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PREFACE.

THE present work is constructed on the same plan as my
treatise on Plane Trigonometry, to which it is intended as a
sequel; it contains all the propositions usually included under
the head of Spherical Trigonometry, together with a large
collection of examples for exercise. In the course of the work
reference is made to preceding writers from whom assistance
has been obtained ; besides these writers I have consulted the
treatises on Trigonometry by Lardner, Lefebure de Fourcy,
and Snowball, and the treatise on Geometry published in the
Library of Useful Knowledge. The examples have been
chiefly selected from the University and College Examination
Papers.

In the account of Napier's Rules of Circular Parts an
explanation has been given of a method of proof devised by
Napier, which seems to have been overlooked by most modern
writers on the subject. I have had the advantage of access to
an unprinted Memoir on this point by the late R. L. Ellis of
Trinity College ; Mr Ellis had in fact rediscovered for himself
Napier's own method. For the use of this Memoir and for
some valuable references on the subject I am indebted to the
Dean of Ely.

Considerable labour has been bestowed on the text in
order to render it comprehensive and accurate, and the ex-
amples have all been carefully verified ; and thus I venture
to hope that the work will be found useful by Students and
Teachers.

I. TODHUNTER.

St Jomn’s COLLEGE,
August 15, 1859.



IN the third edition I have made some additions which I
hope will be found valuable. I have considerably enlarged
the discussion on the connexion of Formul® in Plane and
Spherical Trigonometry; so as to include an account of the
properties in Spherical Trigonometry which are analogous to
those of the Nine Points Circle in Plane Geometry. The
mode of investigation is more elementary than those hitherto
employed ; and perhaps some of the results are new. The
fourteenth Chapter is almost entirely original, and may de-
serve attention from the nature of the propositions them-
selves and of the demonstrations which are given.

CAMBRIDGE,
July, 1871.
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SPHERICAL TRIGONOMETRY.

'I. GREAT AND SMALL CIRCLES.

1. A sPHERE is a solid bounded by a surface every point of
which is equally distant from a fixed point which is called the
centre of the sphere. The straight line which joins any point of
the surface with the centre is called a radius. A straight line
drawn through the centre and terminated both ways by the surface
is called a diameter.

2. The section of the surface of a sphere made by any plane

28 a circle.
EN

-

Let 4B be the section of the surface of a sphere made by any
plane, O the centre of the sphere. Draw OC perpendicular to the
plane ; take any point D in the section and join 0D, CD. Since
OC is perpendicular to the plane, the angle OCD is a right angle;
therefore CD = ,/(0D* - 0C®). Now O and C are fixed points, so
that OC is constant ; and 0D is constant, being the radius of the

T. S. T. ‘ B



2 GREAT AND SMALL CIRCLES.

sphere; hence CD is constant. Thus all points in the plane section
are equally distant from the fixed point C'; therefore the section
is a circle of which (' is the centre.

‘3. The section of the surface of a sphere by a plane is called
a great circle if the plane passes through the centre of the sphere,
and a small circle if the plane does not pass through the centre of
the sphere. Thus the radius of a great circle is equal to the
radius of the sphere.

4. Through the centre of a sphere and any two points on the
surface a plane can be drawn ; and only one plane can be drawn,
except when the two points are the extremities of a diameter of
the sphere, and then an infinite number of such planes can be
drawn. Hence only one great circle can be drawn through two
given points on the surface of a sphere, except when the points are
the extremities of a diameter of the sphere. 'When only one great
circle can be drawn through two given points, the great circle is
unequally divided at the two points ; we shall for brevity speak of
the shorter of the two arcs as the arc of a great circle joining the
two points.

5. The axis of any circle of a sphere is that diameter of the
sphere which is perpendicular to the plane of the circle; the ex-
tremities of the axis are called the poles of the circle. The poles
of a great circle are equally distant from the plane of the circle.
The poles of a small circle are not equally distant from the plane
of the circle; they may be called respectively the nearer and fur-
ther pole ; sometimes the nearer pole is for brevity called zke pole.

6. A pole of a circle is equally distamt from every point of the
circumference of the circle.

Let O be the centre of the sphere, 4B any circle of the sphere,
C the centre of the circle, P and P’ the poles of the circle. Take
any point D in the circumference of the circle ; join CD, 0D, PD.
Then PD = ,/(PC* + CD%); and PC and CD are constant, therefore
PD is constant. Suppose a great circle to pass through the points
P and D ; then the chord PD is constant, and therefore the arc of
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a great circle intercepted between P and D is constant for all
positions of D on the circle 4B,

P

Thus the distance of a pole of a circle from every point of the
circumference of the circle is constant, whether that distance be
measured by the straight line joining the points, or by the arc of
a great circle intercepted between the points.

7. The arc of a great circle which is drawn from a pole of
great circle to any point in its circumference 18 a quadrant,

P

A

Let P be a pole of the great circle 4 B(C'; then the arc P4 is a
quadrant.

For let O be the centre of the sphere, and draw PO. Then
PO is at right angles to the plane 4BC, because P is the pole of
A BC, therefore POA is a right angle, and the arc P4 is a quad-
rant.

B2



4 GREAT AND SMALL CIRCLES.

8. The angle subtended at the centre of a sphere by the arc of
a great circle which joins the poles of two great circles is equal to the
inclination of the planes of the great circles.

Let O be the centre of the sphere, C.D, CE the great circles in-
tersecting at C, 4 and B the poles of CD and CE respectively.

Draw a great circle through 4 and B, meeting CD and CF at
M and IV respectively. Then 40 is perpendicular to OC, which is
a straight line in the plane OCD ; and BO is perpendicular.to OC,
which is a straight line in the plane OCE; therefore OC is perpen-
dicular to the plane 40B (Euclid, x1. 4); and therefore OC is
perpendicular to the straight lines OM and O, which ave in the
plane 40B. Hence MON is the angle of inclination of the planes
OCD and OCE. And the angle

AOB=AOM - BOM = BON - BOM = MON.

9. By the angle between two great circles is meant the angle
of inclination of the planes of the circles. Thus, in the figure of
the preceding Article, the a.ngle between the great circles C.D and
CE is the angle MON.

In the figure to Art. 6, since PO is perpendicula.r to the plane
ACB, every plane which contains PO is at right angles to the
plane ACB. Hence the angle between the plane of any circle
and the plane of a great circle which passes through its poles is
a right angle.
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10. Two great circles bisect each other.

For since the plane of each great circle passes through the
centre of the sphere, the line of intersection of these planes is'a
diameter of the sphere, and therefore also a diameter of each great
circle ; therefore the great circles are bisected at the points where
they meet.

11.  If the arcs of great circles joining a point P on the surface
of a sphere with two other points A and C on the surface of the
sphere, which are not at opposite extremities of a diameter, be each of
them equal to a quadrant, P is a pole of the great circle through
A and C. (See the figure of Art. 7.)

For suppose PA and PC to be quadrants, and O the centre of
the sphere ; then since P4 and PC are quadrants, the angles POC
and POA are right angles. Hence PO is at right angles to the
plane AOC, and P is a pole of the great circle AC.

-12. Great circles which pass through the poles of a great
circle are called secondaries to that circle. Thus, in the figure of
Art. 8 the point C is a pole of ABMY, and therefore CM and CV
are parts of secondaries to ABMN. And the angle between C i/
and CN is measured by MXN ; that is, the angle between any two
great circles is measured by the arc they intercept on the great circle
to which they are secondaries.

13. If from a point on the surface of a sphere there can be
drawn two arcs of great circles, not parts of the same great circle,
the plames of which are at right angles to the plane of a given circle,
that point is a pole of the given circle.

For, since the planes of these arcs are at right angles to the
plane of the given circle, the line in which they intersect.is per-
pendicular to the plane of the given circle, and is therefore the
axis of the given circle; hence the point from which the arcs are
drawn is a pole of the circle.



6 SPHERICAL TRIANGLES.

14.  To compare the arc of a small circle subtending any angle
at the centre of the circle with the arc of a great circle subtending
the same angle at its centre.

P

Let ab be the arc of a small circle, C' the centre of the circle,
P the pole of the circle; O the centre of the sphere. Through P
draw the great. circles Pad and PbB, meeting the great circle
of which P is a pole, at 4 and B respectively ; draw Ca, Cb, 04,
OB. Then Ca, Cb, 04, OB are all perpendicular to OP, because
the planes «Cb and AOB are perpendicular to OP; therefore Ca
is parallel to 04, and Cb is parallel to OB. Therefore the angle
aCb=the angle 408 (Euclid, x1. 10). Hence,

arcab _ arcAB
radius Ca  radius 04’

arcab Ca Ca
therefore, wrodB = 04" Oa

(Plane Trigonometry, Art. 18);

=gin POa.

II. SPHERICAL TRIANGLES.

15. Spherical Trigonometry investigates the relations which
subsist between the angles of the plane faces which form a solid
angle and the angles at which the plane faces are inclined to each
other,
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16. Suppose that the angular point of a solid angle is made
the centre of a sphere; then the planes which form the solid angle
will cut the sphere in arcs of great circles. Thus a figure will be
formed on the surface of the sphere which is called a spherical
triamgle if i is bounded by three arcs of great circles; this will be
the case when the solid angle is formed by the meeting of three
plane angles. If the solid angle be formed by the meeting of
more than three plane angles, the corresponding figure on the
surface of the sphere is bounded by more than three arcs of great
circles, and is called a spherical polygon.

17. The three arcs of great circles which form a spherical
triangle are called the sides of the spherical triangle ; the angles
formed by the arcs at the points where they meet are called the
angles of the spherical triangle. (See Art. 9.)

18. Thus, let O be the centre of a sphere, and suppose a solid
angle formed at O by the meeting of three plane angles. Let

AB, BC, CA be the arcs of great circles in which the planes cut
the sphere; then ABC is a spherical triangle, and the arcs 4B,
BC, C4 are its sides. Suppose 4b the tangent at 4 to the arc
AB, and Ac the tangent at A4 to the arc AC, the tangents being
drawn from 4 towards B and C respectively ; then the angle b4c
is one of the angles of the spherical triangle. Similarly angles
formed in like manner at B and C are the other angles of the
spherical triangle. '
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19. The principal part of a treatise on Spherical Trigonometry
consists of theorems relating to spherical triangles ; it is therefore
necessary to obtain an accurate conception of a spherical triangle

and its parts.

It will be seen that what are called sides of a spherical
triangle are really arcs of great circles, and these arcs are pro-
portional to the three plane angles which form the solid angle
corresponding to the spherical triangle. Thus, in the figure of
the preceding Article, the arc 4B forms one side of the spherical
triangle ABC, and the plane angle AOB is measured by the frac-

arc AB
radius 04
AOB so long as we keep to the same gphere.

tion ; and thus the arc 4B is proportional to the angle

The angles of a spherical triangle are the inclinations of the
plane faces which form the solid angle; for since 45 and Ac are
both perpendicular to 04, the angle dA4c is the angle of inclination
of the planes 04 B and OAC.

20. The letters 4, B, C are generally used to denote the
angles of a spherical triangle, and the letters a, b, ¢ are used to
denote the sides. As in the case of plane triangles, 4, B, and C
may be used to denote the numerical values of the angles expressed
in terms of anmy wunit, provided we understand distinctly what the
unit is. Thus, if the angle C' be a right angle, we may say that

C=90°% or that C= g, according as we adopt for the unit a de-

gree or the angle subtended at the centre by an arc equal to the
radius. So also, as the sides of a spherical triangle are propor-
tional to the angles subtended at the centre of the sphere, we
may use a, b, ¢ to denote the numerical values of those angles
in terms of any unit. 'We shall usually suppose both the angles
and sides of a spherical triangle expressed in circular measure.
(Plame Trigonometry, Art. 20.)
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21. In future, unless the contrary be distinctly stated, any
arc drawn on the surface of a sphere will be supposed to be an arc
of a great circle.

22. In spherical triangles each side is restricted to be less
than a semicircle ; this is of course a convention, and it is adopted
because it is found convenient.

F

Thus, in the figure, the arc ADEB is greater than a semicir-
cumference, and we wmight, if we pleased, consider ADEB, AC,
and BC as forming a triangle, having its angular points at 4, B,
and C. But we agree to exclude such triangles from our con-
sideration ; and the triangle having its angular points at 4, B,
and C, will be understood to be that formed by 4B, BC, and C A.

23. From the restriction of the preceding Article it will
follow that any angle of a spherical triamgle is less than two right

For suppose a triangle formed by BC, C4, and BEDA, having
the angle BCA greater than two right angles. Then suppose D
to denote the ‘point at which the arc BC, if produced, will meet
AE; then BED is a semicircle by Art. 10, and therefore BEA
is greater than a semicircle ; thus the proposed triangle is not one
of those which we consider.
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III. SPHERICAL GEOMETRY.

24. The relations between the sides and angles of a Spherical
Triangle, which are investigated in treatises on Spherical Trigono-
metry, are chiefly such as involve the T'rigonometrical Functions
of the sides and angles. Before proceeding to these, however, we
shall collect, under the head of Spherical Geometry, some theorems
which involve the sides and angles themselves, and not their trigo-
nometrical ratios.

25. Polar triangle. Let ABC be any spherical triangle, and
let the points 4’, B, C" be those poles of the arcs BC, C4, 4B

B

respectively which lie on the same sides of them as the opposite
angles 4, B, C; then the triangle 4’B'C" is said to be the polar
triangle of the triangle 4 BC.

Since there are two poles for each side of a spherical triangle,
eight triangles can be formed having for their angular points poles
of the sides of the given triangle ; but there is only one triangle in
which these poles A’, B, (' lie towards the same parts with the
corresponding angles 4, B, C'; and this is the triangle which is
known under the name of the polar triangle.

The triangle ABC is called the prémitive triangle with respect
to the triangle A'B'C".
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26. If one triangle be the polar triangle of a,notlwr, the latter
will be the polar triangle of the former.

Let 4 BC be any triangle, 4’B'C" the polar triangle: then 4BC
will be the polar triangle of 4'B'C".

For since B’ is a pole of AC, the arc 4B’ is a quadrant, and
since (' is a pole of BA, the arc A(" is a quadrant (Art. 7); . there-
fore 4 is a pole of B'C" (Art. 11). Also 4 and 4’ are on the same
side of B'C"; for A and A4’ are by hypothesis on the same side of
BC, therefore 4’4 is less than a quadrant ; and since 4 is a pole
of B'C",and A4’ is less than a quadrant, 4 and 4’ are on the
same side of B'C".

Similarly it may be shewn that B is a pole of ("4’, and that B
and B’ are on the same side of C’4’; also that C is a pole of 4'B’,
and that ' and (” are on the same mde of A'B’. Thus ABC is the
polar triangle of 4'B'C".

27. The sides and angles of the polar triangle are respectively
the supplements of the angles and sides of the primitive triangle.

For let the arc B'C’, produced if necessary, meet the arcs 4B,
AC, produced if necessary, at the points D and Z respectively ;
then since 4 is a pole of B'C”, the spherical angle 4 is measured by
the arc DE (Art. 12). But B'EZ and C'D are each quadrants;
therefore DE and B’C’ are together equal to a semicircle ; that is,
the angle subtended by B'C’ at.the centre of the sphere is the
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supplement of .the angle 4. This we may express for shortness
thus; B'C' is the supplement of 4. Similarly it may be shewn
that ("4’ is the supplement of B, and 4’B' the supplement of C.

And since 4BC is the polar triangle of 4’B'C’, it follows that
BC, C4, AB are respectively the supplements of 4, B, C'; that
is, 4', B, (' are respectively the supplements of BC, C4, 4B.

From these properties a primitive triangle and its polar tri-
angle are sometimes called supplemental triangles.

Thus, if 4, B, C, a, b, ¢ denote respectively the angles and
the sides of a spherical triangle, all expressed in circular measure,
and 4', B, C', &', ¥/, ¢’ those of the polar triangle, we have

Ad'=w—a, B=nw-b, C"=m—-c
d=n-A4, '=w—-B, /=n-C.

28. The preceding result is of great importance; for if any
general theorem be demonstrated with respect to the sides and the
angles of any spherical triangle it holds of course for the polar
triangle also. Thus any such theorem will remain true when the
angles are changed into the supplements of the corresponding sides
and the sides into the supplements of the corresponding angles. We
shall see several examples of this principle in the next Chapter.

29.  Any two sides of a sﬂwm’cal triangle are together greater
tham the third side. (See the figure of Art. 18.)

For any two of the three plane angles which form the solid
angle at O are together greater than the third (Euclid, x1. 20).
Therefore any two of the arcs AB, BC, C4, are together greater
than the third. .

From this proposition it is obvious that any side of a spherical
triangle is greater than the difference of the other two.

30. The sum of the three sides of a spherical triangle is less than
the circumference of a great circle. (See the figure of Art. 18.)
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For the sum of the three plane angles which form the solid
angle at O is less than four right angles (Euclid, x1. 21) ; therefore
4B BC + c4
~04*04d*o04

therefore,  AB+ BC + CA is less than 27 x 04 ;

i less than 2m,

that is, the sum of the arcs is less than the circumference of a
great circle.

31. The propositions contained in the preceding two Articles
may be extended. Thus, if there be any polygon which has each
of its angles less than two right angles, any one side is less than the
sum of all the others. This may be proved by repeated use of
Art. 29. Suppose, for example, that the figure has four sides, and
let the angular points be denoted by 4, B, C, D. Then

AD + BC is greater than AC ;
therefore, AB + BC + CD is greater than 4C + CD,
and & fortiort greater than 4D,

Again, if there be any polygon which has each of its angles
less than two right angles, the sum of its sides will be less tham the
circumference of a great circle. This follows from Euclid, x1. 21,
in the manner shewn in Art. 30.

33. The three angles of a spherical triangle are together greater
than two right angles and less than six right angles.

Let A, B, C be the angles of a spherical triangle; let a’, ¥, ¢’
be the sides of the polar triangle. Then by Art. 30,

a' + b + c.is less than 2,
that is, ‘w—A4+7—B+x—C is less than 27 ;
therefore, 4 + B + C is greater than =,

And since each of the angles 4, B, C is less than =, the sum
A + B +C is less than 3.
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33. The angles at the base of an isosceles spherical triamgle are
equal.

Ry
c
B
T

Let ABC be a spherical triangle having AC = BC ; let O be the
centre of the sphere. Draw tangents at the points 4 and B to the
arcs AC and BC respectively; these will meet OC produced at the
same point S, and 4.8 will be equal to BS.

Draw tangents AT, BT at the points 4, B to the arc AB; then
AT=TB; join TS. In the two triangles SAT, SBT the sides
SA, AT, T'S are equal to SB, BT, T'S respectively ; therefore the
angle SAT is equal to the angle SBT ; and these are the angles at
the base of the spherical triangle.

The figure supposes 4C and BC to be less than quadrants ; if
they are greater than quadrants the tangents to 4C' and BC will
meet on CO produced through O instead of through C, and the
demonstration may be completed as before. If AC and BC are
quadrants, the angles at the base are right angles by Arts. 11
and 9.

34. If two angles of a spherical tmmgle are equal, the opposite
stdes are equal.

Since the primitive triangle has two equal angles, the polar
triangle has two equal sides; therefore in the polar triangle the
angles opposite the equal sides are equal by Art. 33. Hence in
the primitive triangle the sides opposite the equal angles are
equal.
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35. If one .angle of a spherical triangle be greater than an-
other, the side opposite the greater angle ts greater than the side
opposite the less angle.

A C
D

Let ABC be a spherical triangle, and let the angle 4BC be
greater than the angle BAC: then the side AC will be greater
than the side BC. At B make the angle 48D equal to the angle
BAD; then BD is equal to 4D (Art. 34),and BD + D( is greater
than BG (Art. 29); therefore 4D+ DC is greater than BC ; that
is, AC is greater than BC.

36. If one side of a spherical triangle be greater than another,
the angle opposite the greater side is greater than the angle opposite
the less side.

This follows from the preceding Article by means of the polar
triangle.

Or thus; suppose the side AC greater than the side BC, then
the angle ABC will be greater than the angle BAC. For the
angle ABC cannot be less than the angle BAC by Art. 35, and
the angle ABC cannot be equal to the angle BAC by Art. 34;
therefore the angle 4BC must be greater than the angle BAC.

This Chapter might be extended ; but it is unnecessary to do
50 because the Trigonometrical formuls of the next Chapter sup-
ply an easy method of investigating the theorems of Spherical
Geometry. See Arts. 56, 57, and 58,
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1IV. RELATIONS BETWEEN THE TRIGONOMETRICAL
FUNCTIONS OF THE SIDES AND THE ANGLES
OF A SPHERICAL TRIANGLE.

37. To express the cosine of an angle of a triangle in terms of
sines and cosines of the sides.
' A

(4
E

Let ABC be a spherical triangle, O the centre of the sphere.
Let the tangent at 4 to the arc AC meet OC produced at E, and
let the tangent at 4 to the arc 4B meet OB produced at D; join
ED. Thus the angle £4D is the angle 4 of the spherical triangle,
and the angle £0.D measures the side a.

From the triangles ADE and ODE we have

DE* =AD"+ AE* - 24D . AE cos 4,
DE*—-0D*+O0E*- 20D . OE cos a;

also the angles OAD and OAE are right angles, so that
0D*=0A4%+ AD* and OE*= 04"+ AE’. Hence by subtraction
we have

0=204%+24D . AEcos A—-20D . OE cos a;
04 04 AE AD
“0E 0D *O0E 0D

that is cos @ = cos b cos ¢ + sin b sin ¢ cos 4.

therefore cos a cos 4 ;

cos @ — cos b cos ¢
Therefore cosd =—p—5—"—". <

sin b sin¢
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38. 'We have supposed, in the construction of the preceding
Article, that the sides which contain the angle 4 are less than
quadrants, for we have assumed that the tangents at 4 meet OB
and OC respectively produced. We must now shew that the
formula obtained is true when these sides are not less than quad-
rants. This we shall do by special examination of the cases in
which one side or each side is greater than a quadrant or equal to
a quadrant.

(1) Suppose only one of the sides which contain the angle 4
to be greater than a quadrant, for example, AB. Produce BA
and BC to meet at B'; and put 4B’ =¢, CB =a'

Then we have from the triangle AB'C, by what has been
already proved,
cosa’ =cosb cosc’ +sin b sin ¢’ cos B'AC ;
buta'=r-a, ¢ =w—-c¢, BAC=7n—4; thus
cos @ = cos b cos ¢ + 8in b sin ¢ cos 4.
- (2) Suppose both the sides which contain the angle 4 to be

greater than quadrants. Produce 4B and AC to meet at 4’; put
A'B=¢, A'C=0V; then from the triangle 4'BC, as before,

cos @ =cos b’ cos¢’ +sind’sinc cos 4’;
but ¥ =mw—b, ¢’=m—c, A'=4; thus

cos @ = cos b cos ¢ + sin b sin ¢ cos 4.

T.S. T. (o}
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(3) Suppose that one of the sides which contain the angle 4
is a quadrant, for example, 4B: on AC, produced if necessary,

A

(4
take 4D equal to a quadrant and draw BD. If BD isa quadrant

B is a pole of 4C (Art. 11); inthiscasea:%andA:lraswell

2
ag¢= % Thus the formula to be verified reduces to the identity

0=0. If BD be not a quadrant, the triangle BDC gives
cos @ =co8 CD cos BD + sin CD sin BD cos CDB,

and cos CDB=0, cosCD:cos(g~b)=sinb, cos BD=cos 4;
thus cosa=sinbcos 4 ;

and this is what the formula in Art. 37 becomes when ¢= g .

(4) Suppose that both the sides which contain the angle 4
are quadrants. The formula then becomes cos @ =cos 4 ; and this
is obviously true, for 4 is now the pole of BC, and thus 4 =a.

Thus the formula in Art. 37 is proved to be universally true.

39. The formula in Art. 37 may be applied to express the
cosine of any angle of a triangle in terms of sines and cosines of
the sides; thus we have the three formule,

cosa=cosbcosc+sinbsinccos 4,
cos b = cos ¢ cos @ + sin ¢ sin @ cos B,
cos ¢ = cosa cos b + sin a sin b cos C.
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These may be considered as the fundamental equations of Spheri-
cal Trigonometry; we shall proceed to deduce various formuls
from them.

40. To express the sine of an angle of a spherical &rwmgle n
terms of trigonometrical functions of the sides.

cosa—cosbeosc

We have cos 4 = inbsne e
- 2
therefore  sin'd =1— "w)
8in b sin ¢ Pe
_ (L—cos%)(1 - cos *c) — (cos @ — cos b cos ¢)*

sin®b sin’c

_ 1—cos®a—cos®d —cos’c+ 2 cosacosbcosc
» B 8in’} sin’c ’

sind = (1 — cos’a — cos®d — cos’c + 2 cosacosbcosc)
sinbsine

The radical on the right-hand side must be taken with the posi-
tive sign, because sin b, sin ¢, and sin 4 are all positive.

therefore

41. From the value of sin 4 in the preceding Article it fol-
lows that
sind sinB sinC
sing sinb sinc’ ¢
for each of these is equal to the same expression, namely,

(1 —cos’a — cos®d ~ cos’c + 2oosaoosbcosc)
sinasinbsine

Thus the sines of the angles of a spherical triangle are proportional
2o the sines of the opposite sides. We will give an independent
proof of this proposition in the following Article.

42.  The sines of the angles of a spherical triangle are propor-
tional to the sines of the opposite sides.
c2
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Let ABC be a spherical triangle, O the centre of the sphere.
Take any point P in O4, draw PD perpendicular to the plane

BOC, and from D draw DE, DF perpendicular to OB, OC respec-
tively ; join PE, PF, OD.

Since PD is perpendicular to the plane BOC, it makes right
angles with every straight line meeting it in that plane ; hence

PE* = PD* + DE? = PO* - OD* + DE* = PO* - OE*;
thus PEQis aright angle. Therefore PE=OP sin POE=0Psinc;
and PD = PE sin PED = PE sin B= OP sin ¢ sin B.

Similarly, PD = OP sin b sin C ; therefore
OPsincsin B=0PsinbsinC;

sinB sinb
sinC ~ sinec’

The figure supposes b, ¢, B, and C each léss than a right angle;
it will be found on examination that the proof will hold when the
figure is modified to meet any case which can occur. If, for
instance, B alone is greater than a right angle, the point D will
fall beyond OB instead of between OB and OC; then PED will
be the supplement of B, and thus sin PED is still equal to sin B,

43. To shew that cot a sin b = cot 4 sin C + cos b cos C.
We have cos a=cos bcosc+ sin bsin ccos 4,
€08 ¢ =08 @ o8 b + sin a sin b cos C,
sin

gin¢c=sinag - —.
sinA4

therefore
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Substitute the values of cos ¢ and sin ¢ in the first equation ;
thus i
sinasinbcos 4sin C

cosa = (cosacos b +sinasin b cos C)cos b + o 4 ;

by transposition
cos asin’ b =sin asin b cos b cos €' +sin asin b cot 4 sin C';
divide by sin a sin b ; thus '
cotasinb=cosbcosC +cot AsinC. A

44. By interchanging the letters five other formule may be
obtained like that in the preceding Article ; the whole six formulse
will be as follows :

cot asin b = cot 4 sin C + cos b cos C, ¢
cot b sin @ = cot B sin C' + cos a cos C,
cot b sin ¢ = cot Bsin 4 + cos ¢ cos 4,
cot ¢ 8in b = cot (' sin 4 + cos b cos 4,

cot ¢ sin @ = cot (' sin B + cos a cos B,

cot @ sin ¢ = cot 4 sin B + cos ¢ cos B. ‘

45. To express the sine, cosine, and tangent, of half an angle
of a triangle as functions of the sides.

cosa — cos b cosc
We have, by Art. 37, COSA=W" 3 ,
cosa—cosbeosc cos(b—c)—cosa

therefore 1 —cos 4=1—-—"—, ; - - 5
sin b sin ¢ sin b sin ¢

therefore sin’é= sin§ (a+b—c)sin (a—b+c)
2 sin b sin ¢ :

Let 2s8=a+b+¢, so that s is half the sum of the sides of
the triangle; then

a+b-c=28—-2c=2(8—c), a—b+c=28-26=2(s-0);

thus sin? 4 sin(s—b)sin (s—c)
2 sin b sin ¢

’
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and Sm%___\/{sin(ss;nb;:ﬁ(:—c)}.

cosa—cosbcose cosa—cos(b+ec).
sinbsine =~  sindsine ’

Also, l+cosd=1+

therefore

ws,£=sm%(a+b+c)sm%(b+ c—a) _sinssin (s -a)
2 sin b sin ¢ sin b sin ¢

and cos%:\/{gi—n—sin—(ﬁ—_ﬂ].

sinbsine |

’

From the expressions for sinf;— and cos %we deduce

ke ffinte b=}

The positive sign must be given to the radicals which occur in

this Article, because % is less than a right angle, and therefore its

sine, cosine, and tangent are all positive.

46. SincesinA=2sin%cos%, we obtain

sin 4 =‘m—%’{sinesin(s—a)sin(s—b) sin (8 — c)}g.

It may be shewn that the expression for sin 4 in Art. 40
agrees with the present expression by putting the numerator of
that expression in factors, as in Plane Trigonometry, Art. 115.
‘We shall find it convenient to use a symbol for the radical in the
value of sin 4 ; we shall denote it by =, so that

7" = sin 8 sin (s — @) sin (s — b) sin (s — ¢),

and 4n? =1 — cos’a — cos’b — cos’c + 2 cos @ cos b cos c.



OF THE SIDES AND THE ANGLES OF A SPHERICAL TRIANGLE. 23
47. To express the cosine of a side of a triangle in terms of
sines and cosines of the angles.

In the formula of Art. 37 we may, by Art. 28, change the
sides into the supplements of the corresponding angles and the
angle into the supplement of the corresponding side ; thus

co8 (m — A) = cos (7 — B) cos (w — C)+sin (m - B)sin (r — C) cos(r-a),

that is, cos 4 =—cos Beos C +sin Bsin C cos a.
Similarly cos B =—cos C' cos A + sin € sin 4 cos b,
and cos ('=—cos 4 cos B +sin 4 sin Bcose.

48. The formule in Art. 44 will of course remain true whdh
the angles and sides are changed into the supplements of the cor-
responding sides and angles respectively ; it will be found, how-
ever, that no new formule are thus obtained, but only the same
formule over again. This consideration will furnish some assist-
ance in retaining those formul® accurately in the memory.

49. To express the sine, cosine, and tomgent, of half a side of @
trtamgle as functions of the angles.

We have, by Art. 47, cosa =09§i: 59:—.]1111"6&9 ;
therefore
cos A +cos BcosC _ cos 4 +cos{B+0)
sin Bsin C - sin BsinC ’

therefore sin"fZ_COS%(A+B+C)OOSQ(B+C—A)
2 sin Bsin C .

1-cosa=1-

Let 28=4 + B+ C; then B+ C — 4 =2 (S - A), therefore
. 3@ __cosScos(§-4)

s g sin Bsin ¢ °’

d ’ . @ cos Scos (S— 4)
an 81n§_\/{— sin Bsin C }
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Also  1+cosacl +coas;A+cosBcosC'_cosnA-a-cos(B-‘(J)_

sin BsinC sinBsinC "’
therefore
3@ _cos}(4—B+C)cos} (4+B-C) _ cos (S—B) cos (S-—C)
8 g= sin Bsin C sin Bsin C
a cos (S — B) cos (S - 0)
and cosﬁ—\/{ sin Bsin C }
a_ cos Scos (S — 4)
Hence tang = \/{_ cos (S — B) cos (S — C’)} )

The positive sign must be given to the radicals which occur in

this Article, because g is less than a right angle.

50. The expressions in the preceding Article may also be
obtained immediately from those given in Art. 45 by means of
Art, 28,

It may be remarked that the values of sin o 3 cos o 3 and tan o 3
are real. For S is greater than one right angle and less than three
right angles by Art. 32; therefore cos § is negative. And in the
polar triangle any side is less than the sum of the other two ; thus
w— A.is less than = — B+ w — C; therefore B + C' — A is less than
m ; therefore S— 4 is less than = 3
greater than — , so that S — 4 is algebraically greater than — =

and B+ C — 4 is algebraically

therefore cos (S—A)is positive. Similarly also cos (S — B) and

cos (S — C) are positive. Hence the values of sin 3 cos & 3 and tan % 3

are real.

1. Since sina=2 sm cos 2 g1 We obtain

sin &= smBsmC’{ cos § cos (S — 4) cos (S — B) cos (S - 0)}%

J 'We shall use ¥ for {— cos S cos (§ — 4) cos (§— B) cos (S — C)}4.
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52. To demonstrate Napier's Analogies.

sind sinB

We have sina " sinb = ™ suppose;
then, by a theorem of Algebra,
sin 4 +sin B
= mb— ....................... (l),
and also = ?‘A—'s‘.ﬂlf ....................... (2).
sin @ —sin b

Now cos 4 +cos Bcos C =sin Bsin C cos a=m sin C'sin b cos a,
and cos B+ cos 4 cos C =sin 4 sin C cos b=msin Csina cos b,
therefore, by addition,

(cos 4 +cos B) (1 +cos C)=msin Csin (a +b)...... 3);
therefore by (1) we have

sind+sinB sina+sind1+cosC
cosd +cosB  sin(a+b) sinC ’

cos} (a —b)
cos } (a + b)

Similarly from (3) and (2) we have

that is, tan} (4 + B) = cot% ............. (4).

sind —sin B_sina—sinb1+cos C
cosd+cos B sin(a+b) sinC

sin § (a - b)
gin 4 (e +b)

By writing = — 4 for a, and so on in (4) and (5) we obtain
V cos } (4 — B) c

’

that is, tan} (4 - B)= cot 5 eeeenreeenens (5).

tan%(a+b)—mta 2 ............ (6),
tan%(a—b):iiig—j%g—;tang e (7).

The formule (4), (5), (6), (7) may be put in the form of pro-
portions or analogies, and are called from their discoverer Napier’s
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Analogies : the last two may be demonstrated without recurring
to the polar triangle by starting with the formuls in Art. 39.

53. 1In equation (4) of the preceding Article, cos} (¢—b) and

cot -g are necessarily positive quantities; hence the equation

shews that tan } (4 +.B) and cos (@ +b) are of the same sign ;
thus 4 (4 +.B) and 4 (@ + b) are either both less than a right angle
or both greater than a right angle. This is expressed by saying
that % (4 + B) and 4 (a+d) are of the same affection.

54. To demonstrate Delambre’s Analogies. .

‘We have cos ¢ =cosa cos b +sinasinbd cos C'; therefore

1+ cosc=1 + cos a cos b + sin @ 8in b (cos® 4 0 —sin’ 1 C)
={1 + cos (@ —b)} cos® $ C + {1 + cos (a + b)} sin* } C ;

therefore cos® ¢ =cos’} (a—b) cos® C + cos® § (a+b)sin® 4 C.
Similarly, sin® § ¢ =sin® § (@ — b) cos® $ € +sin® } (¢ + b) sin’ § C.

Now add unity to the square of each member of Napier’s first
two analogies ; hence by the formule just proved

sec'} (4 +B)= cos’3 (:(:-s'b%:in’ 3C’
sec’} (4 - B) = ooy (Zifb%) F 1c

Extract the square roots; thus, since (4 + B) and 4 (a+ )
are of the same affection, we obtain

cos § (A + B)costc=cos}(a+b)siniC ......... 1),
cos} (A—-B)sinjc=sin} (a+d)sin}C ......... (2).

Multiply the first two of Napier’s analogies respectively by
these results ; thus

sin} (4 +B)costc=cos}(a—bd)cos}C......... 3),
sin} (4-B)sinyc=sin§ (a—b)cos}C....... ~.(4).
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The last four formul® are commonly, but improperly, called
Gausg's Theorems; they were first given by Delambre in the
Connaissance des Tems for 1809, page 445. See the Philosophical
Magazine for February, 1873.

55. The properties of supplemental triangles were proved
geometrically in Art. 27, and by means of these properties the
formule in Art. 47 were obtained; but these formule may be
deduced analytically from those in Art. 39, and thus the whole
subject may be made to depend on the formule of Art. 39.

For from Art. 39 we obtain expressions for cos 4, cos B, cosC ;
and from these we find
cos A + cos B cos O

(oosa cos b cos ¢) sin® a + (cos b — cos a cos ¢) (cos ¢ — cos @ cos b)

sin®a sin bsin ¢

In the numerator of this fraction write 1 ~cos’a for sin*a; thus

the numerator will be found to reduce to

cosa (1 — cos® @ — cos® b — cos’ ¢ + 2 cos @ cos b cosc),

and this is equal to cos asin B sin € sin’ asin dsine, (Art. 41);

therefore cos 4 + cos B cos €' = cos a gin B sin C.

Similarly the other two corresponding formule may be proved.

Thus the formule in Art. 47 are established; and therefore,
without assuming the existence and properties of the Polar Tri-
angle, we deduce the following theorem : If the sides and angles
of a spherical triangle be changed respectively into the supplements
of the corresponding angles and sides, the fundamental formule of
Art. 39 hold good, and therefore also all results deducible from them.

56. The formule in the present Chapter may be applied to
establish analytically various propositions respecting spherical tri-
angles which either have been proved geometrically in the pre-
ceding Chapter, or may be so proved. Thus, for example, the
second of Napier's analogies is
tan} (4 - B)— gin } (@ —b)

sm%(a+b) t
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this shews that } (4 — B) is positive, negative, or zero, according
a8 } (a—0b) is positive, negative, or zero; thus we obtain all the
results included in Arts. 33...36.

57. If two triangles have two sides of the one equal to two
sides of the other, each to each, and likewise the included angles
equal, then their other anmgles will be equal, each to each, and like-
wige their bases will be equal.

We may shew that the bases are equal by applying the first
formula in Art. 39 to each triangle, supposing b, ¢, and 4 the
same in the two triangles; then the remaining two formule of
Art. 39 will shew that B and C are the same in the two triangles.

It should be observed that the two triangles in this case are
not necessarily such that one may be made to coincide with the
other by superposition. The sides of one may be equal to those of
the other, each to each, but in a reverse order, as in the following
figures.

Two triangles which are equal in this manner are said to be
symmetrically equal ; when they are equal so as to admit of super-
position they are said to be absolutely equal.

58. If two spherical triangles have two sides of the one equal to
two sides of the other, each to each, but the angle which is contained
by the two sides of the one greater than the angle which is contained
by the two sides which are equal to them of the other, the base of that
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which has the greater amgle will be greater than the base of the
other ; and conversely.

Let b and c denote the sides which are equal in the two tri-
angles ; let @ be the base and 4 the opposite angle of one triangle,
and ¢’ and 4’ similar quantities for the other. Then

cos @ = cos b cos ¢ + sin b sin ¢ cos 4,
cosa’ =cosbcosc+sin bsinccos 4';
therefore  cos a —cosa’=sin bsin ¢ (cos 4 —cos 4') ;
that is,
sin} (a+a')sing (@ —a’)=sinbsincsin § (4 +4")sin 3 (4 - 4');
this shews that { (a —a’) and 4 (4 — 4’) are of the same sign.

59. Ifon a sphere any point be taken within a circle which
i8 not its pole, of all the arcs which can be drawn from that point
to the circumference, the greatest is that in which the pole is, and the
other part of that produced is the least ; and of any others, that which
@8 mearer to the greatest 18 always greater than one more remote ; and
Jrom the same point to the circumference there can be drawn only
two arcs which are equal to each other, and these make equal angles
with the shortest arc on opposite sides of it.

This follows readily from the preceding three Articles.

60. We will give another proof of the fundamental formulse
in Art. 39, which is very simple, requiring only a knowledge of
the elements of Co-ordinate Geometry.

Suppose 4BC any spherical triangle, O the centre of the
sphere, take O as the origin of co-ordinates, and let the axis of 2
pass through C. Let «, y,, 2, be the co-ordinates of 4, and x,
Y, %, those of B; let » be the radius of the sphere. Then the
square on the straight line 4B is equal to

(ml - 2)’ + (!/, - :'/g)i + (zl - zg)sv
and also to " +9° -2 cos A0B;
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and x +yl+z =0 a7+y +27=1r", thus
x@, + Yy, +22,=r"cos A0B.
Now make the usual substitutions in passing from rectangular

to polar co-ordinates, namely,

z,=rcosf, «,=rsinf cos¢, y =rsinf sing,

z,=rcosf, «,=rsinf cosd, y,=rsinb sing,;
thus we obtain

cos 0, cos 6, + sin 6, sin 6, cos (¢, — ¢,) = cos 40B,

that is, in the ordinary notation of Spherical Trigonometry,

cos @ cos b + sin @ sin b cos C = cos ¢.

. This method has the advantage of giving a perfectly general
proof, as all the equations used are universally true.

EXAMPLES.

1. If A =a, shew that B and b are equal or supplemental, as
also C and ¢.

2. If one angle of a triangle be equal to the sum of the other
two, the greatest side is double of the distance of its middle point
from the opposite angle.

3. When does the polar triangle coincide with the primitive
triangle ?

4, If D be the middle point of 4B, shew that
cos AC + cos BC' =2 cos 4 AB cos CD.

5. If two angles of a spherical triangle be respectively equal
to the sides opposite to them, shew that the remaining side is the
supplement of the remaining angle ; or else that the triangle has
two quadrants and two right angles, and then the remaining side
is equal to the remaining angle.
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6. In an equilateral triangle, shew that 2 cos % sin g =1

7. In an equilateral triangle, shew that tan’ g =1-2cosd;

hence deduce the limits between which the sides and the angles of
an equilateral triangle are restricted.

8. In an equilateral triangle, shew that sec 4 =1 + sec a.
9. If the three sides of a spherical triangle be halved and

a new triangle formed, the angle 6 between the new sides g and—;

is given by cos 6= cos 4 + } tan gtang sin®6.

10. 4B, CD are quadrants on the surface of a sphere inter-
secting at Z, the extremities being joined by great circles: shew
that

cos AEC =cos AC cos BD — cos BC cos 4.D.

11. If b+ ¢=m, shew that sin 28 +sin 20 =0.

12. If DE be an arc of a great circle bisecting the sides 4.B,
AC of a spherical triangle at D and E, P a pole of DE, and PB,
PD, PE, PC be joined by arcs of great circles, shew that the angle
BPC =twice the angle DPE.
' 13. In a spherical triangle shew that

sin b sin ¢ + cos b cos ¢ cos 4 = sin B sin C — cos B cos C cos a.

14. If D be any point in the side BC of a triangle, shew that

cos 4D sin BC = cos AB sin DC + cos AC sin BD.

15. In aspherical triangle shew that if 6, ¢, y be the lengths
of arcs of great circles drawn from 4, B, C' perpendicular to the
opposite sides,

sin @ sin @ = sin b sin ¢ = sin ¢ sin

= /(1 — cos® a — cos® b — cos® ¢ + 2 cos a cos b cos c).
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16. In a spherical triangle, if 6, ¢,  be the arcs bisecting the
angles 4, B, C respectively and terminated by the opposite sides,
shew that

cot0cos%+cot¢cosg+cotn[/ cosg=cota+cotb+cotc.

17. Two ports are in the same parallel of latitude, their com-
mon latitude being / and their difference of longitude 2A : shew
that the saving of distance in sailing from one to the other on the
great circle, instead of sailing due East or West, is

27 {\ cos { —sin™" (sin A cos )},

X being expressed in circular measure, and r being the radius of
the Earth.

18. If a ship be proceeding uniformly along a great circle and
the observed latitudes be I, 7, 7, at equal intervals of time, in

17 Yg)
each of which the distance traversed is s, shew that

_y8ing (4, +1)cosy (1, - 1)

8 =108 :
sin /,

r denoting the Earth’s radius : and shew that the change of longi-
tude may also be found in terms of the three latitudes.

V

V. SOLUTION OF RIGHT-ANGLED TRIANGLES.

61. Inevery spherical triangle there are six elements, namely,
the three sides and the three angles, besides the radius of the
sphere, which is supposed constant. The solution of spherical tri-
angles is the process by which, when the values of a sufficient
number of the six elements are given, we calculate the values of
the remaining elements. It will appear, as we proceed, that when
the values of three of the elements are given, those of the remain-
ing three can generally be found. We begin with the right-angled
triangle : here two elements, in addition to the right angle, will be
supposed known.
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62. The formule requisite for the solution of right-angled
triangles may be obtained from the preceding Chapter by sup-
posing one of the angles a right angle, as C for example. They
- may also be obtained very easily in an independent manner, as
we will now shew.,

4

N aaA

Let ABC be a spherical triangle having a right angle at C';
let O be the centre of the sphere. From any point P in OA4 draw
PM perpendicular to OC, and from 3 draw M N perpendicular to
0B, and join PN. Then PM is perpendicular to M, because the
plane A0C is perpendicular to the plane BOC'; hence

PN*=PM'+ MN*=0P' -~ OM* + OM* - ON*=OF* - ON?;
therefore PNO is a right angle. And

ON ON OM

0P- 0" OP’ that is, cosc=cos @ cosb ............ (1),
PM PM PN N . s
—O-I—,=W.0P,that is, sm?:smBsmcl ......... @)
Similarly sin@=sin 4 sin ¢ j
MN MN PN .
ON = PN ON’ that is, tana=cosBtanc| 3),
Similarly tan b=cos Atanc
PM PM MN . .
03~ ix - opp’ habis tnb=tanBsina } ......... ®.
Similarly tana=tan 4 sin b
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Multiply together the two formulse (4); thus,

tanatand _ 1 1 .
t&nAtanB_sinasin b cosacosd —cmby OF

therefore cosc=cot Acot B......ccoeenennnnn.n. (5).

Multiply crosswise the second formula in (2) and the first
in (3); thus sin a cos Btan ¢=tan asin 4 sinc;

therefore ~ cos B= sind coso sin 4 cos b by (1).

cosa
Thus cos B=sin 4 cos b 6)
Similarly o s “} ..................... (6).

These six formulse comprise ten equations; and thus we can
solve every case of right-angled triangles. For every one of these
ten equations is a distinct combination involving three out of the
five quantities @, b, ¢, 4, B; and out of five quantities only ten
combinations of three can be formed. Thus any two of the five
quantities being given and a third required, some one of the pre-
ceding ten equations will serve to determine that third quantity.

63. As we have stated, the above six formule may be ob-
tained from those given in the preceding Chapter by supposing C a
right angle. Thus (1) follows from Art. 39, (2) from Art. 41,
(3) from the fourth and fifth equations of Art. 44, (4) from the
first and second equations of Art. 44, (5) from the third equation
of Art. 47, (6) from the first and second equations of Art. 47.

Since the six formule may be obtained from those given in
the preceding Chapter which have been proved to be universally
true, we do not stop to shew that the demonstration of Art. 62
may be applied to every case which can occur; the student may
for exercise investigate the modifications which will be necessary
when we suppose one or more of the quantities a, b, ¢, 4, B equal
to a right angle or greater than a right angle.
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64. Certain properties of right-angled triangles are deducible
from the formule of Art. 62.

From (1) it follows that cos ¢ has the same sign as the product
cosacosb; hence either all the cosines are positive, or else only
one is positive. Therefore in a right-angled triangle either all the
three sides are less than quadrants, or else one side is less than a
quadrant and the other two sides are greater than quadrants.

From (4) it follows that tan o has the same sign as tan 4.
Therefore 4 and o are either both greater than g, or both less

than g ; this is expressed by saying that 4 and a are of the same

affection. Similarly B and b are of the same affection.

65. The formule of Art. 62 are comprised in the following
enunciations, which the student will find it useful to remember;
the results are distinguished by the same numbers as have been
already applied to them in Art. 62; the side opposite the mght .
angle is called the hypotenuse: :

Cos hyp = product of cosines of sides .................. 1),

Cos hyp = product of cotangents of angles ............ ), :
Sineside = sine of opposite angle x sine hyp ...:........(2), \/é5
Tan side = tan hyp x cos included angle................. (3), '

Tan side = tan opposite angle x sine of other side...... (4),

Cosangle= cos opposite side x sine of other angle...... (6).

66. Napier's Rules. The formule of Art. 62 are comprised
in two rules, which are called, from their inventor, Napier's Rules
" of Circular Parts. Napier was also the inventor of Logarithms,
and the Rules of Circular Parts were first published by him in a
work entitled Mirificc Logarithmorum Canonis Descriptio
Edinburgh, 1614. These rules we will now explain.

D2
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The right angle is left out of consideration; the two sides
which include the right angle, the complement of the hypotenuse,
and the complements of the other angles are called the circular

parts of the triangle. Thus there are five circular parts, namely,
a, b, 1—2‘:—A, 72-r—c, g— B; and these are supposed to be ranged

round a circle in the order in which they naturally occur with
respect to the triangle,

Any one of the five parts may be selected and called the
middle part, then the two parts next to it are called adjacent
parts, and the remaining two parts are called opposite parts. For

example, if ;— B is selected as the middle part, then the adjacent

parts are @ and 7—;— ¢, and the opposite parts are b and %— A.

Then Napier's Rules are the following:
she of the middle part = product of tangents of adjacent parts,
sihe of the middle part = product of cosines of opposite parts.

67. 'Napier’s Rules may be demonstrated by shewing that
they agree with the results already established. The following
table shews the required agreement: in the first column are given
the middle parts, in the second column the results of Napier’s
Rules, and in the third column the same results expressed as in
Art. 62, with the number for reference used in that Article
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T .

g—¢ sin (g— c) = tan (g—A) tan (g—B) cos ¢ =cot 4 cot B..(5),

sin (7—2"—0)=cosacosb cos ¢ =cos @ cos b.. (1),
g—B sin <g—B)=tanaban %—c) cosB:tanacotc...(Zi), :

. T ™ .

sin (2—B> = cos b cos (§—A) cos B =cos bsin 4..(6),

a sin ¢ = tan b tan (%—B) sin @ = tan b cot B..(4),

sin @ = cos (;:-A) cos <§ - c) sin @ =sin 4 sin¢..(2),

b sin b = tan <1—;—A) tan o sin b = cot 4 tana..(4),

sin b = cos (g— B) cos g - ) sin b = sin Bsinc..(2),

g-A sin ?-—A)=tanbtan(§—c) cos 4 = tan b cot c..(3),

sin (’25 - A> = COS @ CO8 G—B) cos 4 = cos asin B..(6).

The last four cases need not have been given, since it is obvious
that they are only repetitions of what had previously been given ;
the seventh and eighth are repetitions of the fifth and sixth, apd
the ninth and tenth are repetitions of the third and fourth. i

68. It has been sometimes stated that the method of the
preceding Article is the only one by which Napier’s Rules can be
demonstrated ; this statement, however, is inaccurate, since besides
this method Napier himself indicated another method of proof in
his Mirifici Logarithmorum Canonis Descriptio, pp. 32, 35. This
we will now briefly explain.
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Let ABC Vbe a spherical triangle right-angled at C'; with B
as pole describe a great circle DEFG, and with 4 as pole describe
a great circle HFKL, and produce the sides of the original triangle
ABC to meet these great circles. Then since B is a pole of DEFG
the angles at D and @ are right angles, and since 4 is a pole of
HFKL the angles at H and L are right angles. Hence the five
triangles BAC, AED, EFH, FKG, KBL are all right-angled; and
moreover it will be found on examination that, although the ele-
ments of these triangles are different, yet their circular parts are
the same. We will consider, for example, the triangle AZD; the
angle ZAD is equal to the angle BAC ; the side 4D is the com-
plement of 4B ; as the angles at C' and G are right angles Z is a
pole of GC (Art. 13), therefore £4 is the complement of AC ; as
B is a pole of DE the angle BED is a right angle, therefore the
angle AED is the complement of the angle BEC, that is, the
angle A ED is the complement of the side BC (Art. 12); and simi-
larly the side DZ is equal to the angle DBE, and is therefore the
complement of the angle ABC. Hence, if we denote the elements
of the triangle 4BC as usual by a, b, ¢, 4, B, we have in the
m™

3 b, the angles equal to

triangle A£D the hypotenuse equal to
4 andg — a, and the sides respectively opposite these angles equal

to g—B and g —c¢. The circular parts of AED are therefore the



SOLUTION OF RIGHT-ANGLED TRIANGLES. 39

same as those of ABC. Similarly the remaining three of the five
right-angled triangles may be shewn to have the same circular
parts as the triangle 4BC has.

Now take two of the theorems in Art. 65, for example (1) and
(3) ; then the truth of the fen cases comprised in Napier’s Rules
will be found to follow from applying the two theorems in succes-
sion to the five triangles formed in the preceding figure. Thus
this method of considering Napier’s Rules regards each Rule, not
as the statement of dissimilar properties of one triangle, but as the
statement of similar properties of five allied triangles.

69. In Napier’s work a figure is given of which that in the
preceding Article is a copy, except that different letters are used ;
Napier briefly intimates that the truth of the Rules can be easily
seen by means of this figure, as well as by the method of induction
from consideration of all the cases which can occur. The late
T. S. Davies, in his edition of Dr Hutton’s Course of Mathematics,
drew attention to Napier’s own views and expanded the demon-
stration by a systematic examination of the figure of the preceding
Article.

It is however easy to evade the necessity of examining the
whole figure; all that is wanted is to observe the connexion
between the triangle AZD and the triangle BAC. For let o, a,
a, a, a; represent the elements of the triangle BAC taken in
order, beginning with the hypotenuse and omitting the right
angle; then the elements of the triangle AED taken in order,
beginning with the hypotenuse and omitting the right angle, are

™ T T

3= % 3= 0 3= L a, and o, If, therefore, to characterise

)
the former we introduce a new set of quantities p,, p,, »,, »,, »,

such that a, + p, =a,+p,=a,+ p, =72I, and that p,=a, and p, =a,

then the original triangle being characterised by p,, p,, »,, P, 2,
the second triangle will be similarly characterised by p,, p,, 2,
P, Py Asthe second triangle can give rise to a third in like
manner, and so on, we see that every right-angled triangle is one
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of a gystem of five such triangles which are all characterised by
the quantities p,, p,, p, p, P, always taken in order, each
quantity in its turn standing first.

The late R. L. Ellis pointed out this connexion between the
five triangles, and thus gave the true significance of Napier’s
Rules. The memoir containing Mr Ellis’s investigations, which
was unpublished when the first edition of the present work ap-
peared, will be found in pages 328...335 of The Mathematical and
other writings of Robert Leskie Ellis... Cambridge, 1863.

Napier’s own method of considering his Rules was neglected
by writers on the subject until the late T. 8. Davies drew atten-
tion to it. Hence, as we have already remarked in Art. 68, an
erronéous statement was made respecting the Rules. For in-
stance, Woodhouse says, in his Z'rigonometry . “There is no sepa-
rate and independent proof of these rules;...” Airy says, in the
treatise on Trigonometry in the Encyclopedia Metropolitana :
“These rules are proved to be true only by showing that they com-
prehend all the equations which we have just found.”

70. Opinions have differed with respect to the wtility of
Napier’s Rules in practice. Thus Woodhouse says, “In the whole
compass of mathematical science there cannot be found, perhaps,
rules which more completely attain that which is the proper
object of rules, namely, facility and brevity of computation.”
(T'rigonometry, chap. x.) On the other hand may be set the fol-
lowing sentence from Airy’s Trigonometry (Encyclopedia Metro-
politana): “In the opinion of Delambre (and no one was better
qualified by experience to give an opinion) these theorems are best
recollected by the practical calculator in their unconnected form.”
See Delambre’s dstronomie, vol. 1. p. 205. Professor De Morgan
strongly objects to Napier's Rules, and says (Spherical Trigono-
metry, Art. 17): “There are certain mnemonical formule called
Napier's Rules of Circular Parts, which are generally explained.
We do not give them, because we are convinced that they only
create confusion instead of assisting the memory.”
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71. 'We shall now proceed to apply the formule of Art. 62
to the solution of right-angled triangles, We shall assume that
the given quantities are subject to the limitations which are stated
in Arts. 22 and 23, that is, a given side must be less than the
semicircumference of a great circle, and a given angle less than
two right angles. There will be six cases to consider.

72. Having given the hypotenuse ¢ and an angle A.

Here we have from (3), (5) and (2) of Art. 62,

tanb=tanccos 4, cot B=cosctan 4, sina=sincsin 4.

Thus b and B are determined immediately without ambiguity ;
and us @ must be of the same affection as 4 (Art. 64), a also is
determined without ambiguity.

It is obvious from the formule of solution, that in ‘this case
the triangle is always possible.

If c and 4 are both right angles, a is a right angle, and b and
B are indeterminate.

73. Having given a side b and the adjacent angle A.

Here we have from (3), (4) and (6) of Art. 62,

tand '

cos 4’
Here ¢, a, B are determined without ambiguity, and the tri-

angle is always possible.

tan ¢ = tana=tan 48inb, cosB=cosbsin 4.

74. Hawing given the two sides a and b.

Here we have from (1) and (4) of Art. 62,

cosc=cosacos b, cotd=cotasinbd, cotB=cotbsina.

Here ¢, A, B are determined without ambiguity, and the tri-
angle is always possible. .

75. Having given the hypotenuse ¢ and a side a.

Here we have from (1), (3) and (2) of Art. 62,

cos ¢ tan a . sina
cosb=—-, co8sB=——, sind=—r,
8 tan ¢ sin ¢
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Here b, B, A are determined without ambiguity, since 4 must
be of the same affection as a. It will be seen from these formula
that there are limitations of the data in order to insure a possible
triangle ; in fact, ¢ must lie between ¢ and 7 — @ in order that the
values found for cos d, cos B, and sin 4 may be numerically not
greater than unity. ,

If ¢ and a are right angles, 4 is a right angle, and b and B are
" indeterminate.

76. Having given the two angles A and B.
Here we have from (5) and (6) of Art. 62,

. cos 4
cos ¢ =cot 4 cot B, cosa= —p, c i
Here ¢, a, b are determined without ambiguity. There are
limitations of the data in order to insure a possible triangle. First

suppose A4 less than =, then B must lie between ‘%-—- 4 and g+ 4;

next suppose A4 greater than then B must lie between

T
§’
g— (m—4) a.ndg+(1r—'A), that is, between 4 — %r and 3—; - 4.

77. Having given a side a and the opposite angle A.

Here we have from (2), (4) and (6) of Art. 62,

sin b = tan a cot 4, :ssinB=(E4

. s a
sin ¢ = .
cos a

sin4’

Here there is an ambiguity, as the parts are determined from
their sines. If sina be less than sin 4, there are two values
admissible for ¢; corresponding to each of these there will be
in general only one admissible value of b, since we must have
cos¢c=cos @ cos b, and only one admissible value of B, since we
must have cosc=cot 4 cot B. Thus if one triangle exists with the
given parts, there will be in general two, and only two, triangles
with the given parts. We say in general in the preceding sen-
tences, because” if @ =4 there will be only one triangle, unless «
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and 4 are each right angles, and then & and B become inde-
terminate.

It is easy to see from a figure that the ambiguity must oceur
in general.

For, suppose BAC to be a triangle which satisfies the given
conditions ; produce 48 and AC to meet again at A’; then the
triangle 4'BC also satisfies the given conditions, for it has a right
angle at C, BC the given side, and 4’ =4 the given angle.

If @ = 4, then the formule of solution shew that ¢, b, and B
are right angles ; in this case 4 is the pole of BC, and the triangle
A'BC is symmetrically equal to the triangle 4 BC (Art. 57).

If a and 4 are both right angles, B is the poleof AC'; B and b
are then equal, but may have any value whatever.

There are limitations of the data in order to insure a possible
triangle. A4 and @ must have the same affection by Art. 64 ; hence
the formulz of solution shew that ¢ must be less than 4 if both
are acute, and greater than 4 if both are obtuse.

EXAMPLES,
If ABC be a triangle in which the angle C is a right angle,
prove the following relations contained in Examples 1 to 5.

i & _ e @ ﬂli :a-né
1. Sin g = sin 2cos 2+ cos ésm 3°

2. Tan%(c+a)tan%(c—a)=tan’%.

3. Sin(c-05) =tan® %1 sin (¢ + b).
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4. Sina tan }4 —sin b tan B =sin (a — b).
5. Sin (¢ — @) =sin b cos @ tan B,
Sin (¢ — a) =tan b cos ¢ tan }B.

6. If ABC be a spherical triangle, right-angled at C, and
cos 4 = cos’ a, shew that if 4 be not a right angle b+c¢=4r or

% m, according as b and ¢ are both less or both greater than 1_2:- .

7. 1If a, B be the arcs drawn from the right aﬁgle respectively
perpendicular to and bisecting the hypotenuse ¢, shew that

sin® % (1 +sin’ @) = sin® B.

8. In a triangle, if ' be a right angle and D the middle point
of 4B, shew that

4 cos® 22 sin® CD = sin® @ + sin® b.

9. In a right-angled triangle, if § be the length of the arc
drawn from C perpendicular to the hypotenuse 4B, shew that

cot 8 = \/(cot*a + cot?d).

10. OA4A, is a spherical triangle right-angled at 4 and acute-
angled at 4 ; the arc 4 4, of a great circle is drawn perpendicular
to O4, then 4,4, is drawn perpendicular to O4,,and so on: shew
that 4 A, vanishes when z becomes infinite ; and find the value
of cos Ad,cos 4, A, cosd A4,...... to infinity.

11. ABC is aright-angled spherical triangle, 4 not being the
right angle : shew that if 4 = a, then ¢ and b are quadrants.

12. If & be the length of the arc drawn from C perpendicular
to 4B in any triangle, shew that

cos 8 = cosec ¢ (cos*a + cos®d — 2 cos a cos b cos c)’}.

13. ABC is a great circle of a sphere ; A4’, BB, CC’, are arcs
of great circles drawn at right angles to 4 BC and reckoned posi-
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tive when they lie on the same side of it : shew that the condition
of 4’, B, (' lying in a great circle is
tan 4 A’ sin BC + tan BB sin C4 + tan CC'sin AB=0.

14. Perpendiculars are drawn from the angles 4, B, C of any
triangle meeting the opposite sides at .D, E, F respectively : shew
that

tan BD tan CF tan AF = tan DC tan E4 tan FB.

15. Oz, Oy are two great circles of a sphere at right angles to
each other, P is any point in 4B another great circle. OC =p is
the arc perpendicular to 4B from O, making the angle COx=a
with Ox. PM, PN are arcs perpendicular to Ox, Oy respectively:
shew that if OM =« and ON =y,

cos a tan « + sin a tan y = tan p.

16. The position of a point on a sphere, with reference to two
great circles at right angles to each other as axes, is determined
by the portions 6, ¢ of these circles cut off by great circles through

the point, and through two points on the axes, each g from their

point of intersection: shew that if the three points (6, ¢), (¢, ¢'),
(9", ¢") lie on the same great circle
tan ¢ (tan 6’ — tan 6”) + tan ¢’ (tan 6” — tan 6)
+ tan ¢” (tan 6 — tan ¢') = 0.

17. If a point on a sphere be referred to two great circles at
right angles to each other as axes, by means of the portions of
these axes cut off by great circles drawn through the point and
two points on the axes each 90° from their intersection, shew that
the equation to a great circle is

tan 6 cot a + tan ¢ cot B = 1.

T

3

18. In a spherical triangle, if 4 = 75'-, B=_,and C:g, shew

that a+b+c=7-‘;.
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VI. SOLUTION OF OBLIQUE-ANGLED TRIANGLES.

78. The solution of oblique-angled triangles may be made in
some cases to depend immediately on the solution of right-angled
triangles; we will indicate these cases before considering the sub-
ject generally. '

(1) Suppose a triangle to have one of its given sides equal to
a quadrant. In this case the polar triangle has its corresponding
angle a right angle; the polar triangle can therefore be solved by
the rules of the preceding Chapter, and thus the elements of the
primitive triangle become known.

(2) Suppose among the given elements of a triangle there are
two equal sides or two equal angles. By drawing an arc from the
vertex to the middle point of the base, the triangle is divided into
two equal right-angled triangles; by the solution of one of these
right-angled triangles the required elements can be found.

(3) Suppose among the given elements of a triangle there
are two sides, one of which is the supplement of the other, or two
angles, one of which is the supplement of the other. Suppose, for
example, that b + ¢ =, or else that B+ C ==; produce B4 and
BC to meet at B’ (see the first figure to Art. 38); then the triangle
B'AC has two equal sides given, or else two equal angles given ;
and by the preceding case the solution of it can be made to depend
on the solution of a right-angled triangle.

79. We now proceed to the solution of oblique-angled tri-
angles in general. There will be six cases to consider.

80. Hawing given the three sides.

cosa —cos bcos ¢
sinbsinc
for cos B and cos C. Or if we wish to use formule suited to loga-

Here we have cos 4 = , and similar formulse
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rithms, we may take the formula for the sine, cosine, or tangent of
half an angle given in Art. 45. In selecting a formula, attention
should be paid to the remarks in Plane Trigonometry, Chap. XII.
towards the end.

81. Having given the three angles.

cos 4 + cos B cos C
sin B sin C

for cos b and cosc. Or if we wish to use formuls suited to loga-

rithms, we may take the formula for the sine, cosine, or tangent of

half a side given in Art. 49.

There is no ambiguity in the two preceding cases; the triangles
however may be impossible with the given elements.

Here we have cosa= , and similar formulee

82. Having given two sides and the included angle (a, C, b).

By Napier’s analogies
cos % (a—0)

tan%(A"-B):cos%(aﬁ b)

cot § C,

tan%(A—B):Zii%i—g:_—%coth;

these determine % (4 + B) and } (4 — B), and thence 4 and B.
singsinC |,

sind
this case, since ¢ is found from its sine, it may be uncertain which
of two values is to be given to it; the point may be sometimes
settled by observing that the greater side of ‘a triangle is opposite
to the greater angle. Or we may determine ¢ from equation (1) of
Art. 54, which is free from ambiguity.

Then ¢ may be found from the formula sinc¢=

Or we may determine ¢, without previously determining 4 and
B, from the formula cosc=cosacosb+sinasin bcosC; this is
free from ambiguity. This formula may be adapted to logarithms
thus :
cos ¢ = cos b (cos @ + sin @ tan b cos C);
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assume tanf=tanbcos C; then

cos ¢ =cos b (cos a + sin a tan 6) = oo b —g%:(:: 6) ;

this is adapted to logarithms.

c 4

D

Or we may treat this case conveniently by resolving the tri-
angle into the sum or difference of two right-angled triangles.
From A4 draw the arc 4D perpendicular to CB or OB produced ;
then, by Art. 62, tan CD =tan b cos 0, and this determines C'D,
and then DB is known. Again, by Art. 62,

cosb» .
cosCD’

this finds ¢. It is obvious that CD is what was denoted by 6 in
the former part of the Article.

cosc=cos 4D cos DB=cos DB

By Art. 62,
tan 4.D =tan C'sin CD, and tan AD =tan ABD sin DB;
thus tan 4BD sin DB =tan C sin 6,

where DB =a — 0 or § — a, according as D is on CB or CB pro-
duced, and 4BD is either B or the supplement of B; this for-
mula enables us to find B independently of 4.

Thus, in the present case, there is no real ambiguity, and the
triangle is always possible.
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83. Hawing given two angles and the included side (A, ¢, B).
By Napier’s analogies,
cos } (4— B)

tan%(a+b)=m tan} c,
n(e-b)= 0T W ke

these determine } (@ +b) and } (@ — b), and thence a and b.

Then C may be found from the formula sin ¢ =§Llsﬁf—;nf ; in
this case, since C' is found from its sine, it may be uncertain which
of two values is to be given to it; the point may be sometimes
settled by observing that the greater angle of a triangle is opposite
to the greater side. Or we may determine ¢' from equation (3) of

Art. 54, which is free from ambiguity.

Or we may determine ¢ without previously determining a and
b from the formula cos C'=~—cos 4 cos B +sin 4 sin Bcosc. This
formula may be adapted to logarithms, thus:

cos 0'=cos B(—cos 4 +sin 4 tan Bcosc);
assume cot ¢ =tan Bcosc; then
: . cos Bsin (4 - ¢)

cos C'=cos B(—cos 4 +cotpsind)= si—n¢—)’
this is adapted to logarithms,

Or we may treat this case conveniently by resolving the tri-
angle into the sum or difference of two right-angled triangles.
From A draw the arc 4D perpendicular to CB (see the right-
hand figure of Art. 82); then, by Art. 62, cos ¢c=cot Bcot DAB,
and this determines DAB, and then C4D is known. Again,
by Art. 62,

cos 4D sin CAD = cos C, and cos AD sin BAD =cos B;
cos ¢ cos B
in CAD ~ sin BAD’

It is obvious that DAB is what was denoted by ¢ in the former
part of the Article.
T. 8. T. E

this ﬁnds C.

therefore
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By Art. 62,
tan AD =tan AC cos CAD, and tan 4D =tan ABcos BAD ;
thus tan b cos CAD =tan ccos ¢,

where CAD = A — ¢ ; this formula enables us to find b indepen-
dently of a.

Similarly we may proceed when the perpendicular 4D falls on
OB produced ; (see the left-hand figure of Art. 82).

Thus, in the present case, there is no real ambiguity ; more-
over the triangle is always possible.

84, Having given two sides and the angle opposite one of them
(a, b, A).
The angle B may be found from the formula
sin B = s_%n_b sin 4
sina

and then C and ¢ may be found from Napier’s analogies,

mn§0=§§gg:20M;(A+B%
os} (4 +B)
tan ¢ = cs%(A B)ta $ (e +0).

In thls case, since B is found from its sine, there will sometimes
be two solutions ; and sometimes there will be no solution at all,
namely, when the value found for sin B is greater than unity. We
will presently return to this point. (See Art. 86.)

We may also determine C' and ¢ independently of B by for-
mule adapted to logarithms. For, by Art. 44,
cot 4

cot @ sin b =cos b cos ' +sin C cot 4 =cos b (cosC’+m sin C);
cot 4
assume tan ¢=m ; thus

cosb cos (C—¢) .

cot @ sin b = cos b (cos C + tan ¢ sin C) = s 5

therefore cos (C—¢)=cospcotatanbd;
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from this equation C' — ¢ is to be found, and then . The ambi-
guity still exists; for if the last equation leads to ('—¢p=aq, it
will be satisfied also by ¢ —C'=a ; so that we have two admissible
values for C, if ¢ + a is less than =, and ¢ — a is positive.
And -

cosa=cosbcosc+sinbsinccos 4 =cosb (cosc+sinctanbcos 4);
assume tan 6 = tan b cos 4 ; thus

cos @ = o8 b (cos ¢ + sin ¢ tan 6) =M;

cos ¢

cosacos b

therefore cos (c—0) = wosd 5

from this equation ¢ — § is to be found, and then ¢; and there may
be an ambiguity as before. ,

Or we may treat this case conveniently by resolving the tri-
angle into the sum or difference of two right-angled triangles.

(4

E
B D B’

Let Cd = b, and let CAE =the given angle 4 ; from C draw
CD perpendicular to 4, and let CB and (B'=a; thus the figure
shews that there may be two triangles which have the given ele-
ments. Then, by Art, 62, cos b=cot 4 cot ACD ; this finds 4CD.
Again, by Art. 62,

tan CD =tan AC cos ACD,

and tan CD = tan OB cos BCD, or tan CB cos B'CD,
therefore tan AC cos ACD =tan CBcos BC'D, or tan CB' cos B'CD;
this finds BCD or B'CD.

It is obvious that AC D is what was denoted by ¢ in the former

part of the Article,
E2
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Also, by Art. 62, tan AD =tan AC cos 4; this finds AD. Then
cos AC =cos CD cos 4D,
cos C'B = cos C'D cos BD,
or cos CB'=cosCDcos BD;

theref cos AC cosCB  cosCB
eretore cosdD  cosBD * cos BD

this finds BD or B'D.

It is obvious that 4D is what was denoted by 6 in the former
part of the Article. -

85, Hawing given two angles and the side opposite one of them
(A, B, a).

This case is analogous to that immediately preceding, and
gives rise to the same ambiguities. The side b may be found from
the formula

and then C and ¢ may be found from Napier’s analogies,

mgo=%§3mgu +B),
tan%c=§o—o«—:§8t§;tan§(a+b).

‘We may also determine C and ¢ independently of b by formulee
adapted to logarithms. For
cosd=—cosBcosC+sin BsinCcosa
= cos B (- cos €' + tan Bsin C cos a),

assume cot ¢ =tan Bcosa; thus

cosA:cosB(—eosC+sinC’cot¢)=%ff_—?_); i
cosd sin¢g

therefore gin (0 - ¢) = wosB ’
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from this equation C'— ¢ is to be found and then C. Since €' - ¢
is found from its sine there may be an ambiguity. Again, by
Art. 44,

cot 4 sin B = cot @ sin ¢ — cos ¢ cos B=cosB(—-cosc +%%nc) )
ot

assume cot 6 = ; then
cos B

cot 4 sinB:cosB(—cosc+sinccot0)=EOSB+§6_0);

therefore sin (¢ — 0) = cot 4 tan Bsin 6

from this equation ¢ — 6 is to be found, and then ¢. Since ¢ -6 is
found from its sine there may be an ambiguity. As before, it may
be shewn that these results agree with those obtained by resolving
the triangle into two right-angled triangles ; for if in the triangle
ACB' the arc CD be drawn perpendicular to AB', then B'CD
will = ¢, and B'D = 6.

86. We now return to the consideration of the ambiguity
which may occur in the case of Art. 84, when two sides are given
and the angle opposite one of them. The discussion is somewhat
tedious from its length, but presents no difficulty.

Before considering the problem generally, we will take the
particular case in which @ =b; then 4 must=258. The first and
third of Napier’s analogies give

cot 4 C' = tan 4 cos a, tanic=tanacos4;

now cot $C and tan } ¢ must both be positive, so that 4 and ¢ must
be of the same affection. Hence, when a =5, there will be no
solution at all, unless 4 and a are of the same affection, and then
there will be only one solution; except when 4 and @ are both
right angles, and then cot}C and tan }c are indeterminate, and
there is an infinite number of solutions.

‘We now proceed to the general discussion.

If sin b sin 4 be greater than sin a, there is no triangle which
satisfies the given conditions; if sinbsin 4 is nmot greater than
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. _— in bsin 4 .
sin @, the equation sin B = smsmszl furnishes two values of B,

which we will denote by 8 and §, so that §'=m—f; we will sup-
pose that 8 is the one which is not greater than the other.

Now, in order that these values of B may be admissible, it is
necessary and sufficient that the values of cot 4C and of tanic
should both be positive, that is, 4 — B and & — b must have the
same sign by the second and fourth of Napier’s analogies. We
have therefore to compare the sign of 4 — 3 and the sign of 4 — 8
with that of a —b.

We will suppose that 4 is less than a right angle, and separate
the corresponding discussion into three cases.

I. Letd be less than ’2-'

(1) Let a be less than b; the formula sin B =§;§—Z sin 4 makes

B greater than 4, and & fortior: B’ greater than 4. Hence there
are two solutions,

(2) Let a be equal to b; then there is one solution, as pre-
viously shewn.

(3) Let o be greater than b; we may have then a + b less than
m or equal to w or greater than . If a+b is less than m, then
sin @ is greater than sind; thus B is less than 4 and therefore
admissible, and B3’ is greater than 4 and inadmissible. Hence there
is one solution. If a+ b is equal to m, then B is equal to 4, and
B’ greater than 4, and both are inadmissible. Hence there is no
solution. If @+ b is greater than =, then sina is less than sin b,
and B and B are both greater than 4, and both inadmissible.
Hence there is no solution.

II. Let b be equal to’-2'.

(1) Let abe less than b; then B and 8 are both greater than
A, and both admissible. Hence there are two solutions.

(2) Let a be equal to b; then there is no solution, as pre-
viously shewn.
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(3) Let a be greater than b; then sin a is less than sin , and
B and B are both greater than 4, and madmmsnble Hence there
is no solution.

IIL. Let b be greater than—;f

(1) Let @ be less than b; we may have then a + b less than
m or equal to = or greater than =. If @+ b is less than , then
sina is less than sin b, and B8 and B’ are both greater than 4 and
both admissible. Hence there are two solutions. If a +b is equal
to m, then B is equal to 4 and inadmissible, and B’ is greater
than 4 and inadmissible. Hence there is one solution. If @+
is greater than , then sina is greater than sinb; B is less
than 4 and admissible, and 8’ is greater than 4 and admissible.
Hence there is one solution.

(2) Let a be equal to b; then there is no solutlon, as pre-
viously shewn,

(3) Let a be greater than b; then sina is less than sind,
and B and B are both greater than 4 and both inadmissible.
Hence there is no solution.

‘We have then the following results when 4 s less than a
right angle. ’

B e e two solutions,
L L B one solution,
2 Ja>band a+b<m .oviieiiiinn... ......one solution,
la>band a+db=mor>m.......ccoeninnin.il no solution.
b { B e two solutions,
T2 la=bora>b..... cooiieiiiiiieiiee no solution.
a<band a+b<m .oeoiiiiiiiiiiii, two solutions,
b>72: a<banda+b=wmor>m ....... ererene, one solution,

B=BOP>D oo no solution.



56 SOLUTION OF OBLIQUE-ANGLED TRIANGLES,

It must be remembered, however, that in the cases in which
two solutions are indicated, there will be no solution at all if
sin @ be less than sin b sin 4.

In the same manner the cases in which 4 is equal to a right
angle or greater than a right angle may be discussed, and the
following results obtained.

When A is equal to a right angle,
a<bora=>b .........cooenunin. ceer eeeeeins no solution,
b<s <a>band a +0<m covens civiiiiiiea one solution,
a>banda+b=mror>n7 .cooovinviininnn.n. no solution.
BT {a<b ora>b .....o.cociiin i, no solution,
2 \a=b i, infinite number of solutions.
- a<band @ +b0>7 cceiiiins i one solution,
b>-§ a<band a+b==wor<w ........... everens no solution,
G=B0ra>b .....coovvviiiiiiiiiiiiiiiis no solution.

When A 8 greater than a right angle,

B<DOr @ =b v no solution,
b<z a>band a+b=w0r <7 .oriiriinininnnnnn, one solution,
a>band @ +b0>m oo two solutions.
b {a<b ora="b ........... et ea e no solution,
2 a>0 o two solutions.
a<band @ +b>m coouveeniiiiiiiii one solution,
b>T a<banda+b=mor<m ....co.. iieinnn. .no solution,
> .
2 la=b .......... O one solution,
A>D two solutions.

As before in the cases in which two solutions are indicated,
there will be no solution at all if sin @ be less than sin b sin 4.

It will be seen from the above investigations that if a lies
between b and r — b, there will be one solution ; if a does not lie
between b and 7 —b either there are two solutions or there is
no solution ; this enunciation is not meant to include the cases in
which a=b or=7-2b.
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87. The results of the preceding Article may be illustrated by
a figure.

Let ADA'E be a great circle; suppose P4 and PA’ the
projections on the plane of this circle of arcs which are each
equal to b and inclined at an angle 4 to 4D4’; let PD and
PE be the projections of the least and greatest distances of P
from the great circle (see Art. 59). Thus the figure supposes

4 and b each lessthan’—;.

If a be less than the arc which is represented by PD there is
no triangle ; if @ be between PD and P4 in magnitude, there are
two triangles, since B will fall on 4D4’, and we have two triangles
BPA and BPA'; if a be between PA and PH there will be only
one triangle, as B will fall on A’H or AH', and the triangle will be
either 4 PB with B between 4’ and H, or else A’PB with B be-
tween 4 and H'; but these two triangles are symmetrically equal
(Art. 57); if @ be greater than PH there will be no triangle.
The figure will easily serve for all the cases; thus if 4 is greater
than 12_r, we can suppose PAE and PA'E to be equal to 4 ; if

T

b is greater than 3 we can take PH and PH' to represent b.
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88. The ambiguities which occur in the last case in the solu-
tion of oblique-angled triangles (Art. 85) may be discussed in the
same manner as those in Art. 86; or, by means of the polar
triangle, the last case may be deduced from that of Art. 86.

. /
S 7:’4»“,_.,,(,4 g XiV- e prrd
EXAMPLES,

1. The sides of a triangle are '105°, 90°, and 75° respectively :
find the sines of all the angles.

2. Shew that tan } 4 tan § B= “msf:; %), Solve a trisngle

when a side, an adjacent angle, and the sum of the other two
sides are given.

3. Solve a triangle having given a side, an adjacent angle,
and the sum of the other two angles.

4. A triangle has the sum of two sides equal to a semicir-
cumference: find the arc joining the vertex with the middle of
the base,

5. If a, b, c are known, ¢ being a guadrant, determine the
angles: shew also that if & be the perpendicular on ¢ from the
opposite angle, cos® 8 = cos’a + cos® b.

6. If one side of a spherical triangle be divided into four
equal parts, and 6, 6,, 6,, 6, be the angles subtended at the oppo-
site angle by the parts taken in order, shew that

sin (0, + 6,) sin 6, sin 6, =sin (6, + 6,) sin 6, sin 6,
7. In a spherical triangle if 4 =B = 2(, shew that

8 sin (a + %) sin’% cos% =sin’a.
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8. In a spherical triangle if 4 = B = 2C, shew that

c
cos 5

83in"g (coss+sin—) —2=1.
2 : 2/ cosa

9. If the equal sides of an isosceles triangle ABC be bisected
by an arc DE, and BC be the base, shew that

in2F _ } gin B 10 4C
g ~Eimogseeg.

10. Ifc, ¢, be the two values of the third side when 4, a, b
are given and the triangle is ambiguous, shew that
G

tanEtan;i‘:tan%(b—a)tan%(b+w).

VII. CIRCUMSCRIBED AND INSCRIBED CIRCLES.

89. 7o find the angular radius of the small circle insertbed
in a given triangle.
A

VA
yalay)

Let ABC be the triangle ; bisect the angles 4 and B by arcs
meeting at P; from P draw PD, PE, PF perpendicular to the
sides. Then it may be shewn that PD, PE, PF are all equal;
also that AE = AF, BF = BD, CD=CE. Hence BC + AF = half
the sum of the sides=s; therefore AF=8—a. Let PF=r.

Now tan PF=tan PAF sin AF (Art. 62);

thus tanr:tan% Sin (8—@) voevvveniiiiiii 1)
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The value of tan » may be expressed in various forms ; thus
from Art. 45, we obtain

tan 4 _ \/{sm (8— b) sin (s — c)};
2 sin gsin (8—a) -
substitute this value in (1), thus

tanr=\/{sm(8 —a) 8in (s — b)sm(s—c)) (Art 16)...(2).

sin 8 f sins

Again
sin(e—a):si:n {3 (b+c)—4%a}

=gin} (b+c)cosfa-cos} (b+c)sinia

sm;-acos;-a{

sngd (0} (B-0)=cos} (B+C)} (Art. 54)

smasméBsm%C

therefore from (1) tan »= sin i(g—z%%—c D@ .o ®3);

“hence, by Art. 51,

_ fi=cos Scos (S - 4) cos (S~ B) cos (§ - )}
2cos} Acos Beosi O

N
= Fem Ao Ban 0 (4).

tan

It may be shewn by common trigonometrical formule that
4 cos } A cos § Bcos § C=cosS+cos (S—4)+cos (S—B) + cos (S—C);

hence we have from (4)

cotr = ﬁ{cosS+cos(S-A)+cos(S-B)+cos(S—0)} ...... (5).
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90." To find the angular radius of the small circle described
80 .as to touch one side of a given triangle, and the other sides
produced.

c

Let ABC be the triangle ; and suppose we require the radius
of the small circle which touches B(C, and AB and AC produced.
Produce 4B and AC to meet at A4’; then we require the radius of
the small circle inscribed in A’BC, and the sides of 4'BC are a,
x—b, w— ¢ respectively. Hence if r, be the required radius, and
s denote as usual 4 (@ + b + ¢), we have from Art. 89,

From this result we may derive other equivalent forms as in
the preceding Article; or we may make use of those forms im-
mediately, observing that the angles of the triangle 4’BC are 4,
w—B, m—C respectively. Hence s being 4 (a+b+c¢) and S
being { (4 + B + C) we shall obtain

tnmrl:\/fsin.«nsin(s—b)sxin(s—c)}= n

L sin (8 — a) sin(s—a)"'(z)’
cos%Boos%C’

tan'rl— —C‘O—S-—%_A__ ................................. (3),

ta: J{—cos S cos (8§ — 4) cos (8 — B) cos (- C)}

nh= Zcosf Asin} Bsing O

= : N 4
= TeosJAsnFBmm g0 4),
cot 7, = 2N{ cos S—co8 (S—4) + cos (S— B)+cos(S—C)}...(5).
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These results may also be found independently by bisecting
two of the angles of the triangle 4'BC, so as to determine the
pole of the small circle, and proceeding as in Art. 89.

91. A circle which touches one side of a triangle and the
other sides produced is called an escribed circle; thus there are
three escribed circles belonging to a given triangle. We may
denote the radii of the escribed circles which touch C4 and 4B
respectively by », and 7, and values of tanr, and tan, may
be found from what has been already given with respect to
tan , by appropriate changes in the letters which denote the
sides and angles.

In the preceding Article a triangle A’BC was formed by pro-
ducing 4B and AC to meet again at 4’; similarly another triangle
may be formed by producing BC and B4 to meet again, and
another by producing C4 and CB to meet again. The original
triangle ABC and the three formed from it have been called
associated triangles, ABC being the fundamental triangle. Thus
the inscribed and escribed circles of a given triangle are the same
as the circles inscribed in the system of associated triangles of
which the given triangle is the fundamental triangle.

92. To find the angular radius of the small circle described
about a given triangle.

Let ABC be the given triangle ; bisect the sides OB, C4 at
D and F respectively, and draw from D and £ arcs at right angles
to CB and C4 respectively, and let P be the intersection of these
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arcs. Then P will be the pole of the small circle described about
ABC. TFor draw PA, PB, PC; then from the right-angled
triangles PCD and PBD it follows that PB=P(C; and from
the right-angled triangles PCE and PAZE it follows that PA = PC;
hence PA=PB=PC. Also the angle PAB =the angle PBA,
the angle PBC = the angle PCB, and the angle PC4 =the angle
PAC; therefore PCB+ A=%(A+B+C), and PCB=8-A.

Let PC=R.

Now tan CD = tan C P cos PCD, (Art. 62,)
thus tan { a = tan R cos (§ - 4),
_ tan}a
therefore tan R = m ........................ (1)

The value of tan R may be expressed in various forms; thus

if we substitute for tan g from Art. 49, we obtain

—cos S cos §
tanR:\/{cos(S—A)cos(S-B) cos(b‘—C)}=_ e @)
Again o8 (S—4) =cos {} (B +C) -} 4}

=cos}(B+C)cos} A+ sin} (B+C)sin}d

sin 34 cos 34
- _%)s_g%_ {cos } (6+c) +cos § (b — )}, (Art. 54,)
sin 4
=08 %acos tbcosic;
therefore from (1)
tan R = s (3).

gin 4 cos} b cos 4¢
Substitute in the last expression the value of sin 4 from

Art. 46 ; thus

2 sin $asin 46 sin §¢

tan £ = /{sin 8 sin(s — a) sin (s — b) sin (s — c)}

_ 2sin }asin $bsin }¢
n
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It may be shewn, by common trigonometrical formuls, that
4sin tasin 3bsin §c=sin (8 — a) + sin (8 —b) + sin (8—c) —sins;

hence we have from (4)

tan B = {sin (s-a) + sin (6-8) + i (s-0)-sine}.......... ®).

93. To find the angular radii of the small circles described
round the triangles associated with a given fundamental triangle.

Let R, denote the radius of the circle described round the
triangle formed by producing AB and AC to meet again at 4';
similarly let B, and R, denote the radii of the circles described
round the other two triangles which are similarly formed. Then
we may deduce expressions for tan B, tan B, and tan E, from
those found in Art. 92 for tan B. The sides of the triangle 4'BC
are a, m—b, m —c, and its angles are 4, x— B, =~ C; hence if
8=3(a+b+c) and S=4(4+B+C) we shall obtain from
Art. 92

tan R, ='ff0§g ...................................................... ),
ton £, = {- Py co?:ﬁ;)‘{ = e 0)} -4,
mR,={ﬁT“% R ——— e (3)
ton B, = e @),
ton B, = 2ln {sins—sin(a- a)+sin (e—b)+sin(s—c)} ............ (5).

Similarly we may find expressions for tan B, and tan &,

94. Many examples may be proposed involving properties of
the circles inscribed in and described about the associated triangles.
We will give one that will be of use hereafter.
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To prove that

(oot'r+tanR)’=4:‘, (sin @ +8in b +sinc)’ - 1.

‘We have
4n’=1-cos’a—cos’b—cos’c-i;2cosacosbcosc;
therefore
(sin @ + 8in b + sin ¢)* -
=2 (l +sinasinb+sinbsinc+sincsina-cosacosbcosc).
Alsoeotr+tanR=§1;‘{sins+sin (s—a)+sin(s—b)+sin.(s—c)};

and by squaring both members of this equation the required
result will be obtained. For it may be shewn by reduction that

sin’ g + sin’ (s —a) + 8in® (s — b) +sin’® (8—¢) =2 — 2 cos @ cos b cos ¢,
and
sin s8in (3 —a) +sin 8 8in (s — b)+smssm(s —0) .
_+8in (8- @) sin (8~ d) + sin (s— b) sin (s —¢) +sin (s — c)sm(s a)
=gin @ sin b + 8in b sin ¢ + sin ¢ sin a.

Similarly we may prove that

(cot 7, —tanR)’:;%,(sinb+sinc—sin a)’ -1,

95. 1In the figure to Art. 89, suppose DP produced through
P to a point A’ such that DA’ is a quadrant, then 4’is a pole of

BC, and PA'= g— r; similarly, suppose P produced through P

to a point B’ such that EB' is a quadrant, and FP produced
through P to a point ¢’ such that FC’ is a quadrant. Then
A'B(" is the polar triangle of 4BC, and PA'=PB = PC' =2 1.

Thus P is the pole of the small circle described round the polar
triangle, and the angular radius of the small circle described round
the polar triangle is the complement of the angular radius of the

T. 8. T. F
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small circle inscribed in the primitive triangle. And in like
manner the point which is the pole of the small circle inscribed in
the polar ‘triangle is also the pole of the small circle described
round the primitive triangle, and the angular radii of the two
circles are complementary. '

EXAMPLES, .
In the following examples the notation of the Chaptér is
retained.
Shew that in any triangle the following relations hold con-
tained in Examples 1 to 7:
1. Tan~, tanr, tan 7, =tan s sins.
2. Tan R +cot r=tan R, + cotr, =tan B, + cot 7,
=tan R, + cot r,= 4 (cot = + cot», + cot r, + cot 7).
3. Tan®R+tan’ R, +tan’ R, +tan’ B,
' ' = cot® r + cot’ , + cot’ r, + cot’ r,,
Tan 7, + tan r, + tanir,—tanr

£ cot 7, + cot 7, + cot r, — cot r =3 (1 +cosa+c0sb+cosc).
5.  Cosec’r=cot (s—a)cot (8—b) +cot(s—b) cot (s—c) + cot (s-c) (s-a).
6. Coéec'rl=cot(84 b) cot (8—c)—cotacot (s—b)—cotacot (s~ c).
7. Tan R, tan R tan B = tan Rsec’S.

- 8. . Shew that in an equilateral triangle tan R = 2 tan 7.

9. If ABC be an equilateral spherical triangle, P the pole of
the circle circumscribing it, @ any point on the sphere, shew that

cos QA + cos @B + cos QC = 3 cos PA cos PQ.

10. If three small circles be inscribed in a spherical triangle
having each of its angles 120° so that each touches the other two
as well as two sides of the triangle, shew that the radius of each
of the small circles = 30% and that the centres of the three small
circles coincide with the angular points of the polar triangle.
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VIII. AREA OF A SPHERICAL TRIANGLE.
SPHERICAL EXCESS.

96, To find the area of a Lune.

A Lune is that portion of the surface of a sphere which is
comprised between two great semicircles,

A

B

Let ACBDA, ADBEA be two lunes having equal angles at 4 ;
then one of these lunes may be supposed placed on the other so as
to coincide exactly with it; thus lunes having equal angles are
equal. Then by a process similar to that used in the first propo-
sition of the Sixth Book of Euclid it may be shewn that lunes
are proportional to their angles. Hence since the whole surface of
2 sphere may be considered as a lune with an angle equal to four
right angles, we have for a lune with an angle of which the
circular measure is 4,

areaoflune 4
surface of sphere 2’

Suppose » the radius of the sphere, then the surface is 4xr®

(Integral Calewlus, Chap. viL); thus

area of lune = ;; 4 = 247°,
F2
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97.  To find the area of a Spherical Triangle.

Let ABC be a spherical triangle ; produce the arcs which form
its sides until they meet again two and two, which will happen
when each has become equal to the semi-circumference. The
triangle 4BC now forms a part of three lunes, namely, ABDCA,
BCEAB, and CAFBC. Now the triangles CDE and AFB are
subtended by vertically opposite solid angles at O, and we will
asswme that their areas are equal ; therefore the lune CAFBC is
equal to the sum of the two triangles ABC and CDE. Hence if
4, B, C denote the circular measures of the angles’of the triangle,
we have

triangle A BC + BGDC =lune ABDCA = 247,
triangle ABC + AHEC =1lune BCEAB = 2B,
 triangle ABC + triangle CDE = lune CAFBC = 207*;
hence, by addition,
twice triangle 4 BC + surface of hemisphere =2 (d + B+ () r*;
therefore " triangle ABC=(4 + B+ C—=) 7"
The expression 4+ B+C - is called the spherical excess of
the triangle ; and since

(A+ B4 Cmmypr=ArBrComy s

rr
2 ’
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* the result obtained may be thus enunciated : the area of a spherical
triangle i the same fraction of half the surface of the sphere as the
spherical excess is of four right angles,

98. We have assumed, as is usually done, that the areas of
the triangles CDE and AFB in the preceding Article are equal.
The triangles are, however, not absolutely equal, but symmetri-
cally equal (Art. 57), so that one cannot be made to coincide
with the other by superposition, It is, however, easy to decom-
pose two such triangles into pieces which admit of superposition,
and thus to prove that their areas are equal. For describe a
small circle round each, then the angular radii of these circles
will be equal by Art. 92. If the pole of the circumseribing circle
falls inside each triangle, then each triangle is the sum of three
isosceles triangles, and if the pole falls outside each triangle, then
each triangle is the excess of two isosceles triangles over a third ;
and in each case the isosceles triangles of one set are respectively
absolutely equal to the corresponding isosceles triangles of the
other set.

99. To find the area of a spherical polygon.

Let » be the number of sides of the polygon, 3 the sum of all
its angles. Take any point within the polygon and join it with
all the angular points ; thus the figure is divided into » triangles.
Hence, by Art. 97,

area of polygon = (sum of the angles of the triangles — nar) 2%,

and the sum of the angles of the triangles is equal to 3 together
with the four right angles which are formed round the common
vertex ; therefore

area of polygon = {2 -(n-2) w} .

This expression is true even when the polygon has some of its
angles greater than two right angles, provided it can be decom-
posed into triangles, of which each of the angles is less than two
right angles.
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100. 'We shall now give some expressions for certain trigono-
metrical functions of the spherical excess of a triangle. 'We denote
the spherical excess by £, so.that £=A4 + B+C —=. -

101. Cagnoli’'s Theorem. To'shew that

Ee f{sin ssin (s — a) sin (s —b) sin (8- c)}
2 cosa cos $bcos 3¢

Sin J £ =sin § (4 + B+ Cmm)=sin {3 (4 + B)— } ()}
" =sin} (4+B)sin} C- cos} (4 +B)cos }C

_sin}Ccos}C
. cos}e

sin §

{cos} (a=b)—cos} (a+B)}, (Art. 54),

_sin Csin Jasin }b
cos 3¢

sgjozs%lj L4 sinfsih B J{sinssin (3—a)sin (s—b) sin (8- ¢)}

.J{smssm (8 — ) sin (8= b) sin (s — c)}
2cos $a cos 3bcos 3¢

102. Lhuilier's Theorem. To shew that
tan 18 = /{tan fotan § (5= a) tan } (s—B) tan § (s— 0}

sin}(4d+B+C-m)
cos}(d+B+C—m)

_sin} (4 +B)~sin} (x -
“cos } (4 +B)+cos} (m— C)’
_sin} (4+B)—cos}C
“cos (4 +B)+sin 3 C

B) - 830
ﬁ.:ig&»iﬁ:ii %ié" (Art. 54).

Hence, by Art. 45, we obtain

in}(6+a=d)sin}(c+b-a) in s sin (s—c)

P“"iE=§’o';§§a+'Z+c)il’li(Z+b_‘i> {sm“Z?fZ‘)“éiJ_b)}

= J{tan}stan } (s—a) tan } (s—b) tan } (s—c)}.

Tan}Z =

( Plane Trig. Art. 84),
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103. We may obtain many other formule involving trigo-
nometrical functions of the spherical excess. Thus, for example,

cos 4 £ =cos {} (4 + B)~} (v - C)}
=cos} (4 +B)sin}C +sin } (4 + B)cos }C

= {ops 3 (a+b)sin’} C+cos } (a—b) &s’éC}éeé}c, (Art. 54),

- {cos%aoos%b(éoé’ 30 +5in*3C)
+sin4asin b (cos’ %O’ sm’%C')} sec %c \
= {cos }a cos 4b + sin }a sin %bcosC} sec c........(1).

Again, it was shewn in Art. 101, that
sin 3 £ =sin Csin fasin §bsecc;.

sin $asin }bsin 0 | 9
cos%acos%b-i—sm%asm%bcos(}' ~(2).

therefore tan$Z =

Again, we have from above
cos } £ = {cos %a cos 3b +sin }a sin ;-bcoé()'}'sec:}c'

(l+oosa)(l + cos b) + sin a sin b cos C
4 cos }acos b cos }c

_14cosa+cosb+cosc  cos %a+cos’§b+oos’;~c— -
~ 4 cos 3a cos 3b cos e~ T 2 cos}a cos%b cos 3¢

In (3) put 1 - 2sin’} & for cos 3 £ ; thus

1+2costacos}bcos}c—cos’fa— cos'%b cos’%c
4cos facosybcosfec

sin® 1 =

By ordinary development we can shew that the numerator of
the above fraction is equal to

" 4gin }ssing (:—"a) sin } (s—b)sin} (s —¢);
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therefore

EAEY BT LS S %Z)c;":;b(;; ’;)o“_mi(’:_”). ...... ®).

Similarly
Oos,}E___oos}scos%(s—a)eos%(s—b)eos%(s—c)

cos $a cos b cos §c

Hence by division we obtain Lhuilier’s Theorem.

Again,
i’%‘g—mﬂmcm@z-mo
=sinCeos§acos%b+sin4}asin %beosC_oosC’ by (2),

sin $asin 3bsin C
=cot facot 1b;
therefore, by Art. 101,

sin (s-a a)sm(s—b)sm(e c)}
2sin}asin 35 cos §¢

sin (C_%E)=~/{sins

Again, cos(C—3}E)=cosCcos}Z+sinCsin}Z

_ (1 +cosa)(1 +cosb) cos C'+sinasinbcos’ C

4cos Ja cos Jboos Jo sinCsin}asinibsecic

_(1+cosa)(1+cosb) cos O +sinasinb
4 cos $acos b cos i

={cos Qam%b cos C + 8in 4 asin %b} sec }c

_sinasind cos € + 4 sin’ }asin’ 1
4sin jasin$bcos fe

cos ¢ —cos @ cos d + (1 —cosa) (1 —cos b)
4 sin $asin b cos ¢

1+cosc—cosa—cosd cos®}c—cos’ya—cos'$b+1 (©)

......

~ZsinjasinJbcosjc  2sinlasinjbcosic
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From this result we can.deduce. two other results, in the
same manner as (4) and (5) were deduced from (3); or we may
observe that the right-hand member of (6) can be obtained from'
the right-hand member of (3) by writing v—a and =-b for
a and b respectively, and thus we may deduce the results more
easily. 'We shall have then

cos4ssin} (s—a)sin g (s—b)cos} (s— c)

sin®(} O B)= sin}asin}bcosic
cos*(}C -3 B)= sin } s cos i; f:é:)solzsfb(:os ;)csm%(g c)
EXAMPLES,

1. Find the angles and sides of an equilateral triangle whose
area is one-fourth of that of the sphere on which it is deseribed.

2. Find the surface of an equilateral and equiangular sphe-
rical polygon of » sides, and determine the value of each of the
angles when the surface equals half the surface of the sphere.

3. Ifa=b=;-',andc=3,shewthatE:cos-'%.
4. If the angle C of a spherical triangle be a right a.ngle,
shew that
sin} E=sin}asin}bseclc, cos} E=cos}acos}bsecic.
5. If the angle C be a right angle, shew that
sin®ec E sin’ @ +sin’b

— ¢ =

cosc cosa  cosbh’

sin’aq
Zcosa’

6. Ifa= bandC-—,shew that tan % = -

7. The sum of the angles in a right-angled triangle is less
than four right angles.

8. Draw through a given point in the side of a spherical
triangle an arc of a great circle cutting off a given part of the
triangle. :
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9. In a spherical triangle if oosC—~tan2tanb then
C=4+B.

10. If the angles of a spherical triangle be together equal to
tour right angles

cos’ta+cos’fb+cos’ic=1.

11. If r, 7, 7, be the radii of three small circles of a
sphere of radius » which touch one another at P, @, R, and
4, B, C be the angles of the spherical triangle formed by joining
their centres,

area PQR = (4 cosr, + Beosr, + C cos 7, —m) 7.
12. Shew that
fsin} Esin (4 -;-E)sin(B-}E)sin(C—}E)}}

sin & = SsnjdsmiBem}0

13. Given two sides of a sphenca.l triangle, determine when
the area is a maximum. :

14. TFind the area of a regular polygon of a given number of
sides formed by arcs of great circles on the surface of a sphere;
and hence deduce that, if a be the angular radius of a small
circle, its area is to that of the whole surface of the sphene as
versin a is to 2.

16. A4, B, C are the angular points of a spherical triangle ;
A', B, ¢’ are the middle points of the respectively opposite sides.
If £ be the spherical excess of the triangle, shew that

cos A'B" cos B'C’ cos C'A’

cos} B = cosjc  cosja  cosgb

16. If one of the arcs of great circles which join the middle
points of the sides of a spherical triangle be a quadrant, shew thnt
the other two are also quadrants,



IX. ON CERTAIN APPROXIMATE FORMULA.

104, We shall now investigate certain approximate formuls
which are often useful in calculating spherical triangles when the
radius of the sphere is large compared with the lengths of the
sides of the triangles.

105. Given two sides and the included amgle of a spherical
triangle, to find the angle between the chords of these sides.

Let AB, AC be the two sides of the triangle ABC; let O be
the centre of the sphere. Describe a sphere round 4 as a centre,
and suppose it to meet 40, 4B, AC at D, E, F respectively.
Then the angle ZDF is the inclination of the planes OAB, 0AC,
and is therefore equal to 4. From the spherical triangle DEF

. co8 EF=cos DE cos DF +sin DE sin DF cos 4 ;
and " DE=}(m—c), DF=}(r-b);
therefore cos EF =sin } bsin} ¢+ cos 4 b cos § ¢ cos 4.

If the sides of the triangle are small compared with the
radius of the sphere, ZF will not differ much from 4 ; suppose
EF=A- 6, then approximately

cos EF=cos 4 +6sin 4 ;
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and sin}bsingc=sin"} (b +c)-sin*}(b-c),
costbeos}c=cos®}(b+c)—sin*}(b-c);

therefore '

cos A+0@sind=sin"} (b+c)-sin*} (b-c)

. {1 Zsin®} (b+ ) —sin® § (b —c)}cosA;
therefore
0sin 4 = (1 — cos 4) sin* J‘»(b +¢) = (1 +cos 4)sin® } (b -¢),
therefore 6 =tan} 4 sm’}(b+c)-cot%A sin 1- (b-¢).

This gives the circular measure of 6; the number of seconds in
the angle is found by dividing the circular measure by the circular
measure of one second, or approximately by the sine of one second
(Plame Trigonometry, Art. 123). If the lengths of the arcs corre-
sponding to @ and b respectively be a and B, and r the radius of the

sphere, we have ;and g as the circular measures of a and &

respectively ; and the lengths of the sides of the chordal triangle .

B

“are 2rsin o and 2r sm respectlvely Thus when the sides of

2r
the spherical triangle and the radius of the sphere are known, we
can calculate the angles and sides of the chordal triangle.

106. Legendre’s Theorem. If the sides of a spherical triangle
be small compared with the radius of the sphere, then each angle
of the spherical triangle exceeds by ome third of the spherical ex-
cess the corresponding angle of the plane triangle, the sides of
which are of the same length as the arcs of the spherical triangle.

Let 4, B, C be the angles of the spherical triangle; a, b, ¢
the sides ;  the radius of the sphere; a, 8, y the lengths of the

B 7

arcs which form the sides, so that; are the circular

measures of a, b, ¢ respectively. Then
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cosa—cosbcosc

cos 4 = - - 5
sinbsin ¢
1— a’ at
now . cosa= oA T
. a°
sing=—- — —+.

Similar expressions hold for cos b and sin b, and for cos ¢
and sin ¢ respectively. Hence, if we neglect powers of the cir-
cular measure above the fourth we have

- s+ g (l 447)(1 o 24r‘)
T3 T)(l - %)
g 47—+ g B =y )
| ?(1 B’w’)

cosd =

"/37{/3‘!+7 e +1¢),’.s(a Y Y _epn.ys)}{ .3’6+Z’

B4y +a‘+B‘+7‘—2a’,3’— 2B°y* - 2ya*
28y TV ‘
Now let 4', B, C’ be the angles of the plane triangle whose
sides are &, 8, y respectively ; then

Ny

,—ﬁi_l__y’_a’
cos 4" = _—_2:3')’ s
N in2 ’
thus cos A =cos A’ - B—YEI;—A .

Suppose 4d=4"+ 0; then
cos A = cos A’ — 6 sin A" approximately ;

\ Bysind” _ §
therefore » 6= ~ 6 =3
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where § denotes the area of the plane triangle whose sides are
a, B, y. Similarly

S ' S
B=B’+§, d0=0’+§§,

hence approximately -

A+B+C=A4"+B+C + §=1r+-g;

therefore g is approximately equal to the spherical excess of the

spherical triangle, and thus the theorem is established.

It will be seen that in the above approximation the area of
the spherical triangle is considered equal to the area of the plane
triangle which can be formed with sides of the same length.

107. Legendre’s Theorem may be used for the approximate
solution of spherical triangles in the following manner.

(1)° Suppose the three sides of a spherical triangle known ;
then the values of a, B, y are known, and by the formule of
Plane Trigonometry we can calculate S and 4', B, ¢'; then
4, B, C are known from the formule

N N N

A=4"+ B=B+3_r” G=C’+?7,.

.

(2) Suppose two sides and the included angle of a spherical
triangle known, for example 4, b, ¢. Then 4

S§=1} Bysin 4'=} Bysin A approximately.

Then 4’ is known from the formula 4’ =4 —%. Thus in the

plane triangle two sides and the included angle are known;
therefore its remaining parts can be calculated, and then those
of the spherical triangle become known,
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(3) Suppose two sides and the angle opposite to one of them
in & spherical triangle known, for example 4, @, 5. Then
sin B' = g sin A'=§ sin 4 approximately ;
and ("=w—A4'- B’ =w— A — B approximately; then S=4 afsin C".
Hence 4’ is known and the plane triangle can be solved, since two
sides and the angle opposite to one of them are known.

(4) Suppose two angles and the included side of a spheri-
cal triangle known, for examp19 4, B, c. ‘
o s g0t . .
_y'sind’sin B y*sin 4 sin B
Then § = o (4 +B)” 2sin (4 + B)

nearly,

Hence in the plane triangle two angles and the included side are
known.

(5) Suppose two angles and the side opposite to one of them
in a spherical triangle known, for example 4, B, a. Then

C'=w— A'— B'=m— A — B, approximately, and

S o’ sin B’ gin ('
“2sm (B +0)’
which can be calculated, since B’ and (' are approximately

known.

108. The importance of Legendre’s Theorem in the applica-
tion of Spherical Trigonometry to the measurement of the Earth’s
surface has given rise to various developments of it which enable
us to test the degree of exactness of the approximation. We shall
finish the present Chapter with some of these developments, which
will serve as exercises for the student. 'We have seen that ap-

proximately the spherical excess is equal to :g,, and we shall

begin with investigating a closer approximate formula for the
spherical excess.
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109. To find an approximate value of the spherical excess.
Let Z denote the spherical excess; then

sin}asin}bsinC

sing £ = cosc ’

therefore approximately
. s g e ~0f ot s ¥\
sm%E-smC;—q—,(l - 5:47') (l - W) (1 ——g—F)
_.smC (l 37—“'_3’),

t 2
therefore " £ =sin C —£ (1 + —37'%_2-—;,;B-> ..................... 1),

and  sin C'=sin (C'+-§E)=sin0’+§EcosC"

ey 8inCcosCaf . o+ -y
=sin 0"+ TR 0 sin € (1+ LT ) 2).

From (1) and (2)

E-sin0' 2 (1+“ *B'”'

24r°

Hence to this order of approximation the area of the spheri-
cal triangle exceeds that of the plane triangle by the fraction

c+ fF+y
34,7 of the latter.

. sin 4
110. 7o find an approzimate value of in B

Sin 4 sma
Sin B =snb’

o
(l 6'r l"O’r)

b (l 1201')

hence approx1mately
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=%(1 o o B _df B ,3‘>

6 T 1207 T 672 367 T 1201 * 3674

B’_ 9 a _B‘ B’(B._ 8))
1+ 120~ * 36 f

{
(e (1+5-° hd g}
(14

6" 20
1+ 78° - 3a* )
r’ ( 60r* :

111.  To express cot B—cot A approximately.

! '@

Cot B - cotA_——(oB— BcosA),

hence, approximately, by Art. 110,

3 8
cot B—ocob A= 1 (cosB—écos 4-B-B
sin B a a 67

Now we Lave shewn in Art. 106, that approximately
B +y'—a’ o+ B+ v —2a°B — 28 — 2y'a’

cosA=—23-7— + 24By7 s
Beosa= /3'
therefore cos B . cosd = approximately,
o — B _ 2, .8 _ 2
and cot B—cot 4 = B o’—f fry-d

aysin B a.ysinB 12+
S =y
_a-ysinB( 12r‘ :

112. The approximations in Arts. 109 and 110 are true so
far as terms involving 7*; that in Art. 111 is true so far as
terms involving +*, and it will be seen that we are thus able
to carry the approximations in the following Article so far as
terms involving %,

T.S. T. G
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113. To find an approximate value of the error in the length
of a side of a spherical triangle when calculated by Legendre’s
Theorem.

Suppose the side 8 known and the side a required ; let 3u de-
note the spherical excess which is adopted. Then the approximate

value EM is taken for the side of which a is the real

sin (B — p)
g B (d-p),
value. Let 2=a sn(B—p)

proximately. Now approximately

we have then to find z ap-

2
sin 4 —pcos A—E sin 4

sin (4 - 2

sin (B—p)

sinB—p.cosB:%sinB

-1

3 2
=Z§‘; l—p.cotA—%)( -peotB-L

_sind
" gin B

{1 + p (cot B—cot 4) +;A.’cot.B(cotB—cotA)}

sin 4 +p.smA
“sin B

(cot B —cot A)(1 + p cot B).

Also the following formule are true so far as terms involv-

ing 7*:
sin 4 1+
sin B B (
_ B B ﬁ’+'y’—a’
cot B—cot 4= B T2, ,
o +y'-p
l+pcot B=1+—5- o °
Hence, approximately, _
t
""“4 2 (cot B~ cot A)(1 + p.cot B) = il

Bysm B’
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Therefore z=a-— Bsind Y (o’ - 57)
sinB -y sin B

a(ﬁ’—a’){ o1 '}
. a-ysmB_r—’+ o by Art. 110.

If we calculate u from the formula p = ﬂ6_ nB we obtain
o (B —~a")(3a’-78")
360
If we caloulate 1 from an equation corresponding to (1) of
Art. 109, we have

x =

uysmB(l 33'-0;..—7’>
24 ’

w=a(ﬁ'—-a’)(a. +B‘—57’).

therefore 7905

MISCELLANEOUS EXAMPLES.

1. If the sides of a spherical triangle 4B, AC' be produced to
B, (', so that BB, CC’ are the semi-supplements of 4B, AC
respectively, shew that the arc B'C" will subtend an angle at the
centre of the sphere equal to the angle between the chords of 4B
and 4C.

2. Deduce Legendre’s Theorem from the formula
A4 sind(a+b—c)sin}(c+a->b)

2 sin}(b+c—a)sing(a+b+c)’

3. Four points 4, B, C, D on the surface of a sphere are
joined by aros of great circles, and Z, F are the middle points
of the arcs AC, BD: shew that

o8 A B + co8 BC + cos OD + cos DA = 4 cos AE cos BF cos FE.

4. If a quadrilateral ABCD be inscribed in a small circle on
a sphere so that two opposite angles 4 and C may be at opposite
extremities of a diameter, the sum of the cosines of the sides is

constant.
G2
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5. In a spherical triangle if 4 = B = 2C, shew that

coswcos 5 =cos ¢+
2" 2)°

6. ABC is a spherical triangle each of whose sides is a quad-
rant; P is any point within the triangle : shew that
cos PA cos PB cos PPC + cot BPC cot CPA cot APB=0,
and tan ABP tan BCPtan CAP=1.

7. If O be the middle point of an equilateral triangle 4.BC,
and P any point on the surface of the sphere, then
 (tan PO tan O A4)*(cos PA + cos PB + cos PC)* =
cos*PA+cos? PB+cos® PC—cos PAcos PB—cosPBcos PC —cos PCcos PA.

8. If ABC be a triangle having each side a quadrant, O the
pole of the inscribed circle, £ any point on the sphere, then

(cos PA + cos PB + cos PC)* = 3 cos® PO.

9. From each of three points on the surface of a sphere arcs
are drawn on the surface to three other points situated on a great
circle of the sphere, and their cosines are a, b, ¢; a’, b',¢’; a”, b”, .
Shew that ad”c’ + a'bc” + a"b'c=ab’c” + a'b"c + a”bc’,

10. From Arts. 110 and 111, shew that approximately

log B =1log a +log sin B —logsin 4 + Zg—j (cot A — cot B).

11. By continuing the approximation in Art. 106 so as to
include the terms involving ¢, shew that approximately
Bysin*d’ By (a*—-38"—3y")sin"4’

(7 .

cos 4 =cos 4’ — 180

12. From the preceding result shew that if 4 =A'+ 6 then
approximately

_Bysind’ /. TR +Ty +a’
0———6,, (1+ ~~~~~ )



X. GEODETICAL OPERATIONS.

114. One of the most important applications of Trigono-
metry, both Plane and Spherical, is to the determination of the
figure and dimensions of the Earth itself, and of any portion of its
surface. We shall give a brief outline of the subject, and for
further information refer to Woodhouse’s ZT'rigonometry, to the
article Geodesy in the English Cyclopedia, and to Airy’s treatise
on the Figure of the Earth in the Encyclopedia Metropolitana.
For practical knowledge of the details of the operations it will
be necessary to study some of the published accounts of the great
surveys which have been effected in different parts of the world,
as for example, the Account of the measurement of two sections of
the Meridional arc of India, by Lieut.-Colonel Everest, 1847 ; or
the Account of the Observations and Calculations of the Prin-
cipal Triangulation in the Ordnance Survey of Great Britain
and Ireland, 1858.

115. An important part of any survey consists in the mea-
surement of a horizontal line, which is called a base. A level plain
of a few miles in length is selected and a line is measured on it with
every precaution to ensure accuracy. Rods of deal, and of metal,
hollow tubes of glass, and steel chains, have been used in different
surveys ; the temperature is carefully observed during the opera-
tions, and allowance is made for the varying lengths of the rods
or chains, which arise from variations in the temperature.

116. At various points of the country suitable stations are
selected and signals erected ; then by supposing lines to be drawn
connecting the signals, the country is divided into a series of
triangles. The angles of these triangles arc observed, that is, the
angles which any two signals subtend at a third. For example,
suppose 4 and B to denote the extramities of the dase, and C a
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signal at a third point visible from 4 and B ; then in the triangle
ABC the angles 4 BC and BAC are observed, and then AC and BC
can be calculated. Again, let D be a signal at a fourth point,
such that it is visible from C and 4 ; then the angles ACD and
CAD are observed, and as AC is known, CD and AD can be
calculated.

117. Besides the original dase other lines are measured in
convenient partsof the countrysurveyed, and their measured lengths,
are compared with their lengths obtained by calculation through a
series of triangles from the original base. The degree of close-
ness with which the measured length agrees with the calculated
length is a test of the accuracy of the survey. During the pro-
gress of the Ordnance Survey of Great Britain and Ireland, seve-
ral lines have been measured; the last two are, one near Lough
Foyle in Ireland, which was measured in 1827 and 1828, and one
on Salisbury Plain, which was measured in 1849. The line near
Lough Foyle is nearly 8 miles long, and the line on Salisbury
Plain is nearly 7 miles long; and the difference between the length
of the line on Salisbury Plain as measured and as calculated from
the Lough Foyle base is less than 5 mches (dn Account qf the
Observations...page 419). '

118. There are different methods of effecting the calculations
for determining the lengths of the sides of all the triangles in the
survey. One method is to use the exact formule of Spherical
Trigonometry. The radius of the Earth may be considered known
very approximately; let this radius be denoted by 7, then if o be
the length of any arc the circular measure of the angle which the

arc subtends at the centre of the earth is ;. The formule of
Spherical Trigonometry gives expressions for the trigonometrical

functions of E', so that ‘j may be found and then a. Since in

pra.ctlce is alwavs very sma.ll, 1t becomes necessary to pay
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attention to the methods of securing accuracy in calculations
which involve the logarithmic trigonometrical functions of small
angles (Plane Trigonometry, Art. 205).

Instead of the exact calculation of the triangles by Spherical
Trigonometry, various methods of approximation have been pro-
posed ; only two of these methods however have been much used.
One method of approximation consists in deducing from the angles
of the spherical triangles the angles of the chordal triangles, and
then computing the latter triangles by Plane Trigonometry (see
Art. 105). The other method of approximation consists in the
use of Legendre’s Theorem (see Art. 106).

119. The three methods which we have indicated were all
used by Delambre in calculating the triangles in the French
survey (Base du Systéme Métrigue, Tome 111. page 7). In the
earlier operations of the Trigonometrical survey of Great Britain
and Ireland, the triangles were calculated by the chord method ;
but this has been for many years discontinued, and in place of it
Legendre’s Theorem has been universally adopted (4n Account
of the Observations ... page 244). The triangles in the Indian
Survey are stated by Lieut.-Colonel Everest to be computed on
Legendre’s Theorem. (An Account of the Measurement ... page
CLVIIL)

120. If the three angles of a plane triangle be observed, the
fact that their sum ought to be equal to two right angles affords a
test of the accuracy with which the observations are made. We
shall proceed to shew how a test of the accuracy of observations of
the angles of a spherical triangle formed on the Earth’s surface

. may be obtained by means of the spherical excess.

121. The area of a spherical triangle formed on the Earth’s
surface being known in square feet, it is required to establish a rule
Jor computing the spherical excess in seconds.

Let n be the number of seconds in the spherical excess, 8 the
number of square feet in the area of the triangle, » the number of
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feet in the radius of the Earth. Then if £ be the circular mea-
sure of the spherical excess,

8= Er',
nm n N
and £ = 15060 60 ~ 206265 “Prroximately;
nrt
therefore 8= 306265

Now by actual measurement the mean length of a degree on
the Earth’s surface is found to be 365155 feet ; thus

i
180

With the value of r obtained from this equation it is found by
logarithmic calculation, that
log n=1og s — 9-326774.
Hence 7 is known when 8 is known.
This formula is called General Roy's rule, as it was used by
him in the Trigonometrical survey of Great Britain and Ireland.

Mr Davies, however, claims it for Mr Dalby. (See Hutton’s
Course of Mathematics, by Davies, Vol. 11 p. 47.)

= 365155,

122. In order to apply General Roy’s rule, we must know
the area of the spherical triangle. Now the area is not known
exactly unless the elements of the spherical triangle are known
exactly ; but it is found that in such cases as occur in practice an
approximate value of the area is sufficient. Suppose, for example,
that we use the area of the plane triangle considered in Legendre’s
Theorem, instead of the area of the Spherical T'riangle itself ;
then it appears from Art. 109, that the error is approximately
o+ 447

24¢°
fraction is less than *0001, if the sides do not exceed 100 miles
in length. Or again, suppose we want to estimate the influence
of errors in the angles on the calculation of the area; let the

denoted by the fraction of the former area, and this
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af sin

2

circular measure of an error be %, so that instead of

af3 sin (C + &)
2

we ought to use ; the error then bears to the area

approximately the ratio expressed by % cot . Now in modern
observations 4 will not exceed the circular measure of a few
seconds, so that, if C be not very small, % cot €' is practically in-
sensible. ‘

123. The following example was selected by Woodhouse from
the triangles of the English survey, and has been adopted by other
writers. The observed angles of a triangle being respectively
42°.2'.32", 67°.55'.39", 70°.1'.48", the sum of the errors made
in the observations is required, supposing the side opposite to the
angle 4 to be 274042 feet. The area is calculated from the ex-
@’ sin Bsin C '

2sin 4
that n = ‘23, Now the sum of the observed angles is 180°—1",
and as it ought to have been 180°+ 23", it follows that the sum
of the errors of the observations is 1”*23. This total error may
be distributed among the observed angles in such proportion as
the opinion of the observer may suggest; one way is to increase
each of the observed angles by one-third of 1723, and take the
angles thus corrected for the true angles.

pression , and by General Roy’s rule it is found

124. An investigation has been made with respect to the
form of a triangle, in which errors in the observations of the
angles will exercise the least influence on the lengths of the sides,
and although the reasoning is allowed to be vague it may be
deserving of the attention of the student. Suppose the three
angles of a triangle observed, and one side, as @, known, it is
required to find the form of the triangle in order that the other
sides may be least affected by errors in the observations. The
spherical excess of the triangle may be supposed known with
sufficient accuracy for practice, and if the sum of the observed
angles does not exceed two right angles by the proper spherical
excess, let these angles be altered by adding the same quantity to
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each, so as to make their sum correct. Let 4, B, C be the angles
thus furnished by observation and altered if necessary ; and let
84, 8B and 8C denote the respective errors of 4, B and C. Then
84 + 8B +3C =0, because by supposition the sum of 4, B and C
is correct. Considering the triangle as approximately plane, the
.. . asin(C +38C) . asin(C+38C)
true value of the side cis S (4 +04) ’ that is, Sn(d—-3B=50) "
Now approximately
sin (C' +8C) = sin C+ 8C cos C, (Plane Trig. Chap. x11.),

sin (4 -8B ~38C) =sin 4 — (8B + 8C) cos 4.
Hence approximately

_asin 0{

1 +8C cot 0} {1 — (8B +50) cot A}"

= as:ln C{l + 8B cot 4 + 8C (cot C + cot A)}

- sin (4 +C) sin B
and cotC+cotA—fmAsm0 sin 4 sin ¢

approximately.

Hence the error of ¢ is approximately

asin B a sin C cos 4
sin’d’ 8+ sin®4 3B.

Similarly the error of b is approximately

asin C asin B cos A
sin’4 3B+ sin’4 3.

Now it is impossible to assign exactly the signs and magnitudes
of the errors 8B and 3C, so that the reasoning must be vague. It
is obvious that to make the error small sin 4 must not be small.
And as the sum of 84, 8B and &C is zero, two of them must have
the same sign, and the third the opposite sign ; we may therefore
consider that it is more probable than any two as 8B and 8C' have
different signs, than that they have the same sign.
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If 8B and 8C have different signs the errors of & and ¢ will
be less when cos 4 is positive than when cos 4 is negative;
A therefore ought to be less than a right angle. And if 3B and
8C are probably not very different, B and C should be nearly
equal. These conditions will be satisfied by a triangle differing
not much from an equilateral triangle.

If two angles only, 4 and B, be observed, we obtain the same
expressions as before for the errors in b and c¢; but we have
no reason for considering that 8B and 8C are of different signs
rather than of the same sign. In this case then the supposition
that 4 is a right angle will probably make the errors smallest.

125. The preceding article is taken from the Treatise on
Trigonometry in the ZEncyclopedia Metropolitana. The least
satisfactory part is that in which it is considered that 8B and 8C
may be supposed nearly equal; for since 84 + 8B + 30 =0, if we
suppose 3B and 8C nearly equal and of opposite signs, we do in
effect suppose 84 =0 nearly ; thus in observing three angles, we
suppose that in one observation a certain error is made, in a
second observation the same numerical error is made but with
an opposite sign, and in the remaining observation no error is
made.

126. 'We have hitherto proceeded on the supposition that the
Earth is a sphere; it is however approximately a spheroid of small
eccentricity. For the small corrections which must in consequence
be introduced into the calculations we must refer to the works
named in Art. 114. One of the results obtained is that the error
caused by regarding the Earth as a sphere instead of a spheroid in-
creases with the departure of the triangle from the well-conditioned
or equilateral form (4n Account of the Observations... page 243).
Under certain circumstances the spherical excess is the same on a
spheroid as on a sphere (Figure of the Earth in the Encyclopedia
Metropolitana, pages 198 and 215).

127. In geodetical operations it is sometimes required to de-
termine the horizontal angle between two points, which are at a
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small angular distance from the horizon, the angle which the
objects subtend being known, and also the angles of elevation
or depression,

=AY
W,

Suppose 04 and OB the directions in which the two points
are seen from O; and let the angle AOB be observed. Let 0Z be
the direction at right angles to the observer’s horizon; describe
a sphere round O as a centre, and let vertical planes through 04
and OB meet the horizon at OC and 0D respectively : then the
angle COD is required.

Let A0B=0, COD =0+, AOC =%, BOD=Fk; from the
triangle AZB

s AZB =% 0—cosZ_4 cos ZB ggse_—sinlzsink .
co T 'sinZAsinZB ~  coshcosk °

and cos A4ZB = cos COD =cos (6 +z) ; thus

cos @ —sin & sin &

cos (6 + )= cos hcos k

This formula is exact ; by approximation we obtain

cos 6 - Lk

cosf —xsinf = i {(I_z,’+/c’);
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therefore x sin @ =Lk — § (A° + &*) cos 6, nearly,
. 2hk — (B* + &*) (cos*} 6 —sin® } 6)
and = 2sin 6

=3} (h+k)ytan} 61 (h—-k)* cot } 6.

This process, by which we find the angle COD from the angle
A4 0B, is called reducing an angle to the horizon.

XI. ON SMALL VARIATIONS IN THE PARTS OF A
SPHERICAL TRIANGLE.

128. It is sometimes important to know what amount of
error will be introduced into one of the calculated parts of a
triangle by reason of any small error which may exist in the
given parts. We will here consider an example.

129. A side and the opposite angle of a spherical triangle
remain constant : determine the connexion between the small varia-
tions of any other pair of elements.

Suppose (' and ¢ to remain constant.

(1) Required the connexion between the small variations of
the other sides. We suppose @ and b to denote the sides of one
triangle which can be formed with C' and ¢ as fixed elements, and
a+3a and b+8b to denote the sides of another such triangle;
then we require the ratio of 8a to 86 when both are extremely
small. We have

cos ¢ = cos @ cos b + sin a 8in b cos C,
and  cos ¢=cos (a + 8a) cos (b + 8b) + sin (a + 8a) sin (b + 8b) cos C';
also cos (@ + 8a) = cos a — sin a da, nearly,

and . sin (@ + 8a) =sin a + cos @ 8a, nearly,
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with similar formule for cos (b + 8b) and sin (b+ 8b). (See Plance
Trigonometry, Chap. x11.) Thus

cos ¢ = (cos @ — sin @ a) (cos b — sin b 8b)
+ (sin @ + cos @ 3a) (8in b + cos b 8b) cos C.

Hence by subtraction, if we neglect the product 3a, b,

0 = 8a (sin @ cos b — cos @ 8in b cos ()
+ 8b (sinb cos @ — cos b sin a cos C) ;

this gives the ratio of 8a to 86 in terms of a, b, C. We may
express the ratio more simply in terms of 4 and B ; for, dividing
by sin a sin b, we get from Art. 44,

——&cotBsinC +.8—bcotA sinC=0;
sina sin b

therefore dacos B+8bcosd=0.

(2) Required the connexion between the small variations of
the other angles. In this case we may by means of the polar
triangle deduce from the result just found, that

84 cosb +3Bcosu=0;

this may also be found independently as before.

(8) Required the connexion between the small variations of
a side and the opposite angle (4, a).

Here sin 4 sin ¢ =sin C'sin g,
and sin (4 + 84) sin ¢ = sin C'sin (a + 3a) ;
hence by subtraction
cos 4 sinc 84 =sin0cosa8a,
and therefore 84 ;:ot 4 =8acota.

(4) Required the connexion between the small variations of
a side and the adjacent angle (a, B).
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We have cot('sin B=cotcsina—cosBcosa;
proceeding as before we obtain ’
cot C cos B 8B =cot c cos ada + cos Bsina da + cosasin BSB;
therefore

(cot C cos B — cos a sin B) 8B =(cot ¢ cos @ + cos Bsin a) 3a ;

therefore - Ef’iA - c_f’ib Sa;
sin C sin ¢
therefore 8B cos A =—8a cot b sin B.

130. Some more examples are proposed for solution at the
end of this Chapter ; as they involve no difficulty they are left for
the exercise of the student.

EXAMPLES.

1. 1In a spherical triangle, if C' and ¢ remain constant while
@ and b receive the small increments 8¢ and 8b respectively, shew
that _
8a - & -0 wheren="2C
Ja-nsna)  Jl-nsmib) oo T sine’
2. If C and ¢ remain constant, and a small change be made
in @, find the consequent changes in the other parts of the tri-

angle. Find also the change in the area.

3. Supposing 4 and ¢ to remain constant, prove the following
equations, connecting the small variations of pairs of the other
elements :

§inC % =sina 8B, SsinC=-8Ctana, SatanC=38Bsing,
‘Satan(=—3C tana, 8bcosC=3a, 8Bcosa=-3C.

4. Supposing b and ¢ to remain constant, prove the following
equations connecting the small variations of pairs of the other
élements:

8B tan € =8C tan B, . 8acot C=—8Bsina,
8z =84 sin ¢ sin B, ) §AsinB‘ws0=-SBpmA.
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5. Supposing B and C to remain constant, prove the follow-
ing equalions connecting the small variations of pairs of the
other elements :

8 tan ¢=38c tan b, 84 cotc=20bsin 4,
84 =dasinbsin C, da sin Bcosc=208bsin 4.

6. If A and C are constant, and b be increaged by a smalil
quantity, shew that a will be increased or diminished according as
¢ is less or greater than a quadrant.

XII. ON THE CONNEXION OF FORMULZE IN
PLANE AND SPHERICAL TRIGONOMETRY.

131. The student must have perceived that many of the
results obtained in Spherical Trigonometry resemble others with
which he is familiar in Plane Trigonometry. We shall now pay
.some attention to this resemblance. We shall first shew how we
may deduce formule in Plane Trigonometry from formule in
Spherical Trigonometry; and we shall then investigate some
theorems in Spherical Trigonometry which are interesting princi-
pally on account of their connexion with known results in Plane
Geometry and Trigonometry.

132.  From any formula in Spherical Trigonometry involving
the elements of a triangle, one of them being a side, it 18 required
to deduce the corresponding formula in Plane Trigonometry.

Let a, B, y be the lengths of the sides of the triangle, » the

radius of the sphere, so that s, By are the circular measures

s
of the sides of the triangle; expand the functions of ;, l—:, %’:
which occur in any proposed formula in powers of ;, 'g , ;Z
respectively ; then if we suppose » to become indefinitely great,
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the limiting form of the proposed formula will be a relation in
Plane Trigonometry.

For example, in Art. 106, from the formula

cosa —cos b cos ¢
co8d="————

sinbsinc -
we deduce
B +y -’ '+ Byt —2a'8 - 2% - 2y’ .
cosd = 36y + 4By Foareene H
now suppose r to become infinite ; then ultimately
_B+y-a
cos 4 = W H

and this is the expression for the cosine of the a.ngle of a plane
triangle in terms of the sides.

Again, in Art. 110, from the formula

sind _sina

sin B~ sin b

sind o a(f- .
soB - B + 3 B - +oeeee H
now suppose 7 to become infinite ; then ultimately

we deduce

sind _a

sins B’
that is, in a plane triangle the sides are as the sines of the oppo-
site angles.

133. To find the equation to a small circle of the sphere.

The student can easily draw the required diagram.

Let O be the pole of a small circle, S a fixed point on the
sphere, SX a fixed great circle of the sphere. Let OS=g,
08X =; then the position of O is determined by means of these
angular co-ordinates a and 8. Let P be any point on the circum-
ference of the small circle, PS =0, PSX = ¢, so that 0 and ¢ are

T. 8. T. H
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the angular co-ordinates of P. Let OP=s Then from the
triangle OSP

cos 7 =cos acos f +sin a sin 6 cos (p— B)............ 1);
this gives a relation between the angular co-ordinates of any point
on the circumference of the circle.

If the circle be a great circle then r=> ; thus the equation

becomes
0 =cos a cos 6 +sin a sin 6 cos (¢ — B)......... (2).
It will be observed that the angular co-ordinates here used are
analogous to the latitude and longitude which serve to determine
the positions of places on the Earth’s surface ; 6 is the complement
of the latitude and ¢ is the longitude.

134. Equation (1) of the preceding Article may be written

6 6
. 2 -— n? —
thus : cos 7 (cos 3 + 81N’ 2)

=cosa (cos’ g — sin’ g) +2 si.nasing cos gcos (¢-B).

Divide by cos® g and rearrange ; hence

tan—(cosq+c05a) 2tangsmacos(¢o B) + cosr—cosa =0.

Let tan 0‘- and tan , 2 denote the values of tam%9 found from

this quadra.tlc equation ; then by Algebra, Chapter xxi1.

0,, 6, cosr—cosa LR Ll
— — = =t = =
tanztan2 cosrrcosa 0T g tan 2

Thus the value of the product tan %ltan%’ is independent of ¢;

this result corresponds to the well-known property of a circle in
Plane Geometry which is demonstrated in Euclid 111. 36 Corollary.

135. Let three arcs 04, OB, OC meet at a point. From any
point P in OB draw PM perpendicular to 04, and PN perpen-
dicular to OC. The student can easily draw the required diagram.



IN PLANE AND SPHERICAL TRIGONOMETRY. 99
Then, by Art. 65,
sin PM =sin OPsin AOB, sin PN =sin OP sin COB;
sin PM _ sin AOB
gin N ~ sin COB’

Thus the ratio of sin PM to sin PN is independent of the posi-
tion of P on the arc OB.

therefore

136. Conversely suppose that from any other point p arcs pm
and pn are drawn perpendicular to 04 and OC respectively; thenif

sin sinpm _ sin PM
sin pn sin PN’

it will follow that p is on the same great circle as O and P.

137. From two points P, and P, arcs are drawn perpendi-
cular to a fixed arc; and from a point P on the same great circle
as P, and P, a perpendicular is drawn to the same fixed arc. Let
PP, =6, and PP,=6,; and let the perpendiculars drawn from P,
P, and P, be denoted by «, #,, and z,. Then will

sin 6, s' 0,
sin (6, +6,)

sinz =

Let the arc P, P,, produced if necessary, cut the fixed arc at a
point O ; let a denote the angle between the arcs. We will sup-
pose that P, is between O and P, and that P is between P, and P,

Then, by Art. 65,
sin z, = sin a sin OP, =sin a sin (OP-0,)
=sin a (sin OP cos §, — cos OPsin 6)) ;
sin 2, = sin a sin OP, =sin a sin (OP +6,)
=sgin a (sin OP cos 6, + cos OP sin 6,).
Multiply the former by sin 6,, and the latter by sin 6, and add ;
thus
sin 6, sin «, + sin 0, sin «, = sin (0, + 0,) sin asin OP
=sgin (6, + 6,) sin x.
H?2
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The student should convince himself by examination that the
result holds for all relative positions of P, P, and P,, when due
regard is paid to algebraical signs,

138. The principal use of Art. 137 is to determine whether
three given points are on the same great circle; an 1llustrat10n
will be given in Art. 146,

139. The arcs drawn from the angles of a spherical triangle
perpendicular to the opposite sides respectively meet at a point.

A

c

Let CF be perpendicular to 4B. From F suppose arcs drawn
perpendicular to C'B and C4 respectively ; denote the former by
£ and the latter by 4. Then, by Art. 135,

sin { sin ¥CB
siny sin #CA~
But, by Art. 65, o
cos B=cos CF sin FO'B cos 4 =cos CFsin FCA ;

sin¢ cos B cos BcosC

siny cosd cosdcosC’

therefore

And if from any point in CF arcs are drawn perpendicular to
CB and C4 respectively, the ratio of the sine of the former perpen-
dicular to the sine of the latter perpendicular is equal to :i:é

7’

by Art. 135.
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In like manner suppose A4 D perpendicular to BC'; then if from
any point in 4D arcs are drawn perpendicular to AC and 4B
respectively, the ratio of the sine of the former perpendicular to
cos 4 cos C .

the sine of the latter perpendicular is equal to osdcos B’

Let CF and 4D meet at P, and from P let perpendicﬁla.rs be
drawn op the sides a, b, ¢ of the triangle; and denote these per-
pendiculars by @, ¥, # respectively: then we have shewn that

sinz  cos BcosC
siny cosdcosC’
. B siny cosdcosC
and that sinz cosAcosB’

hence it follows that

sinz ‘cos BeosC
sinz cosBcosd’

and this shews that the point P is on the arc drawn from B per-
pendicular to 4AC.

Thus the three perpendiculars meet at a point, and this point
is determined by the relations
sing ~ 'siny ~ sinz
cos BecosC' cosCcosd  cosd cos B

140. In the same manner it may be shewn that the arcs
drawn from the angles of a spherical triangle to the middle points
of the opposite sides meet at a point ; and if from this point arcs
, ¥, = are drawn perpendicular to the sides a, b, ¢ respectively,

sine siny " sinz '
sinBsinC  sinCsiud 8ind sin 5 .

141" It is known in Plane Geometry that a certain circle
touches the inscribed and escribed circles of any triangle; this
circle is called the Nine points circle: see Appendix to Euclid,
pages 317, 318, and Plane Trigonometry, Chapter xx1v.
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‘We shall now shew that a small circle can always be deter-
mined on the sphere to touch the inscribed and escribed circles of
any spherical triangle.

142. Let a denote the distance from 4 of the pole of the
small circle inscribed within a spherical triangle ABC. Suppose
that a small circle of angular radius p touches this inscribed circle
internally ; let B be the distance from A4 of the pole of this touch-
ing circle; let y be the angle between arcs drawn from 4 to the
pole of the inscribed circle and the pole of the touching circle
respectively. Then we must have

cos(p —7)=cosacos B +sinasin Bcosy............ ).

Suppose that this touching circle also touches externally the
escribed circle of angular radius 7, ; then if a, denote the distance
from A4 of the pole of this escribed circle, we must have

cos (p +7,) =cosa, cos B +gina, sin Bcosy......... @).

Similarly, if a, and a, denote the distances from 4 of the poles
of the other escribed circles, in order that the touching circle may
touch these escribed circles externally, we must also have

cos(p+r,)=cosa,cos/3+sina,sin/3cos(;—y) ......... 3),
cos(p+ra)=cosa,cos,3+sinaasin/3cos(-2"-'+-y) ......... (4).

‘We shall shew that real values of p, 8, and y can be found to
satisfy these four equations.

Eliminate cosy from (1) and (2); thus
cos p (cos  8in a, — cos 7, &in @) + 8in p (sin 7 sin o, + sin 7, sin a)

= cos B (cos a.sin @, - cos , sin a)......(5).

Suppose that the inscribed circle touches 4B at the distance m
from 4, and that the escribed circle of angular radius », touches
AB at the distance m, from 4. Then, by Art. 65,
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2

o

A . . .
cota=cotmcos, cosa=coS7rcosm, SIn7r=sinasin

cosr cota 1 A

therefore —_— = - S ==,
sina cosm sinm 2

Similarly we may connect a, and =, with m,, Thus we
obtain from (5)
cospcos—4 L - .—1—)+2=si.npsin‘i
2\sinm sinm, 2

=cosﬁcos§ (cot m — cot m,) ;
therefore cos p (sin m, — sin m) + 2 sin p sin m sin m, tan 3
= cos B sin (m, — m).

But by Arts. 89 and 90 we have m=8—a, and m, =3 ; there-
fore by the aid of Art. 45 we obtain
2cospsin£2‘cos§g-“+2nsinp=cospsina ............ (6),
where n has the meaning assigned in Art. 46.

In like manner if we eliminate sin y between (3) and (4),
putting m, for s — ¢, and m, for 8 — b, we obtain

. . R . v |
cosP(smm’+smma)—2smpsmm,smm,cot§

= cos Bsin (m, + m),
therefore 2oospsingcos-b-%-c-—2nsinp=cos,83ina ....... (7)-
From (6) and (7) we get
sin 2 sin b sin &
2727738
tanp= p = %tanR, by Art. 92............ (8),
b ¢
€08 5 CO8 7 CO8 p
and cosﬁ = s AL LI IR IR (9)
CO8S —

2
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We may suppose that cos g is not less than cos %or cos %, 80

that we are sure of a possible value of cos 8 from (9).

It remains to shew that when p and £ are thus determined, all
the four fundamental equations are satisfied.

It will be observed that, p and B being considered known,
cos y can be found from (1) or (2), and sin y can be found from
(3) or (4): we must therefore shew that (1) and (2) give the
same value for cos y, and that (3) and (4) give the same value
for siny; and we must also shew that these values satisfy the
condition cos®y +sin®y =1.

_ From (1) we have

M(cotr+ta.np—cosmootrcosﬁ)=sinﬁcos-y,
sina COSP
that is,
| . b ¢
cospsin 3 cos(s—a)smscosicosé
e } 8iN 8 + iR } @ 8iN $ b 8in § € —
n cos 3
=sinfBcosy;
this reduces to
. 4 . b ¢
cospsin 3 e . b+e sm(b+c)cos§cos§
—— {cos 5 8in — =sinBcosy:
n a
2cos§

and it will be found that (2) reduces to the same ; so that (1) and
(2) give the same value for cos y.

In like manner it will be found that (3) and (4) agree in
reducing to

A . B b ¢

€08 p CO8 a . c—b sin (¢ — )cosﬁcos—
enm— COS = SID —— — =s8in Bs8in v.
m 281t = Bsiny

2cos3

]



IN PLANE AND SPHERICAL TRIGONOMETRY. 105

It only remains to shew that the condition cos® y +sin®y=1 is
satisfied. '

CO0S 5 CO8 o
9
Put & for B that i for 22 .
cos p a
83

put X for cot {1 — kcos (s — a)}, and Y for cot , {1 - & cos s}.
Then (1) and (2) may be written respectively thus:

(Xcosp+sinp)sing=sinﬁcos-y ......... (10),
(YcOSp—sinp)sin%:sinﬁcos-y ......... (11).

From (10) and (11) by addition
(X+Y) sin%cosp=2 gin Bcosy;

therefore 4 sin® 8 cos®y = (X* + ¥* + 2X¥) sin® 5 cos' p...(12).

But from (10) and (11) by subtraction
(X—TY)cosp=—2sinp;
therefore (X*+ Y*) cos’ p=4sin® p + 2X ¥ cos® p.

Substitute in (12) and we obtain

sin® 8 cos’ y = (sin® p + X ¥ cos? p) sin* A ......(13).

Again, put ‘
X, for cotr,{1 —kcos (¢ ¢)}, and Y, for cot r {1 — & cos (s - b)}.

Then (3) and (4) may be written respectively thus :
(X,cosp—sinp)oos%:sinﬁsin-y ......... (14),
(Ymosp—sinp)cos%:—sinﬂsin-, ...... (15).

From (14) and (15) by subtraction
X,-r) cosfé2 cosp=2sin Bsiny,
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and from (14) and (15) by addition,
(X, + Y,)cos p=2sinp,
whence

sin’ Bsin® y = (sin’ p — X, ¥, cos® p) cos® % ...... (16).

Hence from (13) and (16) it follows that we have to establish
the relation

sin® B8 = sin® p + (XYsin’ %— XY, cos’g) cos’ p.

But sin® 8=1 - cos® B =sin® p + cos® p— &* cos® p, so that the re-
lation reduces to

l—lc’=XYﬁxin’%4 -X\Y, cos’i{-.

2
Now
XVsin A _ cotrcotr, {1—-kcoss}{1—kcos(s—a)} sin (s—B) sin (s— )
sin bsine
_{1-kcoss} {1 —kcos (s~ a)}
sin b sin ¢
SmnlarlyXYcos A _{1-kecos(s— )} {1 —kcos (8- c)}
sin b sin ¢

Subtract the latter from the former ; then we obtain

{cos (8 — ) + cos (s — c) — cos 8 — cos (8 — @)}

sin bsinc
]
+sinb—sinc{cosscos(s—a)—cos(s—b)cos (&—¢)}
a
that is 2k008§{ b-e coslic}
sinbsme 10 "2 2
) b+c+a b+c—a a+c-b a+b-c
m{ R R

4 sin b sin = cos 9 cos <
2 2772772 K { sC=b . .c+b
- =~ + - sin —gin’ ,
sinbsinc sin b sin ¢ }

that is - —5—
that is 1 — £*; which was to be shewn.
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143. Thus the existence of a circle which touches the in-
scribed and escribed circles of any spherical triangle has been
established.

The distance of the pole of this touching circle from the
angles B and C of the triangle will of course be determined by
formuls corresponding to (9) ; and thus it follows that

osgcos—c CcOoSs COSQCOS é CcOo8
CoSgcosg cosp 30085 %
and ,

o8l

2 p)

must both be less than unity.

" 144. Since the circle which has been determined touches
the inscribed circle internally and toughes the escribed circles
externally, it is obvious that it must meet all the sides of the
spherical triangle. 'We will now determine the position of the
points of meeting.

Suppose the touching circle intersects the side 4B at points
distant A and u respectively from 4.
Then by Art. 134 we have

a b c
€08 5 —C08 5 CO8 5

A, p_cosp—cosfB 2 2
tan g tang = cosprosf - e § o (1).

008‘14'008200 ¢
P) 293

In the same way we must have by symmetry
cos L co8 2 cos o
2-7"27°2
tan c-2 tan I P = e—m— (2).
2 a ¢
€08 5+ 08 5 €08 5

From (2), when we substitute the value of tan;tan given

by (1), we obtain
22 _ oot D cos® £+ cos? L sins £
cos” 5 —cos’ 5 cos 5 + cos’5 sin’ 5

2ts' d cos - + b
cos2m2< 3 cos2coso)

A I
tan§+tan§=
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cos ¥ _ cos bcos o8 = sin &
2 22, 272 g
coas—l?sin—c cosg+cos-lfcos£ ....... @)
2 2 2 2 2

From (1) and (3) we see that we may put

a b ¢
cos 5 — €08 5 Co8 3
tan§ = Do e (4).
Ccos § sin §
b . ¢
u cos 3 sin 5 i
tan § S & @ @ eeeoessesnsnsoee (;)).

€08 = + cos b cos o
2 2772

Similar formula of course hold for the points of intersection of
the touching circle with the other sides.

145. Let z denote the perpendlcula.r from the pole of the
touching circle on 4B ; then

sin z=sin 8 sin <£21 + -y)
=sin B (un 4 cos y + cos i{ sin y)
But from (2) and (3) of Art. 142 we have

cos sinA
PG

7 — sin @si b . ¢
—snlz)-sm§sm5 N

&

sin Bcosy=
b
where Z'=sin (8- a) — cos ssin (8 — a} €08 5 €08 sec

COS pCO8 5

and sin Bsiny = (Z - sm sm b 5 sin ;) )

where  Z, =sin (s — b) —cos(s—c)sin (s —b) cos 2 cos ; sec g .
-l -
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Therefore

. cos . o4 A4 .a. b . ¢
sinz = ——p«{Zsm’— + 2, cos’; —sin ; sin 3 sin ﬁ}'
. -l

n | 2 2 2

Now Zsi.n’g

_sin(s—a)sin(8—'b)sin(s-—c) b e a)

= Sinbsine {1-—.cosscos§ cos 5 secﬁf,
and Z, cos® 3z

__singsin (s—a)sin (s-0) (, b ¢ a

= winbsino 1 —cos (s —~c) cos 5 €08 5 sec _—3} .

3 lA t
Therefore Z sin’ 3+ Z, cos® 5

is equal to the product of

‘sinbsinc

into

sin (s —c) + sins — cos b cos f—; sec g{sin (8—c) cos 8 + cos (3 — ¢) sin o
-

2 J
_sin(s—a)sin(s-8) (, . a+b ¢ b ¢ a_.
= gmbsine U sin —= cos 5 — co8 5 €08 5 sec 2sm(_..s-c)}

in (8 — @) sin (s — . a+b . b .
_ 5in (s —a)sin (s — b) {2 sin—— —sin (a + ) cos 3 sec g}
2 sin b sin g - -

&

. . : ' )
sm(s—a)sm(s—b‘)smg'—ﬂ cos1a+bcosll |
2 2 2
- c 1- a I>
sin b sin cos 5
2 L 2
sin (s-a) sin (s—b) sin’ c%é sin g sin (8 — @) sin (s— b) sin? Z;b

sin b sin & cos 2 2cosacosb sin &
2 2 2 2 2
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Therefore
. cosp . a . 2sin’a;bsin(s-a)sin(s—b) ]
ginz = — sin 5 8in s 8in -1
n 2722 . g€ . .
sin —ésmasmb |
L J
~%%5P i D gin A-B_11. by @
Py sm2sm23m2{Zcos 1}, by (2) of Art. 54.
. cos p b . ¢
Thus smz—Tsm2sm§sm§cos(A—B)

=sin p cos (4 — B).

Similar expressions hold for the perpendiculars from the pole
of the touching circle on the other sides of the spherical triangle.

146. Let P denote the point determined in Art. 139 ; @ the
point determined in Art. 140, and & the pole of the touching
circle. We shall now shew that P, @, and N are on a great
circle.

Let x, y, # denote the perpendiculars from & on the sides
a, b, c respectively of the spherical .triangle; let «,, y,, 2, denote
the perpendiculars from P; and x,, ¥,, 2, the perpendiculars from
G. Then by Arts. 145, 139, and 140 we have

sing ~ siny  sinz
cos(B—=C) cos(C—4) cos(4d-B)’
sin x, sin j/, _ sing,

cosBcosC’ “cosCcosd cosdcosB’

sin o, sin y, sin 2,
smBsm C sinCsind sinAsinB’

Hence it follows that
siInx=¢ sinx +¢ slnx,
siny=¢ siny, +¢ siny,
sinz =¢ sin 2 + ¢ sin 2,
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where ¢, and ¢, are certain quantities the values of which are not
required for our purpose.

Therefore by Art. 137 a certain point in the same great circle
as P and @ is at the perpendicular distances x, y, z from the sides
a, b, ¢ respectively of the spherical triangle: and hence this point
maust be the point .

147, The resemblance of the results which have been obtained
to those which are known respecting the Nine points circle in
Plane Geometry will be easily seen. :

The result tanp= % tan B corresponds to the fact that the
radius of the Nine points circle is half the radius of the circum-
scribing circle of the triangle.

From equation (4) of Art. 144 by supposing the radius of-the
b+ —a
2¢
to the fact that the Nine points circle passes through the feet of
the perpendiculars from the angles of a triangle on the opposite

sides.

From equation (5) of Art. 144 by supposing the radius of the

sphere to become infinite we obtain A = : this corresponds

sphere to become infinite we obtain u = 5: this corresponds to the

fact that the Nine points circle passes through the middle: points
of the sides of a triangle.
From Art. 145 by supposing the radius of the sphere to be-

come infinite we obtain z=%Rcos (4~ B): this is a known

property of the Nine points circle.
In Plane Geometry the points which correspond to the P, @,
and &V of Art. 146 are on a straight line.

148. The results which have been demonstrated with respect
to the circle which touches the inscribed and escribed circles of a
spherical triangle are mainly due to Dr Hart and Dr Salmon.
See the Quarterly Journal of Mathematics, Vol. vi. page 67.
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ExAMPLEs.

. a _ —cos S cos (§— 4)
1. From the formula sin § = '\/ {W

the expression for the area of a plane triangle, namely
a’sin Bsin €
" 2sind
creased.

} deduce’

, when the radius of the sphere is indefinitely in-

2. Two triangles 4BC, abe, spherical or plane, equal in all.
respects, differ slightly in position : shew that

cos ABb cos BCc cos CAa + cos ACc cos CBb cos BAa=0.

3. Deduce formule in Plane Trigonometry from Napier's
Analogies.

4. Deduce formule in Plane Trigonometry from Delambre’s
Analogies.

5. From the formula cosg cos i:;—B = sin~2q cos a_;_b deduce
the area. of a plane triangle in terms of the sides and one of the
angles. '

6. What result is obtained from Example 7 to Chapter VI,
by supposing the radius of the sphere infinite ¥

7. TFrom the angle C of a spherical triangle a perpendicular is
drawn to the arc which joins the middle points of the sides @ and
b: shew that this perpendicular makes an angle §— B with the
side a, and an angle § — 4 with the side b.

8. From each angle of a spherical triangle a perpendicular is
drawn to the arc which joins the middle points of the adjacent
sides. Shew that these perpendiculars meet at a point; and that
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if @, y, z are the perpendiculars from this point on the sides a, b, ¢
respectively,

sin 2 siny sinz

sin(S—B)sin(S—C) sin(S— C)sin(¥—4) _ sin (S—4)sin(S-B)’

9. Through each angle of a spherical triangle an arc is drawn
80 as to make the same angle with one side which the perpen-
dicular on the base makes with the other side. Shew that these
arcs meet at a point; and that if x, y, 2 are the perpendiculars
from this point on the sides a, b, ¢ respectively,
sine siny sinz
cosd cosB cosC’

10. Shew that the points determined in Examples 8 and 9,
and the point &V of Art. 146 are on a great circle.

State the corresponding theorem in Plane Geometry.

11. If oneangle of a spherical triangle remains constant while
the adjacent sides are increased, shew that the area and the sum
of the angles are increased.

12. If the arcs bisecting two angles of a spherical triangle and
terminated at the opposite sides are equal, the bisected angles will
be equal provided their sum be less than 180°.

[Let BOD and COE denote these two arcs which are given
equal. If the angles B and C are not equal suppose B the greater.
Then CD is greater than BE by Art. 58. And as the angle OBC
is greater than the angle OCB, therefore OC is greater than 0B;
therefore OD is greater than OE. Hence the angle 0DC is
greater than the angle OEB, by Example 11. Then construct
a spherical triangle BCF on the other side of BC, equal to CBE.
Since the angle ODC is greater than the angle OEB, the angle
FD( is greater than the angle DFC ; therefore CD is less than
CF, so that CD is less than BE. See the corresponding problem
in Plane Geometry in the Appendix to Euclid, page 317.]

T.8. T. I
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XIII. POLYHEDRONS.

149. A polyhedron is a solid bounded by any number of
plane rectilineal figures which are called its faces. A polyhedron
is said to be regular when its faces are similar and equal regular
" polygons, and its solid angles equal to one another.

150. If 8 be the number of solid angles in any polyhedron,
F the number of its faces, E the number of ils edges, then
S+F=E+2.

Take any point within the polyhedron as centre, and describe
a sphere of radius », and draw straight lines from the centre
to each of the angular points of the polyhedron ; let the points °
at which these straight lines meet the surface of the sphere be
joined by arcs of great circles, so that the surface of the sphere is
divided into as many polygons as the polyhedron has faces.

Let s denote the sum of the angles of any one of these poly-
gons, m the number of its sides ; then the area of the polygon is
*{s— (m—2) 7} by Art. 99. The sum of the areas of all the
polygons is the surface of the sphere, that is, 4=r". Hence since
the number of the polygons is F, we obtain

4w =3S8—n3m + 2 Fm.

Now 3s denotes the sum of all the angles of the polygons, and
is therefore equal to 27 x the number of solid angles, that is, to
278 ; and Sm is equal to the number of all the sides of all the
polygons, that is, to 2Z, since every edge gives rise to an arc
which is common to two polygons. Therefore

4m=2n8 - 27K + 2I'7;
therefore S+ F=F+2.
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151. There can be only five reqular polyhedrons.

Let m be the number of sides in each face of a regular poly-
hedron, » the number of plane angles in each solid angle ; then
the entire number of plane angles is expressed by mF, or by nS,
or by 2E; thus

mF =n8=2E, and § + F=E + 2;
from these equations we obtain
_ 4m _ 2mn Fe 4n
"2 (m+n)-mn’ " 2(m+n)—mn’ T 2(m+n)—mn’

These expressions must be positive integers, we must therefore

have 2 (m +n) greater than mn ; therefore

1 1 1
pod must be greater than 3
but » cannot be less than 3, so that ;‘ cannot be greater than 1,

é;andasmmustbean

integer and cannot be less than 3, the only admissible values of m
are 3, 4, 5. It will be found on trial that the only values of m
and » which satisfy all the necessary conditions are the following:
each regular polyhedron derives its name from the number of its
plane faces.

and therefore %‘ must be greater than

m n | S |E|F Name of regular Polyhedron.

3 |3 | 4| 6 | 4 | Tetrahedron or regular Pyramid.
4 | 3| 8|12 | 6 | Hexahedron or Cube.

3|1 4| 6 |12 8 | Octahedron.

5 (3 | 20| 30| 12 | Dodecahedron.

3 5 | 12 | 30 | 20 | Icosahedron.

It will be seen that the demonstration establishes something
more than the enunciation states ; for it is not assumed that the
faces are equilateral and equiangular and all equal. It is in fact

12
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demonstrated that, there cannot be more than five solids each of
which has all its faces with the same number of sides, and all its
solid amgles formed with the same number of plane angles.

152. The swm of all the plane angles which form the solid
angles of any polyhedron 18 2 (S — 2) .

For if m denote the number of sides in any face of the poly-
hedron, the sum of the interior angles of that face is (m —2)x
by Euclid I. 32, Cor. 1. Hence the sum of all the interior angles
of all the faces is 3 (m—2)w, that is8 Smwr —2Fx, that is
2 (E—- F)m, that is 2 (S—2)r.

153. T find the inclination of two adjacent faces of a regular
polyhedron.

Let AB be the edge common to the two adjacent faces, ¢’ and
D the centres of the faces ; bisect 4B at £, and join C¥ and DE;
CE and DE will be perpendicular to 4B, and the angle CED is
the angle of inclination of the two adjacent faces ; we shall denote’
it by Z. In the plane containing CEF and DE draw CO and DO
at right angles to CE and DE respectively, and meeting at O;
about O as centre describe a sphere meeting 04, OC, OF at a, c, e
respectively, so that cae forms a spherical triangle. Since 4B is
perpendicular to CE and DE, it is perpendicular to the plane
CED, therefore the plane 408 which contains 4 Bis perpendicular
to the plane CED ; hence the angle cea of the spherical triangle is
a right angle. Let m be the number of sides in each face of the
polyhedron, # the number of the plane angles which form each solid
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T

angle. Then the angle ace =ACE =§—:; = and the angle cae

is half one of the n equal angles formed on the sphere round a,

2 =

that is, cae = = n From the right-angled triangle cae
cos cae = cos cOe sin ace,
. T x I\ . =
that is cos —=cos (5 —5)s8in —;
T Cos 7—‘
therefore Sing= "

154. To find the radii of the inscribed and circumscribed
spheres of a regular polyhedron.

Let the edge AB=a, let OC=r and 04 =R, so that » is
the radius of the inscribed sphere, and R is the radius of the
circumscribed sphere. Then

C’E=AEcotAC’E=‘—"cot—"—r,
2 m
r=CEta.nCEO=C’Etan!=‘—zoot£tan£;
2 27 m 2
also r=RcosaOc:Rcotecacotcac:Rcoticot%;
therefore R=rta.nlrta.n7—r=gtan£tan1—r.
m n 2 2 n

155.  To find the surface and volume of a regular polyhedron.

£
The area of one face of the polyhedron is ﬁ:;coty—:, and

mFa® T
cot —.
4 m

Also the volume of the pyramid which has one face of the

2
polyhedron for base and O for vertex is géﬂl—i cot%; , and

therefore the surface of the polyhedron is

mFra® T

therefore the volume of the polyhedron is
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156. To find the volume of a parallelepiped in terms qf it8
edges and their inclinations to one another.

Let the edges be 04 =a, OB=5, OC =c; let the inclinations
be BOC=a, COA=B, AOB=y. Draw CE perpendicular to the
plane AOB meeting it at £. Describe a sphere with O as a
centre, meeting 04, 0B, OC, OF at a, b, c, e respectively.

The volume of the parallelepiped is equal to the product of its
base and altitude =absiny . CE = abcsin ysin cOe. The spherical
triangle cae is right-angled at ¢ ; thus

sin ¢Oe = sin cOa sin cae = sin B sin cab,
and from the spherical triangle cab

/(1 —cos® a — cos® B — cos® y + 2cos a cos 8 cos 7)
sin B8 8in y

sin cab=

therefore the volume of thre parallelepiped
=abe \/(1 — cos® a — cos® B — cos® y + 2 cos a cos B cos ).

157. To find the diagonal of a parallelepiped in terms of the
three edges which it meets and their inclinations to one another.

Let, the edges be 04 =a, 0B=15, OC =c; let the inclinations
be BOC=a, COA=B, AOB=vy. Let OD be the diagonal re-
quired, and let OZ be the diagonal of the face 04AB. Then

=O0F'+ ED*+ 20E . ED cos COE
=a* +b° + 2ab cos y + ¢* + 2cOF cos COE.
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Describe a sphere with O as centre meeting 04, 0B, OC, OF
at a, b, ¢, e respectively ; then (see Example 14, Chap. 1v.)

cos ¢0b sin aOe + cos cOa sin b0e

cos cOe = -
sin a0b

_ cosasin aOe + cos Bsin bOe _
siny ’

therefore
s o 79 g 2¢0F . .
0D*=a’+b*+¢" + 2abcos y + e (cos a sin aOe + cos B sin $0e),
Y

and OEsinaQOe=bsinvy, OE sinb0e =asiny;
therefore ‘0D’ =a®+* + ¢* + 2ab cos y + 2bc cos a + 2ca cos B.

158. To find the volume of a tetrakedron.

A tetrahedron is one-sixth of a parallelepiped which has the
same altitude and its base double that of the tetrahedron ; thus if
the edges and their inclinations are given we can take one-sixth
of the expression for the volume in Art. 156. The volume of a
tetrahedron may also be expressed in terms of its six edges; for
in the figure of Art. 156 let BC =a/, C4 =b', AB=¢'; then
b +c*—a” +a’-b" a®+b*—c®

o0 R e SV g
and if these values are substituted for cosa, cos 8, and cosy in
the expression obtained in Art. 156, the volume of the tetrahe-
dron will bé expressed in terms of its six edges.

The following result will be obtained, in which ¥V denotes the
volume of the tetrahedron,

cosa =
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144 V*=—a"b"c*
+ a’a”® (b +¢* — a”) + 6% (¢ + o — b%) + ¢*¢”* (a”® + 0" — %)
—a*(@® = b°) (&’ - ¢*) = 0" (8" - ¢*) (b" - a®) — ¢ (" — &°) (c° - D7)
Thus for a regular tetrahedron we have 144 V*= 24°,

159. If the vertex of a tetrahedron be supposed to be situ-
ated at any point in the plane of its base, the volume vanishes ;
hence if we equate to zero the expression on the right-hand side
of the equation just given, we obtain a relation which must hold
among the six straight lines which join four points taken arbi-
trarily in a plane,

Or we may adopt Carnot’s method, in which this relation is
established independently, and the expression for the volume of a
tetrahedron is deduced from it; this we shall now shew, and we
shall add some other investigations which are also given by
Carnot.

It will be convenient to alter the notation hitherto used, by
interchanging the accented and unaccented letters,

160. 7o find the relation holding among the six straight lines
which join four points taken arbitrarily in a plane.

Let 4, B, C, D be the four points. Let AB=¢, BC =a,
CA=0b; alsolet DA=a', DB=V, DC =

If D falls within the triangle ABC, the sum of the angles
ADB, BDC, CDA is equal to four right angles; so that

cos ADB =cos (BDC + CDA).

Hence by ordinary transformations we deduce
1=cos*ADB + cos’ BDC + cos® CDA—2cos A DBcos BDC cos CDA.

If D falls without the triangle ABC, one of the three angles
at D is equal to the sum of the other two, and the result just
given still holds.

3 2 2
Now cos ADB=% 70" ~¢
2a’b

expressed in a similar manner; substitute these values in the

, and the other cosines may be
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above result, and we obtain the required relation, which after
reduction may be exhibited thus,
0=-a%"’
+a%a* (B*+¢°—a®) + 0" 0 (¢ + &* - B°) + ¢ ¢* (a® + b° — ¢F)
—_ a’ (a'ﬁ — b’ﬂ) (a’Q 'ﬁ) b’ b” /Q) (b" ’2) — ci (c" - a”) (c'l — b’i)'

161. To express the volume of a tetrahedron in terms of its
six edges.

Let a, b, c be the lengths of the sides of a triangle ABC
forming one face of the tetrahedron, which we may call its base;
let o', b', ¢’ be the lengths of the straight lines which join 4, B, C
respectively to the vertex of the tetrahedron. Let p be the length
of the perpendicular from the vertex on the base; then the lengths
of the straight lines drawn from the foot of the perpendicular to
4, B, C respectively are ,/(a’®—p%), /(6" - p°), J(c* —p*). Hence
the relation given in Art. 160 will hold if we put ,/(a”®—p°) in-
stead of o/, /(0" —p°) instead of &', and ,/(c* —p°) instead of ¢’. °
‘We shall thus obtain

?° (2a°6° + 2b°¢* + 2¢%a* — @ — b* — ¢*) = - a®*c’
+ a13a8 (b! + c! - aﬂ) + b/?b’ (cﬂ.'_ aﬁ — b’) + c'fcﬂ (a’ + b’ — c!)
— a’ (alﬂ - bl’) (a’ﬂ —_ c”) — b? (blﬁ —_ c’i) (blﬁ — al') - c’ cl’ — a’!) (c" — b’ﬁ).

The coefficient of »* in this equation is sixteen times the
square of the area of the triangle 4BC; so that the left-hand
member is 144 V?, where V denotes the volume of the tetrahe-
dron. Hence the required expression is obtained.

162. To find the relation holding among the six arcs of great
circles which join four points taken arbitrarily on the surface of a
sphere.

Let 4, B, C, D be the four points. Let 4B=vy, B(C=aq,
CA=8;let DA=d', DB=f', DC =¥

As in Art. 160 we have
1 = cos*ADB + cos*’ BDC + 00s*C DA — 2 cos AD B cos BDC cosCDA.
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cosy — cos a’ cos 8
sin a'sin B’
may be expressed in a similar manner ; substitute these values in
the above result, and we obtain the required relation, which after

reduction may be exhibited thus,

1 = cos® a + cos® B + cos’ y + cos® o’ +°cos’ B’ + cos® y’

Now cos ADB = , and the other cosines

— cos’ a cos® o’ — cos® B cos® B’ — cos®y cos’y’

— 2 (cos a cos B cos y +cos a cos 8’ cosy’

+ cos B cos a’ cosy’ + cosy cos a’ cos )

+ 2(cos a.cos B cos o’ cos 8 + cos B cos y cos B’ cos y’
+ €08 y €os a cos ' cos a’).

163. 7o find the radius of the sphere circumscribing a tetra-
hedron.

Denote the edges of the tetrahedron as in Art. 161. Let the
sphere be supposed to be circumscribed about the tetrahedron,
and draw on the sphere the six arcs of great circles joining the
angular points of the tetrahedron. Then the relation given in
Art. 162 holds among the cosines of these six arcs.

Let r denote the radius of the sphere. Then

8 2
cOSa=1—2Sin’;=.l—2(éi)=l—-2-a?,;

and the other cosines may be expressed in a similar manner.
Substitute these values in the result of Art. 162, and we obtain,
after reduction, with the aid of Art. 161,
4x144 V=

2a$b’alﬂb” + 2b’c’b’fc'§ + 20’“’0”“” — alall - blbl‘ - cdcll.
The right-hand member may also be put into factors, as we see

by recollecting the mode in which the expression for the area of
a triangle is put into factors. Let aa’' + bb' + cc’ = 20 ; then

36 V" = o (0 — ad') (¢ — bb') (o — cc).
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EXAMPLES.

1. If I denote the inclination of two adjacent faces of a
regular polyhedron, shew that cos /=1 in the tetrahedron, =0
in the cube, =~} in the octahedron, =— % /5 in the dodecahe-
dron, and = - },/5 in the icosahedron.

2. 'With the notation of Art. 153, shew that the radius of
the sphere which touches one face of a regular polyhedron and all

the adjacent faces produced is § a cot g‘cot 3L

3. A sphere touches one face of a regular tetrahedron and
the other three faces produced : find its radius,

4. If a and b are the radii of the spheres inscribed in and
described about a regular tetrahedron, shew that b = 3a.

5. If a is the radius of a sphere inscribed in a regular tetra-
hedron, and R the radius of the sphere which touches the edges,
shew that R®=3a’.

6. 1If a is the radius of a sphere inscribed in a regular tetra-
hedron, and Z’ the radius of the sphere which touches one face and
the others produced, shew that R’ = 2a.

7. If a cube and an octahedron be described about a given
sphere, the sphere described about these polyhedrons will be the
same ; and conversely.

8. If a dodecahedron and an icosahedron be described about
a given sphere, the sphere described about these polyhedrons will
be the same ; and conversely.

9. A regular tetrahedron and a regular octahedron are in-
scribed in the same sphere: compare the radii of the spheres
which can be inscribed in the two solids.

10. The sum of the squares of the four diagonals of a paral-
lelepiped is equal to four times the sum of the squares of the
edges.
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11. If with all the angular points of any parallelepiped as
centres equal spheres be described, the sum of the intercepted
portions of the parallelepiped will be equal in volume to one of
the spheres.

12. A regular octahedron is inscribed in a cube so that the
corners of the octahedron are at the centres of the faces of the
cube : shew that the volume of the cube is six times that of the
octahedron.

13. It is not possible to fill any given space with a number
of regular polyhedrons of the same kind, except cubes ; but this
may be done by means of tetrahedrons and octahedrons which
have equal faces, by using twice as many of the former as of
the latter.

14. A spherical triangle is formed on the surface of a sphere
of radius p; its angular points are joined, forming thus a pyramid
with the straight lines joining them with the centre: shew that
the volume of the pyramid is

3p° J/(tanrtanr tanr tanr),

where 7, 7, r,, 7, are the radii of the inscribed and escribed cir-
cles of the triangle.

15. The angular points of a regular tetrahedron inscribed
in a sphere of radius r being taken as poles, four equal small
circles of the sphere are described, so that each circle touches
the other three. Shew that the area of the surface bounded by

. 1
. . 1
each circle is 2xr (l - .,/J) .

16. If O be any point within a spherical triangle 4BC, the
product of the sines of any two sides and the sine of the in-
cluded angle

=sin A0 sin BO sin CO {cotAOsinBOG’

+ cot BO sin COA + cot COsin 4 OB} .
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XIV. ARCS DRAWN TO FIXED POINTS ON THE
SURFACE OF A SPHERE.

164. 1IN the present Chapter we shall demonstrate various
propositions relating to the arcs drawn from any point on the
surface of a sphere to certain fixed points oun the surface.

165. ABC is a spherical triangle having all its sides quad-
rants, and therefore all its angles right angles; 7' is any point
on the surface of the sphere : to shew that

cos®* T4 + cos*TB + cos*TC = 1.

B

4

By Art. 37 we have
cos8 7’4 = cos AB cos T'B + sin A Bsin 7B cos TBA
=3gin 7'B cos TBA.
Similarly cos 7'C =sin T'B cos TBC =sin T'Bsin TBA.
Square and add ; thus
cos* T4 + cos’TC =sin*TB=1 - cos* T'B;
therefore cos®* 74 + cos*TB + cos*TC = 1.
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166. ABC is a spherical triangle having all its sides quad-
rants, and therefore all its angles right angles; 7' and U are any
points on the surface of the sphere: to shew that

co8 TU = cos T'A cos UA + cos T'B cos UB + cos T'C cos UC.

B

4 - C
By Art. 37 we have
co8 TU = cos T'A cos UA + sin T4 sin UA cos TAU,
and cos TAU =cos (BAU - BAT)
=co8 BAU cos BAT +s8in BAU sin BAT
=co8 BAU cos BAT + cos CAU cos CAT ;
therefore cos T’U =cos T4 cos UA
+ sin 7'4 sin UA (cos BAU cos BAT + cos CAU cos CAT);
and cos B =sgin T4 cos BAT,
cos UB =sin UA cos BAU,
co8 7'C' =sin 7'4 cos CAT,

v cosUC =sin U4 cos CAU;
therefore

cos T'U = cos T4 cos UA + cos T'B cos UB + cos T'C cos UC.
167. We leave to the student the exercise of shewing that

the formule of the two preceding Articles are perfectly general for
all positions of 7' and U, outside or inside the triangle 4BC: the
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demonstrations will remain essentially the same for all modifica-
tions of the diagrams. The formule are of constant application
in Analytical Geometry of three dimensions, and are demonstrated
in works on that subject; we have given them here as they may
be of service in Spherical Trigonometry, and will in fact now be
used in obtaining some important results.

168. Let there be any number of fixed points on the surface
of a sphere; denote them by H,, H, H,,.... Let T be any point
on the surface of a sphere. We shall now investigate an ex-
pression for the sum of the cosines of the arcs which join 7' with
the fixed points.

Denote the sum by %; so that
S=cos TH, +cos TH +cos TH, + ...

Take on the surface of the sphere a fixed spherical triangle
ABC, having all its sides quadrants, and therefore all its angles
right angles.

Let A, p, v be the cosines of the arcs which join 7' with
A, B, C respectively; let [, m , n, be the cosines of the arcs which
join H with 4, B, C respectively; and let a similar notation be
used with respect to H, H,...

Then, by Art. 166,
S=lA+mp+ny+IA+mptny+ ...
=P+ Qp+ Ry;

where P stands for [, +1 +17 +..., with corresponding meanings
for @ and R.

169. It will be seen that P is the value which 3 takes when
T coincides with 4, that @ is the value which 3 takes when 7'
coincides with B, and that R is the value which 3 takes when 7'
coincides with C. Hence the result expresses the general value
of 3 in terms of the cosines of the arcs which join 7" to the fixed
points 4, B, C, and the particular values of 3 which correspond
to these three points.
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170. We shall now transform the result of Art. 168,
Let G=J(P+ @ +R);
and let a, B, y be three arcs determined by the equations

P Q R
cosa=, cosB:C—Y,, CBY=7;

then S =G (Acosa+pcosB+vcosy)

Since cos*a + cos* B + cos®y =1, it is obvious that there will be
some point on the surface of the sphere, such that a, B, y are the
arcs which join it to 4, B, C respectively; denote this point by
U: then, by Art. 166,

cos TU =X cos a + p.cos B+ vcosy;
and finally
S=Gcos I'U.

Thus, whatever may be the position of 7', the sum of the cosines
of the arcs which join 7' to the fixed points varies as the cosine
of the single arc which joins 7' to a certain fixed point U.

We might take G either positive or negative; it will be
convenient to suppose it positive.

171. A sphere is described about a regular polyhedron;
from any point on the surface of the sphere arcs are drawn to the
solid angles of the polyhedron: to shew that the sum of the cosines
of these arcs is zero.

From the preceding Article we see that if @ is not zero
there is ome position of 7' which gives to 3 its greatest positive
value, namely, when 7' coincides with U. But by the symmetry
of a regular polyhedron there must always be more than one posi-
tion of 7' which gives the same value to =. For instance, if we
take a regular tetrahedron, as there are four faces there will at
least be three other positions of 7' symmetrical with any assigned
position,

Hence G must be zero; and thus the sum of the cosines of the

arcs which join T to the solid angles of the regular polyhedron is
zero for all positions of T.
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172. Since @ =0, it follows that P, @, R must each be zero;
these indeed are particular cases of the general result of Art. 171.
See Art. 169.

173. The result obtained in Art. 171 may be shewn to hold
also in some other cases. Suppose, for instance, that a rectangu-
lar parallelepiped is inscribed in a sphere; then the sum of the
cosines of the arcs drawn from any point on the surface of the
sphere to the solid angles of the parallelepiped is zero. For here
it is obvious that there must always be at least one other position
of T symmetrical with any assigned position. Hence by the
argument of Art. 171 we must have ¢ = 0.

174. Let there be any number of fixed points on the surface
of a sphere ; denote them by H, H, H,... Let 7' be any point on
the surface of the sphere. 'We shall now investigate a remarkable
expression for the sum of the squares of the cosines of the arcs
which join 7’ with the fixed points.

Denote the sum by =; so that _

3 =cos’TH, + cos’TH, +cos’TH, + ....

Take on the surface of the sphere a fixed spherical triangle
ABC, having all its sides quadrants, and therefore all its angles
right angles.

Let A, g, v be the cosines of the arcs which join 7' with 4, B, C
respectively ; let /,, m,, n, be the cosines of the angles which join
H, with 4, B, C respectively ; and let a similar notation be used
with respect to H,, H,...

Then, by Art. 166,

S=0CA+mp+np) + (A +mp+ny)+ ..
Expand each square, and rearrange the terms; thus
S =P\ + Qi + BV + 2ppw + 2qvA + 2rAp,
where P stands for [*+0°+17+...,
and p stands for m n, + mmn, +mmn, + ...,
with corresponding meanings for ¢ and g, and for £ and r.
T. 8. T. K
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We shall now shew that there is.some position of the triangle
ABC for which p, ¢, and r will vanish; so that we shall then
have

S=P\N+ Q' + Ry

Since 3 is always a finite positive quantity there must be some
position, or some positions, of 7' for which 3 has the largest value
which it can receive. Suppose that 4 has this position, or one
of these positions if there are more than one. When 7' is at 4
we have p and v each zero, and A equal to unity, so that 3 is then
equal to P.

Hence, whatever be the position of 7,

P is never less than PA* + Qu + Rv* + 2ppv + 2qvA + 27)p,
that is, by Art. 165,
P (A + p® ++°) is never less than
P\ + Qp* + BV + 2ppv + 2gvA + 2rAp ;
therefore

(P- Q) p*+ (P — R)+' is never less than 2puv + 2gvA + 2rAp.

Now suppose v=0; then 7' is situated on the great circle of
which 4B is a quadrant, and whatever be the position of 7' we
have

(P - Q) ¢’ not less than 2rAp,
and therefore P — @ not less than 2—’? .

But now :: is equal to - e g%, this is numerically equal to

tan 7'B, and so may be made numerically as great as we please,
positive or negative, by giving a suitable position to 7. Thus

2r\ .
P — @ must in some cases be less than FM. if » have any value dif-

ferent from zero.

Therefore » must = 0.
In like manner we can shew that ¢ must=0.



ON THE SURFACE OF A SPHERE. 131

Hence with the specified position for 4 we arrive at the result
that whatever may be the position of 7'

3=PN+ Qu’ + RV + 2ppw.

Let us now suppose that the position of B is so taken that
when 7' coincides with B the value of 3 is as large as it can be
for any point in the great circle of which 4 is the pole. When 7'
is at B we have A and v each zero, and x equal to unity, so that
3 is then equal to Q. For any point in the great circle of which
4 is the pole A is zero ; and therefore for any such point

@ is not less than Qu* + RBv* + 2ppuv,
that is, by Art. 165,
@ (p* + v*) is not less than Qu* + Rv* + 2ppuv ;

therefore @ — R is not less than 2—1:& .
Hence by the same reasoning as before we must have p=0.
Therefore we see that there must be some position of the
triangle 4 BC, such that for every position of 7'

3 =P\ + Qu'+ R,

175. The remarks of Art. 169 are applicable to the result
Jjust obtained.

176. In the final result of Art. 174 we may shew that R is
the least value which 3 can receive. For, by Art. 165,
S=PV+@Qp+R(1-\=y)
—R+(P-B)N+(@Q-R)';
and by supposition neither P — R nor @ — R is negative, so that
3 cannot be less than .

177. A sphere is described about a regular polyhedron ; from
any point on the surface of the sphere arcs are drawn to the
solid angles of the polyhedron: it is required to find the sum of
the squares of the cosines of these arcs.

K 2
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With the notation of Art. 174 we have
3 =P\ +Qp' + R
‘We shall shew that in the present case P, @, and R must all
be equal. For if they are not, one of them must be greater than

each of the others, or one of them must be less than each of the
others.

If possible let the former be the case; suppose that P is
greater than @, and greater than R.

Now S3=P(1-p"-V)+ Q'+ R
=P—(P-Q)u’-(P-R)v;
this shews that 3 is always less than P except when p=0 and
v=0: that is 3 is always less than P except when T is at 4, or
at the point of the surface which is diametrically opposite to 4.
But by the symmetry of a regular polyhedron there must always
be more than two positions of 7' which give the same value to 3.
For instance if we take a regular tetrahedron, as there are four
faces there will be at least three other positions of 7' symmetrical

with any assigned position. Hence P cannot be greater than @
and greater than R.

In the same way we can shew that one of the three P, Q,
and R, cannot be less than each of the others.

Therefore P=@ =R ; and therefore by Art. 165 for every
position of T we have 3 = P.

Since P= Q= each of them = 5 (P+Q+ )

=%{ll’+m,"+nl’+l,’+m,’+n,'+...}
S
= —3- ,
where S is the number of the solid angles of the regular poly-
g gular poly
hedron.

by Art. 165,
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Thus the sum of the squares of the cosines of the arcs which
Join any point on the surface of the sphere to the solid angles of
the regular polyhedron is one third of the number of the solid
angles.

178. Since P= @ = R in the preceding Article, it will follow
that when the fixed points of Art. 174 are the solid angles of
a regular polyhedron, then for any position of the spherical tri-
angle A BC we shall have p =0, ¢=0, r=0.

For taking any position for the spherical triangle 4BC we
have
S=P\ + Qpf + Ry + 2ppv + 2qvA + 2rAp ;
then at 4 we have =0 and v=0, so that P is then the value
of 3 ; similarly @ and R are the values of = at B and C respec-
tively. But by Art. 177 we have the same value for 3 whatever
be the position of 7'; thus ’

P=P(N +p* + ")+ 2ppv + 2gvA + 2r\p;
therefore 0 = 2ppv + 2qvA + 2rip.
This holds then for every position of 7. Suppose 7' is at any

point of the great circle of which 4 is the pole; then A =0: thus
we get puv =0, and therefore p =0. Similarly ¢ =0, and r=0.

179. Let there be any number of fixed points on the surface
of a sphere ; denote them by H,, H, H,... ; from any two points
T and U on the surface of the sphere arcs are drawn to the fixed
points : it is required to find the sum of the products of the cor-
responding cosines, that is

cos TH, cos UH, + cos TH, cos UH, + cos TH, cos UH, + ...

Let the notation be the same as in Art. 174 ; and let X', p/, v/
be the cosines of the arcs which join U with 4, B, C respectively.
‘Then by Art. 166,

cos TH, cos UH, = (N + pmy +vi)) (NG + p'm, +v'n,) =
AV + pp'm, 4 vv'mg® + (M + p) Yoy + (' + v Yy + (VA + A )by,
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Similar results hold for cos 7'H, cos UH, cos TH, cos UH,,...
Hence, with the notation of Art. 174, the required sum is

MNP+ pp'Q+ R+ (w +vp)p + (W + M) g + (A’ + p)r.

Now by properly choosing the position of the triangle 4BC
we have p, ¢, and r each zero as in Art. 174; and thus the
required sum becomes

AP+ pup'Q +w'R.

180. The result obtained in Art. 174 may be considered
as a particular case of that just given ; namely the case in which
the points 7" and U coincide.

, 181. A sphere is described about a regular polyhedron ; from
any two points on the surface of the sphere arcs are drawn to
the solid angles of the polyhedron: it is required to find the sum
of the products of the corresponding cosines.

‘With the notation of Art. 179 we see that the sum is
MNP+ pp'Q +wWR.

And here P=Q=R=§, by Art. 177.

Thus the sum = '—g AN + pp’ +w') = g cos I'U.

Thus the sum of the products of the cosines is equal to the
product of the cosine of TU into a third of the number of the solid
angles of the regular polyhedron.

182. The result obtained in Art. 177 may be considered as
a particular case of that just given; namely, the case in which
the points 7' and U coincide.

183. If TU is a quadrant then cos TU is zero, and the
sum of the products of the cosines in Art. 181 is zero. The
results p=0, ¢ =0, =0, are easily seen to be all special ex-
amples of this particular case.
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XV. MISCELLANEOUS PROPOSITIONS.

184. To find the locus of the vertex of a spherical triangle of
given base and area.

Let AB be the given base,=c suppose, AC =60, BAC =¢.
Since the area is given the spherical excess is known; denote
it by £; then by Art. 103,

cot 3 & = cot 36 cot ¢ cosec p +cot ¢ ;
therefore sin (p— 3 E)=cot §f0cotf csini ¥;
therefore 2coticsin%Eoos’%= sin @ sin (¢ - 3 E) ;
therefore

oosoeot;cainwuinocos(¢-;E+’-2')=-oot;csinw.

Comparing this with equation (1) of Art. 133, we see that the
required locus is a circle. If we call a, 8 the angular co-ordinates
of its pole, we have

tama= 1 _ tanic
“=Cotlcsin}Z sniE’
k3
B=%E_§'

It may be presumed from symmetry that the pole of this
circle is in the great circle which bisects 4B at right angles;
and this presumption is easily verified. For the equation to
that great circle is

0 =cos6 cos (’—;—% + sin 6 sin (E—S)cos(cﬁ--:r)

and the values 6 = a, ¢ =3 satisfy this equation.
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185. To find the angular distance between the poles of the
inscribed and circumscribed circles of a triamgle.

" Let P denote the pole of the inscribed circle, and ¢ the pole
of the circumscribed circle of a triangle ABC ; then PAB =134,
by Art. 89, and Q4B = 8- C, by Art. 92 ; hence

cos PAQ=cos } (B-C);
and cos PQ = cos P4 cos QA4 +sin P4 sin Q4 cos } (B - C).
Now, by Art. 62 (see the figure of Art. 89),
cos PA =cos PE cos AE = cos r cos (8 — a),
sin PE_ sinr
sin PAE ~ sin 34’

sin P4 =

thus
cos PQ = cos R cos r cos (8 — a) +sin B sin r cos § (B — C) cosec 4.

Therefore, by Art. 54
cos PQ) = cos R cos r cos (8 — @) + sin B sin rsin 4 (d + ¢) cosec }a,

PQ

therefore — = =cot r cos (8 — a) + tan R sin } (b + ¢) cosec }a.

cos Bsinr

Now ootr:ﬁig, tanR=2sin%asin%bsin%c’

n n
therefore c:Tolsr__}s)ig'r = %{si.nsoos(s-a) +2sin § (b+c)sin 45 si.n%c}

1 . . .
= %(sma+smb+smc).
b
Hence (6?—18{2%) -1= Ilh—,(sina+sinb+ sin¢)’— 1
= (cot r + tan R)* (by Art. 94);

therefore cos® PQ = cos® R sin® r + cos® (R —r),

and sin® PQ =sin® (R — r) — cos’ R sin® 7.
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186. To find the angular distance between the pole of the
circumscribed circle and the pole of one of the escribed circles of
a triangle.

Let @ denote the pole of the circumscribed circle, and @, the
pole of the escribed circle opposite to the angle 4. Then it may
be shewn that QBQ, =4 = + 3 (C — 4), and

cos @@, = cos B cos r, cos (8 — ¢) —sin Rsin» sin} (C'— 4)sec} B
=cos R cos 7, cos (8 — ¢) — sin B sin7 sin§ (¢ —a) cosec 4b.
Therefore

cos QQ,

Snr oo B =cot 7, cos (8—c¢) -tanRsin% (c— a) cosec 4 ;

by reducing as in the preceding Article, the right-hand member of
the last equation becomes

1 . . .
o (sin b +sinc—-sina);
-

hence <M—‘— )’ —1=(tan R - cotr,)’, (Art. 94);

cos B sin »,
therefore cos’ @@, = cos® B sin’r, + cos® (R + 1)),
and sin’ @@, =sin® (B +r,) — cos’ B sin’r .

187. The arc which passes through the middle points of the
sides of amy triangle upon a given base will meet the base produced
at a fixed point, the distance of which from the middle point of the
base 8 a quadrant.

Let ABC be any triangle, £ the middle point of AC, and F
the middle point of 4B ; let the arc which joins Z and F when
produced meet BC produced at @. Then
sin BQ sin BFQ sin 4Q sin AFQ
sin BF ~ sin BQF’ sin AF ~ sin AQF’

sin BQ sin AQF

therefore sin 4Q = sin BOF
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sin CQ _sin AQF

sin AQ ~sin CQF’

therefore sin BQ=sin CQ; therefore BQ +CQ = =.

similarly

Hence if D be the middle point of BC
DQ=%(BQ+CQ)=4%m.
188, If three arcs be drawn from the angles of a spherical

triangle through amy point to meet the opposite sides, the products
of the sines of the alternate segments of the sides are equal.

A,

(/4

Let P be any point, and let arcs be drawn from the angles
4, B, C passing through P and meeting the opposite sides at
D, E, F. Then
sin BD _sin BPD gin CD _sin CPD
sin BP ~sin BDP’ sin CP sin CDP’
sin BD sin BPD sin BP
sin CD  sin CPD sinCP’

sin CE an Sili_{_]” .
sin A¥ sin BF'’

therefore

Similar expressions may be found for

and hence it follows obviously that

sin BD sin CE sin 4F .
sin CD sin AE sin BF ’

therefore sin BD sin CE sin AF = sin O D sin A E sin BF.
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189. Conversely, when the points D, Z, F in the sides of a
spherical triangle are such that the relation given in the preceding
Article holds, the arcs which join these points with the opposite
angles respectively pass through a common poiwnt. Hence the
following propositions may be established: the perpendiculars
from the angles of a spherical triangle on the opposite sides
meet at a point; the arcs which bisect the angles of a spherical
triangle meet at a point; the arcs which join the angles of a
spherical triangle with the middle points of the opposite sides
meet at a point; the arcs which join the angles of a spherical
triangle with the points where the inscribed circle touches the
opposite sides respectively meet at a point.

Another mode of establishing such propositions bas been
exemplified in Arts. 139 and 140.

190. If AB and A'B’ be any two equal arcs, and the arcs
AA’ and BB’ be bisected at right amgles by arcs meeting at P,
then AB and A'B’ subtend equal angles at P.

For PA =PA’ and PB=PB ; hence the sides of the triangle
FPAB are respectively equal to those of PA'B’; therefore the angle
APB =the angle 4'PB',

This simple proposition has an important application to the
motion of a rigid body of which one point is fixed. For conceive
a sphere capable of motion round its centre which is fixed ; then it
appears from this proposition that any two fixed points on the
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sphere, as 4 and B, can be brought into any other positions, as
4’ and B, by rotation round an axis passing through the centre of
the sphere and a certain point P. Hence it may be inferred that
any change of position in a rigid body, of which one point is fixed,
may be effected by rotation round some axis through the fixed
point. .
(De Morgan’s Differential and Integral Calculus, page 489.)
191. Let P denote any point within any plane angle 40B,
and from P draw perpendiculars on the straight lines 04 and
OB then it is evident that these perpendiculars include an angle
which is the supplement of the angle AOB. The corresponding
fact with respect to a solid angle is worthy of notice. Let there
be a solid angle formed by three plane angles, meeting at a point
0. From any point P within the solid angle, draw perpendicu-
lars PL, PM, PN on the three planes which form the solid angle;
then the spherical triangle which corresponds to the three planes
LPM, MPN, NPL is the polar triangle of the spherical triangle
which corresponds to the solid angle at 0. This remark is due to
Professor De Morgan. ‘

192. Suppose three straight lines to meet at a point and form
a solid angle; let @, B, and y denote the angles contained by these
three straight lines taken in pairs: then it has been proposed to
call the expression ,/(1 — cos’a — cos*B — cos’y + 2 cos a cos B cos y),
the sine of the solid angle. ‘See Baltzer’s Theorie...der Determi-
nanten, 2nd edition, page 177. Adopting this definition it is easy
to shew that the sine of a solid angle lies between zero and unity.

We know that the area of a plane triangle is half the product
of two sides into the sine of the included angle: by Art. 156 we
have the following analogous proposition ; the volume of a tetra-
hedron is one sixth of the product of three edges into the sine of
the solid angle which they form.

Again, we know in mechanics that if three forces acting at a
point are in equilibrium, each force is as the sine of the angle
between the directions of the other two: the following proposition -
is analogous ; if four forces acting at a point are in equilibrium
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each force is as the sine of the solid angle formed by the directions
of the other three. See Statics, Chapter II.

193. Let a sphere be described about a regular polyhedron ;
let perpendiculars be drawn from the centre of the sphere on the
faces of the polyhedron, and produced to meet the surface of
the sphere : then it is obvious from symmetry that the points of
intersection must be the angular points of another regular poly-
hedron.

This may be verified. It will be found on examination that if
§ be the number of solid angles, and # the number of faces of one
regular polyhedron, then another regular polyhedron exists which
has S faces and F solid angles. See Art. 151.

194. Polyhedrons. The result in Art. 150 was first obtained
by Euler; the demonstration which is there given is due to
Legendre. The demonstration shews that the result is true in
many cases in which the polyhedron has re-entrant solid angles ;
for all that is necessary for the demonstration is, that it shall be
possible to take a point within the polyhedron as the centre of a
sphere, so that the polygons, formed as in Art. 150, shall not have
any coincident portions. The result, however, is generally true,
even in cases in which the condition required by the demonstra-
tion of Art. 150 is not satisfied. We shall accordingly give
another demonstration, and shall then deduce some important
consequences from the result. We begin with a theorem which
is due to Cauchy. '

195. Let there be any network of rectilineal figures, not neces-
sarily in one plane, but not forming a closed surface,; let B be the
number of edges, F the number of figures, and S the number of
corner points : then F+S=E + 1.

This theorem is obviously true in the case of a single plane
figure ; for then =1, and S=E. It can be shewn to be gene-
rally true by induction. For assume the theorem to be true for
a network of # figures; and suppose that a rectilineal figure of
n sides is added to this network, so that the network and the
additional figure have m sides coincident, and therefore m + 1
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corner points coincident. And with respect to the new network
which is thus formed, let E’, F’, S’ denote the same things as
E, F, § with respect to the old network. Then

E=E+n-m, F=F+1, §=8+n-(m+1);
therefore F'+8~-E=F+S8S-E.

But F+8=F +1, by hypothesis; therefore #'+ S =E'+1.

196. To demonstrate Euler’s theorem we suppose one face of
a polyhedron removed, and we thus obtain a network of recti-
lineal figures to which Cauchy’s theorem is applicable. Thus

F-1+8=FE+1;
therefore F+8=E+2.

197. In any polyhedron the number of faces with an odd
number of sides i8 even, and the number of solid angles jformed
with an odd number of plane angles 18 even.

Tet a, b, ¢, d,...... denote respectively the numbers of faces
which are triangles, quadrilaterals, pentagons, hexagons,......
Let @, B, 7, 3,...... denote respectively the numbers of the solid
angles which are formed with three, four, five, six,...... plane
angles.

Then, each edge belongs to fwo faces, and terminates at fwo

solid angles ; therefore
2F =3a+4b+5c+6d+...... ,

2E =3a+4B+5y+68+.......

From these relations it follows that a+c+e+...... , and

at+y+et...... are even numbers. '

198. With the notation of the preceding Article we have
F=a+b+c+d+...... ,
S=a+B+y+8+......

From these combined with the former relations we obtain
2E-3F=b+2c+3d+...... ,
2E-38S=B+2y+38+......

Thus 2Z cannot be less than 37, or less than 3S.
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199. From the expressions for E, F, and S, given in the
two preceding Articles, combined with the result 27 + 28 = 4 + 2,
we obtain

2(@+bdb+c+d+...)+2(a+B+y+8+..)=4+3a+4b+5c+6d+...,
2(@+b+c+d+..)+2(a+B+y+3+...)=4+3a+4B+5y+68+...,

therefore 2(a+B+y+8+...)—(a+2b+3c+4d+...)=4...(1),
2(@+b+c+d+..)—(a+2B+3y+48+...)=4...(2).
Therefore, by addition
a+a—(c+y)—2(d+8) -3 (e+e)—......=8.
Thus the number of triangular faces together with the number

of solid amgles formed with three plane angles cannot be less
than eight.

Again, from (1) and (2), by eliminating a, we obtain
3a+2b+c—e—-2f—...... —2B—4y—...... =12,
S0 that 3a + 2b+c cannot be less than 12. From this result
various inferences can be drawn ; thus for example, a solid cannot
be formed which shall have nmo triangular, quadrilateral, or pen-
tagonal faces.

In like manner, we can shew that 3a + 28 +y cannot be less
than 12.

200. Poinsot has shewn that in addition to the five well-
known regular polyhedrons, four other solids exist which are
perfectly symmetrical in shape, and which might therefore also be
called regular. We may give an idea of the nature of Poinsot’s
results by referring to the case of a polygon. Suppose five points
4, B, C, D, E, placed in succession at equal distances round the
circumference of a circle. If we draw a straight line from each
point to the next point, we form an ordinary regular pentagon.
Suppose however we join the points by straight lines in the fol-
lowing order, 4 to C, C to E, E to B, B to D, D to 4; we thus
form a star-shaped symmetrical ﬁgure, which might be conmdered
a regular pentagon.
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It appears that, in a like manner, four, and only four, new
regular solids can be formed. To such solids, the faces of which
intersect and cross, Euler’s theorem does not apply.

201. Let us return to Art. 195, and suppose e the number
of edges in the bounding contour, and ¢ the number of edges
within it ; also suppose s the number of corners in the bounding
contour, and & the number within it. Then

E=c+é; S=8+¢;

therefore l+e+é =s8+6+F.
But e=38;
therefore l1+d=¢+PF.

We can now demonstrate an extension of Euler’s theorem,
which has been given by Cauchy.

202. Let a polyhedron be decomposed into any number of
polyhedrons at pleasure ; let P be the number thus formed, S the
number of solid angles, F the number of faces, E the number of
edges: then S+ F=E+P+1.

For suppose all the polyhedrons united, by starting with one
and adding one at a time. Let ¢, f; 8 be respectively the numbers
of edges, faces, and solid angles in the first; let ¢, /', s’ be
respectively the numbers of edges, faces, and solid angles in the
second which are not common to it and the first; let ¢”, /", s”
be respectively the numbers of edges, faces, and solid angles in
the third which are not common to it and the first or second;
and so on. Then we have the following results, namely, the first
by Art. 196, and the others by Art. 201 ;

s+f=e+2,
§+f'=€e+1,
&'+ f'=¢€"+1,

By addition, since s+ & + 8" + ... =8, f+ /' +f" +...=F, and

e+é +¢e +...= E, we obtain
S+F=E+P+1.
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203. The following references will be useful to those who
study the theory of polyhedrons. Euler, Nowvi Commentarii
Academice. ... Petropolitance, Vol. 1v. 1758 ; Legendre, Géométrie ;
Poinsot, Journal de I'Ecole Polytechnique, Cahier x; Cauchy,
Journal de I Ecole Polytechnique,Cahier xv1; Poinsot and Bertrand,
Comptes Rendus...de U Académie des Sciences, Vol. xLvi; Catalan,
Théorémes et Problémes de Géométrie Elémentaire; Kirkman, Phi-
losophical Transactions for 1856 and subsequent years; Listing,
Abhandlungen der Koniglichen Gesellschaft...zu GQittingen, Vol. x.

MISCELLANEOUS EXAMPLES.

1. Find the locus of the vertices of all right-angled spherical
triangles having the same hypotenuse; and from the equation
obtained, prove that the locus is a circle when the radius of the
sphere is infinite.

2. AB is an arc of a great circle on the surface of a sphere, C
its middle point: shew that the locus of the point P, such that
the angle 4 PC = the angle BPC, consists of two great circles at
right angles to one another. Explain this when the triangle
becomes plane.

3. On a given arc of a sphere, spherical triangles of equal
area are described: shew that the locus of the angular point
opposite to the given arc is defined by the equation

R L)

sin 6 sin 0

where 2a is the length of the given arc, 6 the arc of the great

circle drawn from any point P in the locus perpendicular to the

given arc, ¢ the inclination of the great circle on which 6 is
T.8. T. L
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measured to the great circle bisecting the given arc at right
angles, and B a constant.

4. In any spherical triangle

_cot A cot a + cot B cot b

tmm"cot;acotb-cosA cos B

5. If0, ¢, ¢ denote the distances from the angles 4, B, C
respectively of the point of intersection of arcs bisecting the
angles of the spherical triangle 4 BC, shew that

cos 0 sin' (b — ¢) + cos ¢ sin (¢ — a) + cos Y sin (¢ — b) =0.

6. If A, B', (" be the poles of the sides BC, C4, AB of a
spherical triangle 4 BC, shew that the great circles 44’, BB, CC’
meet at a point P, such that

cos PA cos BC = cos PBcos CA =cos PC cos AB.

7. If O be the point of intersection of arcs 4D, BE, CF
drawn from the angles of a triangle perpendicular to the opposite
sides and meeting them at D, Z, F respectively, shew that

tan AD tan BE tan CF
tan 0D’ tan OF’ tan OF

are respectively equal to

cos d + cos B N o8 C
cos BeosC’ cos 4 cos C’ cosd cos B’

8. If p, g, r be the arcs of great circles drawn from the
angles of a triangle perpendicular to the opposite sides, (a, o),
(B, B'), (v, ¥)) the segments into which these arcs are divided,
shew that

tan a tan o’=tan B tan ' =tan y tan y’;

cosp _ cosg cos 7
cosacosa’ cosfBcos B cosycosy

and
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9. In a spherical triangle if arcs be drawn from the angles to
the middle points of the opposite sides, and if a, o’ be the two
parts of the one which bisects the side a, shew that

s}_ng./ =2cos 2.
sina 2

10. The arc of a great circle bisecting the sides 4B, AC of a
spherical triangle cuts BC produced at @ : shew that

. a . ¢—b . ¢c+d
cos 4@ sin g = sin ——sin ——.

11. If ABCD be a spherical quadrilateral, and the opposite
sides 4B, CD when produced meet at E, and 4D, BC meet at F,
the ratio of the sines of the arcs drawn from Z at right angles to
the diagonals of the quadrilateral is the same as the ratio of those

from F.

12. If ABCD be a spherical quadrilateral whose sides 4B,
DC are produced to meet at P, and 4D, BC at @, and whose
diagonals AC, BD intersect at R, then

sin ABsin CD cos P ~ sin AD sin BC cos @ = sin AC sin BD cos R.

13. If A’ be the angle of the chordal triangle which corre-
sponds to the angle 4 of a spherical triangle, shew that

cos 4’ =sin (S — 4) cos g.

14. If the tangent of the radius of the circle described about a
spherical triangle is equal to twice the tangent of the radius of the
circle inscribed in the triangle, the triangle is equilateral.

15. The arc AP of a circle of the same radius as the sphere
is equal to the greater of two sides of a spherical triangle, and-
the arc 4@ taken in the same direction is equal to the less; the

sine PM of AP is divided at Z, so that ﬁl‘;

= the natural cosine

L2
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of the angle included by the two sides, and £Z is drawn parallel
to the tangent to the circle at @. Shew that the remaining side
of the spherical triangle is equal to the arc QPZ.

16, If through any point P within a spherical triangle 4BC
great circles be drawn from the angular points 4, B, C' to meet
the opposite sides at a, b, ¢ respectively, prove that

sin Pa cos PA  sin Pbcos PB  sin Pccos PC

sin da sin Bb sinCe =1

17. A and B are two places on the Earth’s surface on the
same side of the equator, 4 being further from the equator
than B. If the bearing of 4 from B be more nearly due East
than it is from any other place in the same latitude as B, find
the bearing of B from 4.

18. From the result given in example 18 of Chapter V. infer
the possibility of a regular dodecahedron.

19. A4 and B are fixed points on the surface of a sphere, and
P is any point on the surface. Ifa and b are given constants,
shew that a fixed point § can always be found, in 4B or 4B pro-
duced, such that

acos AP + b cos BP =scos SP,
where g is a constant.
20. A4, B, C,... are fixed points on the surface of a sphere;

a, b, c,... are given constants. If P be a point on the surface of
the sphere, such that

acos AP +bcos BP+ccos CP+ ... = constant,

shew that the locus of P is a circle.
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XVI. NUMERICAL SOLUTION OF SPHERICAL
TRIANGLES.

204. We shall give in this Chapter examples of the nume-
rical solution of Spherical Triangles.

We shall first take rlght-angled triangles, and then oblique-
angled triangles. .

Right-Angled Triangles.

205. Given a=37°48"12", b =59°44"16", C=90"
To find ¢ we have
€08 ¢ = CO8 & c0S b,
L cos 37°48' 12" = 9-8976927
L cos 59° 44' 16" = 9-7023945
L cos ¢ +10=19-6000872
c=166°32'6".
To find 4 we have
cot A = cot asin b,
L cot 37° 48' 12” = 10-1102655
Lsin 59° 44’ 16” = 9-9363770
L cot A +10 = 200466425
4 =41°55'45",
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To find B we have
cot B =cot bsin a,
Lcot 59° 44' 16" = 9:7660175
L sin 37°48°12” = 9-7874272

L cot B+ 10 =19-5534447
B=170°19"15".

206. Given 4 =55°32"45", C=90°% ¢=98"14'24".

To find @ we have
sina=sin ¢sin 4,
L sin 98° 14’ 24” = 99954932
L sin 55° 32' 45" = 99162323
Lsina+10 =19-9117255
a=54°41' 35",

To find B we have
cot B =cosctan 4.

Here cos ¢ s negative ; and therefore cot B will be negative,
and B greater than a right angle. The numerical value of cosc
is the same as that of cos 81° 45’ 36",

L cos 81° 45’ 36" = 9-1563065

L tan 55° 32" 45" = 10-1636102

L cot (180°~ B) + 10 =19-3199167
180°-B= 78°12" 4"

B =101°47"56".
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To find b we have
tan b =tan ¢ cos 4.

Here tanc is negative; and therefore tanb will be negative
and b greater than a quadrant.

L tan 81° 45’ 36” =10-8391867
Lcos 55° 32’ 45" = 9-7526221

L tan (180° — b) + 10 = 20-5918088
180°—b= 75°38 32"
b=104°21’28".

207. Given 4 =46°15" 25", C'=90° a=42°18"45",
To find ¢ we have

sinc=——
sind’

Lsinc=10+ Lsina—Lsin 4,
10 + L sin 42° 18’ 45" = 19-8281272
Lsin 46° 15’ 25" = 9-8588065

Lsinc= 99693207
c=68°42' 59" or 111°17' 1",

To find b we have

sinb=tanacot 4,
Ltan 42° 18’ 45" = 9-9591983
L cot 46° 15’ 25" = 9-9809389

Lsinbd+10=19-9401372
b =60°36' 10" or 119" 23’ 50"
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To find B we have

. cos A
sinB=—--",
cosa

Lsin B=10+ Lcos A—Lcosa,
10 + L cos 46° 15’ 25" = 19-8397454
Lcos42° 18’ 45” = 9-8689289

Lsin B= 9-9708165
B=69°13"47" or 110° 46’ 13".

Oblique-Angled Triangles.
208. Given a=70°14' 20", b =49° 24’ 10", c=38° 46" 10".
‘We shall use the formula given in Art. 45,
ton} A = J sin (s — b) sin (s — c)}
sin g sin (8 — a)
Here 8=T9°12" 20",
s—a=2858,

8—b=29°4810",

8—c=40°26"10".
Lsin 29° 48’ 10”= 9-6963704
Lsin 40°26' 10" = 9-8119768
19-5083472
Lsin 79°12°20" = 9-9922465
Lsin 8° 58 = 91927342
19-1849807
19:5083472
19-1849807
2) 3233665
Ltan}4-10= -1616832

1 4= 55°25' 38"
4=110°51"16"
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Similarly to find B,

L sin 8° 58 = 91927342
L sin 40°26' 10" = 9-8119768
19-0047110
L sin 79° 12' 20" = 9-9922465
. Lsin 29°48'10"= 9-6963704
196886169
19-0047110
19-6886169
2) 1-3160941
Ltan} B-10= 1-6580470
Ltan} B= 9-6580470

4B =24°28 2"

B = 48°56' 4",

Similarly to find C,
L sin 8°58' = 9:1927342
L sin 29° 48" 10" = 96963704
18-8891046
Lsin 79°12' 20" = 9-9922465
L sin 40° 26’ 10” = 9-8119768
19-8042233

18-8891046
19-8042233
2) 1-0848813
Ltan} C-10= 15424406
Ltan3C = 96424406
10 =19"13"24"
C = 38°26" 48",
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209. Given a=68°20'25",6=52°18"15", C =117°12'20".

By Art. 82,

cos 4 (a—b)
cos 3 (a+b)
sin § (a—d)
sin 4 (@ +b)

1(a—b)=81"5", } (a+B8)=60"1920", 3C =58°36'10".

Lcos8 15" = 99957335

L cot 58°36'10” = 9-7855690

197813025

Lcos60°19' 20" = 96947120

Ltan} (4 + B) = 100865905
3 (4 + B) = 50° 40’ 28”

Lsin8 1'5" = 91445280

L cot 58° 36' 10" = 9-7855690

18:9300970

Lsin 60°19'20" = 9-9389316

Ltan} (4 - B)= 89911654
3 (4 - B)=5°35'47".

tan 4 (4+B) = cot 3C,

tan} (4 - B) = cot 3 C.

Therefore 4 =>56°16"15", B=45°4"41".

If we proceed to find ¢ from the formula

sinc— sin a sin C
"~ sind ’

since sin C is greater than sin 4 we shall obtain two values for ¢

both greater than a, and we shall not know which is the value to

be taken.
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‘We shall therefore determine ¢ from formula (1) of Art. 54,
which is free from ambiguity,
oS24
L cos 60°19' 20" = 9:6947120
L sin 58° 36" 10" = 9-9312422
19:6259542
L cos 50° 40’ 28" = 9:8019015
Lcosjc= 9-8240527
$c=48°10" 22"
c=96°20" 44",
Or we may adopt the second method of Art. 82. First, we
determine 6 from the formula tan 6 = tan b cos C.

Here cos C 48 negative, and therefore tan 6 will be negative,
and 6 greater than a right angle. The numerical value of cos (' is
the same as that of cos 62° 47" 40"

L tan 52°18" 15” = 10-1119488
L cos 62° 47’ 40" = 96600912

L tan (180° - ) + 10 = 19-7720400
180° — 6 = 30° 36” 33",
therefore 6 = 149° 23’ 27",

Next, we determine ¢ from the formula

cos bcos (a—6)
c= —
cos 6

Here cos 6 18 negative, and therefore cos ¢ will be negative, and
¢ will be greater than a right angle. The numerical value of
cos § is the same as that of cos (180° — 6), that is, of cos 30° 36 33";
and the value of cos (@ — 6) is the same as that of cos (§ — a), that
is, of cos 81°3' 2",
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L cos 52° 18 15" = 9-7863748

Lcos81°3'2" = 9-1919060

189782808

L cos 30° 36’ 33" = 99348319

L cos (180°—¢) = 90434489

180° — ¢ = 83° 39" 17"

c=96°20"43".
Thus by taking only the nearest number of seconds in the
tables the two methods give values of ¢ which differ by 1”; if,

however, we estimate fractions of a second both ‘methods will
agree in giving about 434 as the number of seconds.

210. Given ¢ =50°45'20", b=69°12"40", 4=44°22'10".

By Art. 84, sin B= s;“ b

sin @
Lsin 69°12' 40" = 9-9707626
Lsin 44°22'10" = 9-8446525
19:8154151
Lsin 50°45' 20" = 9-8889956
Lsin B= 99264195
B =57°34'51"4, or 122°25°8"-6.

sin 4,

In this case there will be two solutions; see Art. 86. We
will calculate C and ¢ by Napier’s analogies,
_cos} (b-a)
T cos} (b+a)
_cos} (B+4)
T cos 3 (B-A4)

tan 3 C cot 3 (B + 4),

tan ¢ tan (b + a).

First take the smaller value of B; thus
3 (B +4)=50"5830"7, } (B—4)=6°36"20""T,
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Locos9°13' 40" = 99943430
Lcot 50° 58 30”7 = 9-9087536
~19-9030966
Lcos59°59'= 9-6991887
Ltan}C'=10-2039079
30'=57° 58 55”3
0 =115° 57 50”6.
L cos 50° 58 30”7 = 97991039
Ltan 59° 59’ = 10-2382689

200373728

L cos 6°36’ 20”7 = 9-9971072

L tan } ¢ =10-0402656
2c=47°39 8"2

c=95°18'16"-4.
Next take the larger value of B; thus
+(B+4)=83°2339"3, 3(B-4)=39°129"3.

Leos 9°13'40" = 9-9943430

Lcot 83°23° 39”3 = 9:0637297

190580727
Lcos59°59' = 9-6991887
Ltan}C= 9-3588840
3C=12°52'15"8
C=25°44' 31"6.
L cos 83° 23’ 39”3 = 90608369
Ltan59°59'  =10-2382689
. 19-2991058
Lcos39°1' 29”3 = 9-8903494
Ltan}c= 9-4087564
Jo=14°22 32”6
¢=28"45'5"-2
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The student can obtain more examples, which can be easily
verified, from those here worked out, by interchanging the given
and required quantities, or by making use of the polar triangle.

EXAMPLES.

1. Given b=137°3 48", A=147° 2 54”, ('=90".

Results. ¢=47°57 15", a=156° 10’ 34", B=113° 28".
2. Given c=61° 4 56", a=40° 31’ 20", C = 90"

Results. b=50° 30" 29", B=61° 50’ 28", 4 =47° 54’ 21"
3. Givend =36°, B=60°, C'=90".

Results. a=20°54' 18"5, b=31° 43’ 3", ¢=37° 21’ 38"5.
4. Given a=59° 28’ 277, 4 =667 20", C'=90,

Results. ¢="T0° 23" 42", b=48° 39’ 16", B=52° 50’ 20",

or, ¢=109° 36' 18”, b=131° 20’ 44", B=127° 9’ 40".

5. Given ¢c=90°, a=138° 4, b=109° 41".

Results. C'=113°28' 2", 4=142° 11’ 38", B=120°15' 57".
6. Given ¢=90°, 4=131° 30/, B=120° 32".

Results. C=109° 40’ 20", ¢ =127° 17" 51", b=113° 49’ 31”.
7. Givena="T6° 35' 36", b=50° 10’ 30", ¢c=40° 0’ 10".

Results. A=121° 36’ 20", B=42°15' 13", C'=34° 15' 3".
8. Given 4=129°5 28", B=142°12' 42", ('=105° 8’ 10".’

Results. a=135°49' 20", b=144° 37" 15", c=60° 4' 54",
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