
an error as a measure of its importance is as arbitrary as to take the sum of
the squares of the errors as a measure of the precision of the observations.
Both would give results very near the truth, but nothing further can be
said @ priori. LAPLACE’s first method of treating the subject appears far
preferable to his second ; and this is also clear analytically, for, making use
of the value obtained for ¢ (%) in the first method, the same result, viz.
that [p°%?] must be a minimum, will follow, if we assume the detriment
caused by an error ¢ to vary as ¢”, or even as A +Be? + C¢" + ..., the
coefficients A, B, C... being positive, while m, p, ¢, 7. . . may be integral or
fractional, but must be positive, which last condition of course we should
expect, since the detriment cannot diminish for an increasing error. To
prove this, write, for simplicity,

1
=i

then

¢ (v) = \/E eV,

and

L o

‘/: o(u)du e
=‘/—;r—/:nva—‘e‘"dv
=J‘;. Lo (m)
G |
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which, so long as n is positive, is a minimum when [p® £°] is so. Similarly,
for Ae? + Be? + . .

The two modes of performing the analysis adopted by LarLAcE and
Gauss give rise to a theorem in multiple integrals, which it is of some im-
portance to verify, in order to place beyond all doubt the identity of the
principles involved in the two cases.

The theorem is that if '

f...fcp,(el)...¢,,(s,,)ds....ds,, (15)

subject to the condition w s, + ... w,s,>wuand < w + dwu be denoted by
¢ (v) d u, then

f_:u“¢(u)du=[_: ...f_:(;tls1+...p,‘e,,)"‘qpl(el)...¢,,(e,,)de,...de,, .(16)

m being any quantity, positive or negative, integral or fractional, and ¢, ¢,
. . . being such that

f_:¢1(5)d5=l, —:“¢g(5)d€=l,.

The integration on the right-hand side of (16) can always be performed
if m be integral ; thus if m = 2, it = 2 [p" k%], if m = 4, it = 2 [u* #*]
+24 [[pw% p'; ' K;]], &c. To prove the above proportion, write, for brevity,
pforpw e + ...+ w,s, then, since

-:—r- ﬂ cos p Bsmeuedﬂ = o, unless p lies between + u, when it =1

therefore, differentiating, 7% du ‘/o’ cos pdcosuddd = o, unless p lies he-
tween % and u + dwu, or between — % and — (v + du), when it is equal
to unity.

By reasoning of a similar kind, % du £ sin p dsin uddd = o, unless p
lies between w-and % + d » when it =1, or p lies between —u and —(u + d v),
when it = — 1.

Adding these results, therefore, % du f cos(p —u)ddd* = o, unless

* The advantage of this form over% du f cos p 0 cos w6 d 4 is that the latter = 1 both

when p is intermediate to » and u 4 dwu, and 2 wand — (# + du), while we are in search
of a function which = 1 only when p is intermediate to » and u + du.
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p lies between » and © + du when it = 1. This same result may also be
obtained perhaps more clearly thus : we know that

1 “sin(p —u) 0 R
—/: —— do = 21fp>u

T
= oifp=o
=—1lif
= 2 p<u
therefore
!/“gin(p—u—du)edo_;_f'gin(p—u)ﬂda
J o 0 TJ o, 6
= oifp>u+du
=—1ifp >uand <u +du
= oiflp<u
and

= %ifp=uor=u+du

whence the integral previously obtained is found by expanding the first of
the two integrals last written in powers of d % and retaining the first term.
Making use of this result, in (15)

¢(u)=71-rf_“ /:”/: ¢1(€1) - - - pu(en) coB (p —u)0dey...de, dO

and the left-hand side of (16) becomes

’—:-_ _”¢l(e,)del .. ./ﬁ%(t,)de,[ ‘/‘_“u"' cos(p —u)6dodu (17)

But by Fourier’s Theorem

%/: ‘/:“u"‘cos(p—u)ododu-_-_-p"' (18)

whence (17) is equal to the right-hand side of (16), and the proportion is
proved. It is easy to see also from the nature of the proof that the theorem
would still be true if ¢ (%) and 4 (p) were written for ™ and p.

The above demonstration, although one of a kind that experience has
justified, so that no one who has examined similar investigations would feel
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any doubt of the accuracy of the result, is of course open to objection ; as

for instance, f cos p dcos u dd d must be indeterminate, and the integral
in (17) involving the quantity »™ (m positive) and baving infinite limits
must be infinite. Such difficulties are common in investigations relating to
Fourier's Theorem, Definite Integrals, &c.; some of the present defects
may be remedied by introducing throughout a factor e-*/ so that we have

ultimately *
-%;‘-f e -“cos(p —u)0do

which = o, unless p lies between % and v + dwu, when it = 1, k¥ being
a zero of such a grade that the o of the limit of the integral is of a higher
grade than £—*; (17) then becomes

. L) © ke
?ff e umcos (p—u)0dodu =p™

the form in which BooLE has proved Fourier's Theorem. The matter is
still not quite free from some difficulty, which, however, this is not the proper
.place to discuss as the result is undoubtedly true. Evruis, on pp. 212, 216,
of his memoir, has in effect verified a particular case of the above theorem,
viz,, that of m = 2; his analysis involves some slight ambiguities which
seem inseparable from the subject.

It is worth while to verify that when n is great Gauss's results agree
with Laprace’s. Take the case of m = 4; then Gauss’s method gives
from (16) mean of

{lnel}s =z [pnted] + 24 [[m2 2 A2 47]] (19)

k;* being f e ¢, (e)de, and I;f as before

(-]

while LAPLACE’S result is from (14)
16 5
Vol (3) (e b2y = 12 gl ke (20)

* Messenger of Mathematics, vol. v. 1871, pp. 239, 242. The exponential factor renders
the differentiation with regard to » permissible, i.e., justifies the neglect of (d u)* &e.
t Irish Transactions, vol. xxi. p. 124.
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Now the terms in [u*#*] are #» in number, while those in the second
term of (19) are n° in number ; neglecting therefore the former term com-
pared to the latter, » being large, (19) becomes = 24 [[w® p; k7 k;*]] which
" is the value assumed by (20) when the terms in 12 [u* A4*] are neglected for
the same reason. It is clear that the coincidence of the results for any
value of m could be shown in the same manner.

- The next demonstration to be noticed is that given by Sir Joux
HEerscHEL in the Edinburgh Review for July, 1850, in a notice of QuUE-
TELET'S Lettres sur la Théorie des Probabilités. It depends on the indepen-
dence of the x and y deflections in the deviation of a stone let fall on a plane.
The proof was originally stated in a somewhat popular form, but was translated
into analytical language by ErLis in a Paper in the Philosophical Magazine,
for November, 1850, and it is so well known that it is unnecessary to repro-
duce it here. It is also needless to point out in detail the unwarrantable
character of the assumption of equally probable x and y deflections, as this
has already been done by ErLis, who has remarked that unless it can be
shown that a deviation y occurs with the same comparative frequency when
x has one value as when it has another, we are not entitled to say that the
probability of the occurrence of two deviations, « and y, is the product of
their probabilities ; it should be noticed that the axes of x and y are any
arbitrary system of rectangular axes intersecting at the point vertically
under the point from which the stone is dropped. HERSCHEL in the Review
asserted that if shots were fired at a wafer on a wall, and the wafer was
subsequently removed, the centre of gravity of the shot-marks would be
the most probable position of the wafer. ELLIs, near the conclusion of his
Letter, attempted to show that on the assumption of independent z and y
deflections this would not be the case. The substance of his reasoning is,

2 2 . . .
that since k; e M@+ dg dy is"the chance of hitting the area dx dy, there-

fore the chance that the total deflection will lie between 7 and r + dr (i.e.,

* « Remarks on an alleged Proof of the Method of Least Squares, contained in a late num-
ber of the Edinburgh Review. In aletter addressed to Professor J. D. ForBes.” The proofis
also given by BooLe, Edinburgh Transactions, vol. xxi.p. 628, Finite Differences (Cambridge,
1860), p. 228, FaAA DE BRruNo, Calcul des Erreurs, p. 43, by TroMSON and Ta1r, Natural
Philosophy, p. 313, &c., where it is spoken of as * simple and apparently satisfactory.” From the
German translation of this last work it is extracted by ScHLOMILCH, who regards it as “einfache
und anschauliche,” in the Zeitschrift fiir Mathematik und Physik, vol. xvii. p. 89 (Jan. 1872).
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the chance of an error between r and » + d») is 2 A%¢ =** rd r and then
“the centre of gravity of the shot-marks is not the most probable position
of the wafer.”” The assumption is that the chance of hitting dx dy is
ke g W@+ )

- , 80 that if before a shot is fired an infinitesimal area « distant r

1 oys . . R —p2
from the wafer is fixed upon, the chance of hitting this area is h;e T

also the chance of hitting an annular element, radii » and r + dr is
2h*e~¥r"rdr. Now suppose the shots have been fired and the wafer
removed : it is required, Given the shot-marks, to find the most probable
position of the wafer. To fix the ideas, suppose there are three shot-marks
A, B, C. Erus’s reasoning would make the problem as follows: suppose
any point O was the wafer,and OA =7, 0B =17, OC = r,, then the «
priori chance of a shot falling between distances r and r 4 dr from O
is 2 4* e~ ¥ r d r, therefore the probability of the observed event is

- 2 Iy 3
gAS e M (nt s +")r,r2r; dr dredr,

and therefore the most probable position of O @ posteriori is that which
makes

e~ B(r2erl?+rd) Tt
a maximum. But the correct solution certainly is: Trace round A, B, C,
small areas each equal to «; these areas when « is indefinitely diminished
are the points A, B, C. Then the @ priori chance of the observed event
(viz., that A, B, C, are hit) is

/Ls e~ BR(r2a+ rt+n?) ad
. w3

and the @ posteriori chance that O was the point, A, B, C having been hit,
is proportional to e—#(n’+ '+ ") which is a maximum when r* 4+ 72 + rf
is a minimum, <. e., when O is the centre of gravity of the points A, B, C.

In the correct solution we have the @ priori question, 1. Given the
position of the wafer, find the chance that the target will be struck in
A, B, C; and the inverse question, 2. Given that the shots have struck
A, B, C, find the most probable position of the wafer. But in ELris’s mode
of solution the @ priori question is, Given the position of the wafer, find
the chance that the target will be struck at any point on the circumferences
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of the three circles through A, B, C; but there is no corresponding inverse
question. Given three errors, find the most probable position of O is un-
meaning.*

It will be noticed that the law 2 A% e—¥"r gives the facility of errors,
that is to say, if round O a series of circles radii &, 2 & . . . (k infinitesimal)
be drawn, then the chance of the shot hitting the rth ring so formed is pro-
portional to 7 e~ ¥ and as should clearly be the case the innermost ring
is the most unlikely of all to be struck owing to its small size ; the ring

that will receive most shots is the (#‘/;)th, beyond which the smallness of

the chance of hitting an annulus so far from O more than counterbalances
its increased size. Thus among points (all points being of course infi-
nitesimal areas of the same size), O is the most likely to be hit; but among
annuli (all annuli being of the same breadth) it is the least likely. Another
portion of the same letter is devoted to an investigation, the deduction

* It was only after the above was written, that I found that in the next number of the
Philosophical Magazine (December, 1850), ELL1s had himself stated that his solution was
incorrect, and that the centre of gravity of the shot-marks was the most probable position of
the wafer.  As, however, he has given no proof, and as the matter is of interest for its own
sake, I have not altered the remarks in the text. ELL1s adds to his correction the remark, « I
thus not only omitted to notice that the reviewer’s conclusion would not follow from his own
hypothesis, but by this omission was led to introduce an error of my own.” This does not
seem to me fair. In the original statement that the centre of gravity was the most probable
position of the wafer, and throughout his proof (excepting alone the assumption of independent
z and y deflections), HERSCHEL was correct. On p. 21, however, a confusion between the laws

— 2 d 3 . . 3
e~ ¥ andre~ ¥ arises, and the number of the shot-marks in the rings (107, 213, &c.) are

incorrect, having been calculated, as is evident from an. inspection of ENCKE’s table of

¢z _
f e " dt, by the principle that the chance of the shot striking the annulus, radii r and
o

h
r4+dris 71—'_-3- mr’dr; but this is the only error connected with this part of the subject

that HERsCHEL can be fairly charged with. It should be stated, however, that he clearly was
not conversant with LAPLACE’S researches; he speaks, for example, in two places (pp. 18, 30),
of QUETELET as having given LAPLACE’s analysis “ stripped of all superfluous difficulties and
reduced to the most simple and elementary form.” It is true that the problem given by QuE-
TrLET (Lettres, pp. 380--386) is to be found in LaPLACE (pp. 301-304), but no use of it is
made by its author in connexion with the Theory of Errors. It is the same as that subse-
quently given by Prof. Tait, and noticed in pp. 116~118 of this Paper.
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drawn from which is that the equation for determining the form of f results
from a tacit predetermination of that function, so that the statement that
the chance of the element dx dy being struck is f () f () dx dy, involves
either “ a simple mistake or a petitio principii.” ELLIS’S analysis does not
appear to give any information that is not quite evident from general con-
siderations. Since the fact contained in

SE@E @) =S +y*) f(0)
is identical with that contained in
' f(@) = Ae—P2,

any supposition that leads to the equation rests on a tacit predetermination
of the form of the function, and in general any hypothesis involves the
conclusions that follow from it. In the above case, however, the assump-
tion and conclusion are so closely connected, that one would expect the one
to be pretty nearly as evident as the other. Reversing then the question,
it appears that e~" is a very natural law of facility, and in this case the
z and y deflections are not independent, and this alone would suggest the
illegitimacy of the assumption, the arbitrary nature of which is apparent on
consideration. It is, however, undeniable that the independence of the z
and y deflections, whatever be the (rectangular) axes, is a most remarkable
property of the law of facility e—*=,

In the Edinburgh Transactions (vol. xxi. pp. 628, &c.), BooLE has
reproduced HERSCHEL’s proof, and made some remarks on Erviis’s Letter.
Assuming HEerscHEL's principle, we have f (x*) = A e~*#, and since the
stone must fall at some point for which x lies between 4 «, Ae™? =1,

and the law is 7"; e~"%, so that the probability of its falling on dx dy is
hﬁ

— e~ M@+ dgpdy. BooLe then proceeds, * This result admits of a re-

markable confirmation. For it is manifest that the probability that the
ball will fall somewhere between the distances x and « + 3 from the axis
of y ought to be equal to the above expression integrated with respect to y
between the limits — « and <. But that probability has been determined

to be —j—’ e~"# dx; we ought therefore to have
Royar AsTrON. Soc. Vor. XXXIX, R
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) (Ee—"’(’”"'")?x dy=—h-—e—“”’¢)z
e \T v

an equation which is actually true.”
We assume the law of facility along the axis of x to be f(x*), the

constant being chosen so that f S(@E)dr =, it can then scarcely be

called a remarkable confirmation that
S TS @ dal £ dy = f @) da

in fact the equation a =1 is assumed, and. a b = b, deduced from it, is called a
confirmation.

Against ELLIS’s reasoning to show that HERSCHEL's principle involved a
mistake, or petitio principii, BooLE urges that consistency of results can
never be a proof of mistake, and that alone it offers no adequate ground for
the suspicion of a petitio principii. This, of course, is true, and, as before
remarked, ELLis’s analysis appears superfluous ; but the proof involves no
petitio principii, it merely makes an unauthorised assumption, viz., assumes
as evident a result as much in need of proof as is the ultimate result itself.

With the part of the letter, in which ELris objects to HERScHEL'S
assumption of the law e—*#, which * is nothing more than the expression of
our complete ignorance of the causes of error and their mode of action,” I
entirely agree. Knowing nothing of an error, we can prove nothing; but,
in point of fact, we do know something of an error, viz. that it is the accu-
mulation of many smaller errors, and this knowledge is sufficient to
establish the law e—*#, which is actually verified by observation. It is
most remarkable that so general and important a theorem should follow
from such meagre premises; and, regarding the matter in a purely ana-
lytical point of view, that the multiple integral on page 97, should have a
constant limiting form for all forms of ¢, ¢,, &c. is certainly a striking
result. V

Professor Tarr’s paper, “ On the Law of Frequency of Error,” is printed
in vol. xxiv. of the Edinburgh Transactions. The principle on which the
investigation rests seems to be, that an error arising from any source may
be compared to the deviation from the most probable result of the number
of white or black balls obtained by a great number of drawings from a bag
containing white and black balls in a known ratio. Suppose a bag to
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contain white and black balls whose numbers are as p to ¢, where p + ¢ = 1,
then, if » (= a + ), drawings are made (the balls being replaced), the most
probable result is, that there will be « white and B black balls drawn
where ¢ : 3 =p :¢q, sothat « = pn, 8 = ¢gn. Now regard « — pn, the
deviation from the most probable result, as measuring the error, so that

«—pn = mx, x, being the error; then it can be shown that x being very

m?z?
large, the chance of the error x is proportional to € zzen, or e—#+, If]

therefore, we assume an analogy between the result of a cause producing an
error and the above drawing, the chance of an error from one cause is
Ae—#7, from another A e—+#, &c. so that the actual error follows the
law e—",

The above is in substance Professor Ta1r’s process, and the result
follows sufficiently easily, if we admit the similarity between an error due to
one cause, and the deviation from the most probable value of the result of
a large number of drawings of black and white balls. This analogy, how-
ever, appears very vague, and I can see no justification for assimilating two
cases, which seem quite distinct. From Mr. Crorrox’s remarks,* I infer
that he attached no great force to the analogy; he points out also that * the
proof only applies to the combination of a number of elementary errors,
each of which follows that law. But it is quite certain that many simple
errors do not follow that law; hence the method is altogether deficient in
generality.” The last objection is important : it seems quite clear that we
can never prove that the error from each source follows one law.

Professor TAIT's analysis is not new, nor is its application to the theory
of errors new. It forms the first proposition of LarLace's third chapter,f
and is given by De MorcaN in the Encyclopedia Metropolitana; but,
although in the works of both these writers the method of least squares is
subsequently developed, neither refers to it as suggestive or confirmatory of
the law e="#; and this fact seems to show plainly that in their opinion it
was not available for the purpose. ~ What is in effect the same reasoning is
applied to determine the law of facility, as in Professor TA1r’s memoir, in the
notes to QUETELET’S Lettres (p. 380, &c.), in Liacre’s Calcul des Probabilités
(pp- 61, 67, &c.), and in FaA pE Bruno's Calcul des Erreurs (p. 42).

* « On the Proof of the Law of Errors of Observation.” Phil. Trans. 1870, p. 177.
t Théorie Analytique des Probabilités, p. 301, &e.
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In the introductory remarks to Professor Ta1r’s paper, there are some
statements that may convey a false expression of the nature of LAPLACE’S
methods. After the description contained in this paper of the researches
of the latter, it is only necessary to allude to one sentence, viz. that in
which Professor TaiT states that ¢ he assumes at starting, that these
separate contributions are as likely to be of one magnitude as another,” &c.,
an assumption which he refutes. In point of fact, LAPLACE made no such
assumption ; he supposed each * contribution” to be subject to the law of
facility ¢ (x), and on this general case all his deductions rest; the parti-
cular case of ¢ () =constant was only proved before the general theorem, I
imagine, in order to exhibit first, on a simple case, the nature of the
analysis. The sufficiency of LAPLACE'S general theorem, Professor Tarr
subsequently adwits.

It may be mentioned that the common origin of the form e=*# in the
two cases, is LAPLACE'S rule for approximating to the values of integrals
containing quantities raised to higher exponents by the assumption y=Y e~

(which contains STIRLING’S theorem, ['(x + 1) =/ 27z x* e~ (1 + le_x +...)

as a particular case).

The last demonstration that will be referred to is that given by Donkin,
in the first volume of the Quarterly Journal of Mathematics. DoONKIN
observes that, if two observations of an unknown quantity « give x = a and
x = b, and we have no reason for putting more confidence in one than the
other, then the most probable value of x is 4 (a + &), but that we cannot,
without making some further assumption, extend this to the case of three
observations. Suppose that, arising from the first observation ¢ (x—a) dx
is the probability that the true value of x is between x and x + dx, then
Co¢ (x—a) ¢ (x—0b) dx is the probability arising from both observations
combined that such is the case. * On the other hand, since the most
probable value of z arising from the combined observations must .be
1 (a + b), it appears a natural and obvious assumption (though I do not
pretend that it is not an assumption) that the probability that x is between
z and z + d x must be expressible in the_form

(emttt) an

so that we shall have
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C¢(~’”—a)¢(x—b)=\]}(z_a+b)”#

2

The result that ¢ (x) = A e~**+>*" then follows by the solution of this
functional equation. Here DoNkIN himself has pointed out the assumption
made, which, of course, could not be justified rigorously or even rendered
so probable that the reader could feel any conviction of the validity of the
result obtained by means of it. As a basis from which to derive the law ot
facility such assumptions as DonkiN’s and HEerscHEL's seem out of the
question, but they are interesting, as giving properties of the law, and
showing that, to say the least, it is inost natural. It may be mentioned
that DoNEIN has developed (without introducing a law of facility) the usual
methods of combining weighted observations, by means of the analogy
between thought and mechanics, as expressed by the equilibrium of belief
and the equilibrium of matter, in the fifteenth volume of .LiouviLLE's
Journal. One remark that DoNgIN makes ( Quarterly Journal, vol. i. p. 160)
ought not to be passed over. Speaking of his own assumption, he says
that ¢ the utmost that any such process can pretend to establish is not
that the unknown law of facility of error is expressed by a function of this
form (which would manifestly be an absurd preteunsion), but that the law
being unknown the most probable result is to be obtained by proceeding
as if it were known to have the form in question.” It does not seem to me
to establish the one more than the other.

This concludes the series of demonstrations, the principles of which it
was the main object of this paper to examine and compare, It ought to be
mentioned that there are two memoirs, containing different investigations
that I have not noticed, viz. Besser’s ¢ Untersuchungen iiber die Wahrschein-
lichkeit der Beobachtungsfehler,” which occupies numbers 358 and 359 (1838)
of the Astronomische Nachrichten, and Mr. CROFTON'S paper, in the Phi-
losophical Transactions (1870), *“ On the Proof of the Law of Errors of
Observations.” The latter regarding an error as formed of smaller errors
due to numerous sources finds the law e=* =" but the analysis is quite
different to LAaPLACE’S or Poisson’s. The introductory remarks prefixed to
the memoir concerning the nature of errors appear very true and valuable.
HaGEeN's Griindzige der Wahrscheinlichkeitsrechnung I have not seen.t

* Loc. cit., p. 159.
t At the end of Fal pE Bruno’s Calcul des Erreurs there is a list of writers on the
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As the result of the examination of all the proofs described in this paper
it seems to me that the only sound philosophical basis on which the law of
facility e—#'+* rests, is the supposition that an actual error is formed by the
accumulation of a great number of small errors due to different independent
- sources, and subject to the arbitrary laws of facility ¢, (), ¢, (x)..; and as
I think it is clear that this is the way in which an error really does arise,
the law e—#+, for an individual error, is, in my opinion, proved by
Larrace. Two points, however, must be noticed : (1) that the law is a
limiting form, strictly true only if the number of sources is absolutely
infinite, and (2) that it assumes that ¢, ¢_...are such thato, (x)=¢, (—2),...
If this is not the cace (and we have no right to assuwme it to be so0), the
resulting law is e—#+4a,  Except for this second objection (which

is not important, since a = [y, f 'accp () dx]"", and will be very small,

or otherwise, since it is evident that one observation being made the ob-
served value is the most probable one of the quantity), the method of least
squares follows immediately, as in Gauss’s method (p. 8s5). Grant-
ing the necessity of combining our equations linearly, LAPLACE’s analysis
gives a double reason for the method of least squares when the nuwber of
observations is large. The method described on pp. 103-104, of returning to
the observations again after finding the most probable result by the rule
of least squares, and assigning weights, the process being repeated as often
as necessary, distinctly appears to be the proper and philosophical method
of treating observations; and, as a consequence, Professor PIERCE’S crite-
riont for the rejection of doubtful observations seems to me to be destitute
of scientific precision. If an observation has been made as carefully as the
rest, it ought on no account to be neglected entirely. It may be, and no
doubt is, true that in many cases it is better to reject it than to retain it,
giving it an equal weight with the best observation, but the true principle

subject of Least Squares, with the titles of their works, which is extremely imperfect. The
names of Besser, BooLe, DonkiN, ELLis, ENckE, HkrscHEL, IVvoRY, LEGENDRE, TaIT, and
TopHUNTER (all of whose writings were published prior to 1869, the date of the work), do not
appear, nor does the list contain Gauss’s Theoria Motus.

* This follows from Poissox’s Theorem, p. 9g.

t See GouLp’s (American) Astronomical Journal, vol. ii. p. 161. The criterion is also
explained nearly in Professor P1eRCE’s words in CHAUVENET’S Astronomy, vol. ii. p. 558,
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is to weight the observation as the method itself indicates, when an abnor-
mal observation would receive a very small weight. It appears quite
evident that under no circumstances have we a right to say an observation
has no weight, though it may be better to give it none than to give it as
much as the best. The fact of such a criterion having been proposed is a
strong argument in favour of the necessity of the completion of the method
of least squares as indicated ; attention to this necessity was first insisted
on by DE Moreax. '

In one of his earliest memoirs LarrLAcE supposed the law of facility to
be e—m=; the reasoning® by which he justifies this assumption is of the
most trivial kind, but still the law is an extremely natural one, and is of
the form which, I think, any one, without the aid of analysis, would be
inclined to adopt as satisfying in the simplest way the condition of rapidly
decreasing, with an increase of x, and having the axis of « as an asymptote.}
It seems, therefore, worth while to investigate briefly one or two results
that follow from this law.

As e~™= is to remain unaltered when —x is written for z, it is conve-
vient to write it in the form e—m™v+=*. (Some writers have assumed that
because ¢ (x) = — ¢ (— «), ¢ (x) denoting the law of facility, therefore we
might assume ¢ (x) = + («°), and have evidently not regarded /«* as being
of this form.)

Suppose two observations are made of a quantity, and that the values o
and b are found, then the chance that x is the real value of the quantity, is
proportional to

e~ ™ {viE=—af + Viz— 0}

* Mémoires de Mathématique et de Physique . . . par divers Savans, t.vi. 1774. TopuuNTER
speaks of the reasons adduced as “ very slight.” (History of Probability, p. 469.)

t The curve y =¢~™7 cuts the axis of y at an angle tan — :;, and, therefore, slopes

downwards from it at an acute angle. The curve y = e~ cuts it at right angles (and is of
a dome-shaped form at the vertex); while such a curve as y = e~™+7 has a cusp at its highest
point ; this shows that the true curve of facility y = e~ "% better agrees with what we should

expect; for it is natural to anticipate that any value differing slightly from that observed is
very nearly as likely to be the true one as the observed value itself; so that (restricting our-

selves to integer powers of z) y = e~" 2 contains the lowest power of x in its exponent that
satisfies this condition.
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The most probable value of « is that which makes this a maximum, viz.
that which makes J (x —a)+ ‘/ (x — 6*) a minimum. The form of the

curve y =J (x — a) + ‘/ (x — b)* is shown in figure (1), in which

OA = aand OB = b, which is supposed greater than a; that is to say,
that if >8, y=22—a-205 Iif
zx<band >a, y=05b-—a, and if
x<a y=—2x+a+b.

Every value of =z, therefore, be-
tween # =a and z =5 is equally
probable, and is equally entitled to
be considered the most probable value
of .

Suppose three observations a, b, ¢

3 y A are made of xz, then the most proba-

Fig. 1. ble value of x is that which makes
J (@—af + JE&—-0) + [(z = ¢)* a minimum. The curve
Y= ‘/ (¢ — a)* + ‘/ (x— b + ‘/ (x — ¢)* is drawn in Fig. 2, in which
OA=a,O0OB=23,0C=canda,b,c,
are supposed in ascending order of
magnitude: ifx>¢, y=30x—a—b—c;
ifr<cand >b, y=x+¢—b— a;
if x<band >a,y=—x+b+c—a,
and if x<aq,y=-3x+a+b+ec
\ ‘The most probable value of z, there-
fore, is * = 5. A little consideration
gshows that these results are true
generally, and we have the remarkable
conclusion that if 22 + 1 direct ob-
servations V,V_. .. V_ ., are madeof
| a quantity «, then V, (the middle one)
° a8 c is the most probable value of xz, and
Fig. 2. if 2n observations V,V, ...V, are
made, then any value of = between V, and V, ., (the two middle ones) has
an equal right to be called the most probable value of z.
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The method adopted by LAPLACE in his memoir of 1774 (in which ouly
three observations are supposed to be made) is in effect as follows. Draw
the curve

y= e—m{s/(z—a)’+ ViE -bp+ Mz —cP}

which is as in Fig. 3, and take as the mean value of z from a, b, c, the

Fig. 3.

/\a

-] A a8 P c

OA=q0B=50C-=c

abscissa corresponding to the ordinate P Q, which divides the area of the
curve into two equal portions, so that the chance of an error greater than
z is equal to the chance of an error less than .

It may be remarked in conclusion that the Theory of Errors by no
means originated with Gauss. SiMpsoN in 1757 and LAGRANGE in 1773
wrote on the subject, and in 1778 DANIEL BERNoOULLI assumed the law of
facility to be ‘/ (@* — o), so that the curve of facility was a circle. The
writings of these mathematicians are described by TopHUNTER on pp. 211,
236, 237, 307-309, of his History of the Theory of Probability, the work to
which I am indebted for references to them.

Trinity College, Cambridge,
April 5, 1872.

Rovarn AsTtroN. Soc. Vor. XXXIX. s
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POSTSCRIPT.

In the discussion of the principle of the arithmetic mean, a reference
has been accidentally omitted to a memoir of BooLE contained in Vol. XXI.
of the Edinburgh Transactions. This is the same memoir as that which
is referred to on pp. 115 and 116, but the investigation in question is given
in the earlier portion of the memoir, while the part noticed in this Paper
occurs by way of illustration near the end. The result of BooLE’s investi-
gation is that if » observations p, p, . . . p, be made of the same quantity,
then the most probable value of that quantity is a certain linear function
of p, Py - .. pa; this BooLE demonstrates by his Calculus of Logic, and
the analysis is of so peculiar a character, that although I have devoted some
time to the memoir, I feel scarcely qualified to express a decided opinion
on its merits. It is sufficient to state here that the coefficients of p,p,, . .. p,
.in the final result involve two sets of constants a,a, ... a,andc,c,...c,
the former being the probabilities, before the observations are made that
they will be such as they prove to be, and the latter the & posteriori pro-
babilities that, when made, they are correct; and that when a, a,...aq,
are all taken equal to one another, and alsoc, ¢, . . . ¢, the result takes

o . 1
the form of the arithmetic mean, —(p, + p, . .. + p,).

August 26, 1873.
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Professor JouaNN FrieoricE ENcke A
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The Silver Medal.— For his Superintendence of the Computation of
“ New Tables for determining the places of 2881 Stars.”

Colonel Mark Beauror.
The Silver Medal. — For his valuable Collection of Observations, parti-
cularly those of the Eclipses of Jupiter's Satellites.
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Jan. 11.
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Jan. q.
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Sir Tromas Macpovearr Brissang, K.C.B.
The Gold Medal.— For his Establishment of an Observatory, and for an
important series of Observations made at Paramatta.

Jaues Donror, Esq.
The Gold Medal. — For his Observations of the Nebulz of the Southern
Hemisphere.

Miss CaroLINE HERSCHEL.
The Gold Medal. — For her recent Reduction to January 1800, of the
Nebule discovered by Sir WiLLiam HerscHEL.

Rev. WiLL1AM PEaRsonN. ,
The Gold Medal.— For his work, entitled *“An Introduction to Practical
Astronomy.”

Professor BESSEL.
The Gold Medal.— For his Zone Observations.

Professor ScHUMACHER.
The Gold Medal. — For the Publication of his various Astronomical
Tables, and the ¢ Astronomische Nachrichten.”

Mr. WmLiax RicEARDSON.
The Gold Medal.— For his Investigation of the Constant of Aberration.

Professor Excke.
The Gold Medal.— For the New Berlin Ephemeris.

Captain KaTeg.
The Gold Medal.— For his Invention of the Vertical Floating Collimator.

Baron Dawmorseav.
The Gold Medal.— For his Memoir upon the Theory of the Moon, and
for his Lunar Tables.

Professor Amv.
The Gold Medal. — For his Discovery of the long Inequality of Venus
and the Earth. '

Lieutenant JorNsoN. '
The Gold Medal.— For his Catalogue of 606 Southern Stars.

Sir Jorx F. W. HEerscBEL.
The Gold Medal. — For his Catalogue of Nebuls, printed in the ¢ Philo-
sophical Transactions” for 1833.
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1837.
Jan. 13.  Professor ROSENBERGER.
The Gold Medal.— For his Investigations relative to HALLEY’S Comet.
1839.
Jan. 11.  Hon. JorN WRoTTESLETY.
The Gold Medal.—For his Catalogue of the Right Ascenswns of 1318
Stars,
1840,
Jan. 10. M. JEAN Prana.
The Gold Medal. — For his work, entitled ¢ Théorie du Mouvement de
la Lune.”
1841,
Jan. 8.  Professor BessEL.
' The Gold Medal. — For his Observations and Researches on the Parallax
of 61 Cygni.
1842.
Jan. 14. M. Hansen.
The Gold Medal. — For his Researches in Physical Astronomy.
1843.
Jan. 13.  Frawncis Bamwy, Esq.
The Gold Medal. — For his Experiments to determine the Mean Density
of the Earth in repetition of what is generally termed the “ Cavendish
Experiment.”
1845.
Jan. 10.  Captain Wrriam Henry Suyrs, R.N.
The Gold Medal.—For his « Bedford Catalogue,” forming the second
part of his work entitled ¢ Celestial Cycle.”
1846. :
Jan. g. Georee BropeLL Ary, Esq. Astronomer Royal.
The Gold Medal. — For his Reduction of the Observations of Planets
made at the Royal Observatory, Greenwich, from 1750 to 1830.
1848.
Jan. 14. Testimontals were awarded to,

Georee BmpeLL Arry, Esq. Astronomer Royal.
For the Lunar Reductions recently made at Greenwich.

Jorn Coucr Apams, Esq.
For his Researches in the Problem of Inverse Perturbations leading to
the Discovery of the Planet Neptune.

Professor ARGELANDER.
For his Catalogue of Stars.



128  List of Persons to whom Medals or Testimonials have been adjudged.

1848.
Jan. 14.  GeoreE Bismop, Esq. ,
For the Foundation of an Observatory leading to various Astronomical
Discoveries.

Lieut.-Col. GEORGE EVEREST. .
For his Measurement of the Indian Arc.

Sir Joa~ F. W. HERscHEL.
For his Work on the Southern Hemisphere.

Professor P. A. HanseN.
For his Lunar Theory and Computation of Perturbations.

M. HeNcKE.
For his Discovery of two Planets, Astrea and Hebe.

Joun Russerr Hivp, Esq.
For his Discovery of two Planets, Iris and Flora.

M. U. J. Le VERRIER.
For his Researches in the Problem of Inverse Perturbations leading to
the Discovery of the Planet Neptune.

Sir JorN LusBock.
For his Researches in the Theory of Perturbations.

M. M. Weissk. -
For his Catalogue of Stars in BesseL’s Zones.

1849.
Feb. 9.  WmLiAM LasseLr, Esq.

The Gold Medal. — For the Construction of his Equatoreal Instrument
and for the Discoveries made with it.

1850.
Feb. 8. M. Orro VON STRUVE.
The Gold Medal.— For his Paper on the Constant of Precession.

1851.
Feb. 15. Dr. ANNIBALE DE GASPARIS.
The Gold Medal. — For the Discovery of three Planets, Hygeia, Par-

thenope, and Egeria.
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1852,
Feb. 13. Dr. C. A. F. Peters. ,
The Gold Medal. — For his Papers on the Parallax of the Fixed Stars,
and on the Constant of Nutation.

1853.
Feb. 11.  Jomn Russer. Hivp, Esq.
The Gold Medal. — For the Discovery of eight Planets, and other

Astronomical Discoveries.

1854.
Feb. 10. M. CuarLES RUMKER.
The Gold Medal.— For his Catalogue of 12,000 Stars, and for other

Astronomical Services.

1855.
Feb. 9 Rev. W. R. Dawes.
The Gold Medal. — For his Astronomical Labours generally

1856.
Feb. 8.  Roserr Grant, Esq. M.A.
The Gold Medal. — For his “ History of Physical Astronomy.”

1857.
Feb. 13. M. ScEWABE.
The Gold Medal.— For his Discovery of the Periodicity of the Solar

Spots.

1858.
Feb. 12.  Rev. Roeerr Mamn, M. A. v
The Gold Medal.— For his various Contributions to the Memoirs of the

Society.

1859.
Feb. 11.  R. C. CarriNGTON, Esq.
The Gold Medal.— For his “ Redhill Catalogue of 3735 Clrcumpolar

Stal‘s ”

1860.
Feb. 10.  Professor P. A. HANSEN.
The Gold Medal.— For his Lunar Tables.

1861.
Feb. 8. M. HerMANN GOLDSCHMIDT.
The Gold Medal. — For his Discovery of thirteen of the Minor Planets,
and other Astronomical Discoveries.
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1863.

Feb. 13.

1865.
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1867.
Feb. 8.

1868.

Feb. 14.

1869.

Feb. 12,

1870.

Feb. 11.

1872.
Feb. g.

WargeN DE La Rug, Esq.
The Gold Medal.— For his Astronomical Researches, and especially for
his Application of Photography.

Professor ARGELANDER.
The Gold Medal.— For his Survey of the Northern Heavens.

Professor G. P. Bonp.
The Gold Medal.— For his work on the Comet of DoNaTI, and other
Astronomical Researches.

Professor Apams.

The Gold Medal.— For his Contributions to the Development of the Lunar
Theory.

W. Huaeins, Esq. and Professor MILLER.
The Gold Medal.— For their Researckes in Astronomical Physlcs

M. LEVERRIER.
The Gold Medal.— For his Planetary Tables.

E. J. StoxE, Esq.
The Gold Medal.— For his Rediscussion of the Transit of Venus in
1769, and his other contributions to Astronomy.

M. DELAUNAY.
The Gold Medal.— For his « Théorie de la Lune.”

Signor SCHIAPARELLL
The Gold Medal.— For his Researches on the Connexion between the
Orbits of Comets and Meteors.
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