Source: geographiclib-geodesic/src/GeodesicLine.js

/*
 * GeodesicLine.js
 * Transcription of GeodesicLine.[ch]pp into JavaScript.
 *
 * See the documentation for the C++ class.  The conversion is a literal
 * conversion from C++.
 *
 * The algorithms are derived in
 *
 *    Charles F. F. Karney,
 *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
 *    https://doi.org/10.1007/s00190-012-0578-z
 *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
 *
 * Copyright (c) Charles Karney (2011-2022) <karney@alum.mit.edu> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

// Load AFTER geodesic/Math.js, geodesic/Geodesic.js

(function(
  g,
  /**
   * @exports geodesic/GeodesicLine
   * @description Solve geodesic problems on a single geodesic line via the
   *   {@link module:geodesic/GeodesicLine.GeodesicLine GeodesicLine}
   *   class.
   */
  l, m) {
  "use strict";

  /**
   * @class
   * @property {number} a the equatorial radius (meters).
   * @property {number} f the flattening.
   * @property {number} lat1 the initial latitude (degrees).
   * @property {number} lon1 the initial longitude (degrees).
   * @property {number} azi1 the initial azimuth (degrees).
   * @property {number} salp1 the sine of the azimuth at the first point.
   * @property {number} calp1 the cosine the azimuth at the first point.
   * @property {number} s13 the distance to point 3 (meters).
   * @property {number} a13 the arc length to point 3 (degrees).
   * @property {bitmask} caps the capabilities of the object.
   * @summary Initialize a GeodesicLine object.  For details on the caps
   *   parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   * @classdesc Performs geodesic calculations along a given geodesic line.
   *   This object is usually instantiated by
   *   {@link module:geodesic/Geodesic.Geodesic#Line Geodesic.Line}.
   *   The methods
   *   {@link module:geodesic/Geodesic.Geodesic#DirectLine
   *   Geodesic.DirectLine} and
   *   {@link module:geodesic/Geodesic.Geodesic#InverseLine
   *   Geodesic.InverseLine} set in addition the position of a reference point
   *   3.
   * @param {object} geod a {@link module:geodesic/Geodesic.Geodesic
   *   Geodesic} object.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
   *   include; LATITUDE | AZIMUTH are always included.
   */
  l.GeodesicLine = function(geod, lat1, lon1, azi1, caps, salp1, calp1) {
    var t, cbet1, sbet1, eps, s, c;
    if (!caps) caps = g.STANDARD | g.DISTANCE_IN;

    this.a = geod.a;
    this.f = geod.f;
    this._b = geod._b;
    this._c2 = geod._c2;
    this._f1 = geod._f1;
    this.caps = caps | g.LATITUDE | g.AZIMUTH | g.LONG_UNROLL;

    this.lat1 = m.LatFix(lat1);
    this.lon1 = lon1;
    if (typeof salp1 === 'undefined' || typeof calp1 === 'undefined') {
      this.azi1 = m.AngNormalize(azi1);
      t = m.sincosd(m.AngRound(this.azi1)); this.salp1 = t.s; this.calp1 = t.c;
    } else {
      this.azi1 = azi1; this.salp1 = salp1; this.calp1 = calp1;
    }
    t = m.sincosd(m.AngRound(this.lat1)); sbet1 = this._f1 * t.s; cbet1 = t.c;
    // norm(sbet1, cbet1);
    t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
    // Ensure cbet1 = +epsilon at poles
    cbet1 = Math.max(g.tiny_, cbet1);
    this._dn1 = Math.sqrt(1 + geod._ep2 * m.sq(sbet1));

    // Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
    this._salp0 = this.salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
    // Alt: calp0 = hypot(sbet1, calp1 * cbet1).  The following
    // is slightly better (consider the case salp1 = 0).
    this._calp0 = m.hypot(this.calp1, this.salp1 * sbet1);
    // Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
    // sig = 0 is nearest northward crossing of equator.
    // With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
    // With bet1 =  pi/2, alp1 = -pi, sig1 =  pi/2
    // With bet1 = -pi/2, alp1 =  0 , sig1 = -pi/2
    // Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
    // With alp0 in (0, pi/2], quadrants for sig and omg coincide.
    // No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
    // With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
    this._ssig1 = sbet1; this._somg1 = this._salp0 * sbet1;
    this._csig1 = this._comg1 =
      sbet1 !== 0 || this.calp1 !== 0 ? cbet1 * this.calp1 : 1;
    // norm(this._ssig1, this._csig1); // sig1 in (-pi, pi]
    t = m.hypot(this._ssig1, this._csig1);
    this._ssig1 /= t; this._csig1 /= t;
    // norm(this._somg1, this._comg1); -- don't need to normalize!

    this._k2 = m.sq(this._calp0) * geod._ep2;
    eps = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2);

    if (this.caps & g.CAP_C1) {
      this._A1m1 = g.A1m1f(eps);
      this._C1a = new Array(g.nC1_ + 1);
      g.C1f(eps, this._C1a);
      this._B11 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C1a);
      s = Math.sin(this._B11); c = Math.cos(this._B11);
      // tau1 = sig1 + B11
      this._stau1 = this._ssig1 * c + this._csig1 * s;
      this._ctau1 = this._csig1 * c - this._ssig1 * s;
      // Not necessary because C1pa reverts C1a
      //    _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa);
    }

    if (this.caps & g.CAP_C1p) {
      this._C1pa = new Array(g.nC1p_ + 1);
      g.C1pf(eps, this._C1pa);
    }

    if (this.caps & g.CAP_C2) {
      this._A2m1 = g.A2m1f(eps);
      this._C2a = new Array(g.nC2_ + 1);
      g.C2f(eps, this._C2a);
      this._B21 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C2a);
    }

    if (this.caps & g.CAP_C3) {
      this._C3a = new Array(g.nC3_);
      geod.C3f(eps, this._C3a);
      this._A3c = -this.f * this._salp0 * geod.A3f(eps);
      this._B31 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C3a);
    }

    if (this.caps & g.CAP_C4) {
      this._C4a = new Array(g.nC4_); // all the elements of _C4a are used
      geod.C4f(eps, this._C4a);
      // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
      this._A4 = m.sq(this.a) * this._calp0 * this._salp0 * geod._e2;
      this._B41 = g.SinCosSeries(false, this._ssig1, this._csig1, this._C4a);
    }

    this.a13 = this.s13 = NaN;
  };

  /**
   * @summary Find the position on the line (general case).
   * @param {bool} arcmode is the next parameter an arc length?
   * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
   *   first point to the second in (arcmode ? degrees : meters).
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @return {object} the requested results.
   * @description The lat1, lon1, azi1, and a12 fields of the result are
   *   always set; s12 is included if arcmode is false.  For details on the
   *   outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  l.GeodesicLine.prototype.GenPosition = function(arcmode, s12_a12,
                                                  outmask) {
    var vals = {},
        sig12, ssig12, csig12, B12, AB1, ssig2, csig2, tau12, s, c, serr,
        omg12, lam12, lon12, E, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2,
        B22, AB2, J12, t, B42, salp12, calp12;
    if (!outmask) outmask = g.STANDARD;
    else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
    outmask &= this.caps & g.OUT_MASK;
    vals.lat1 = this.lat1; vals.azi1 = this.azi1;
    vals.lon1 = outmask & g.LONG_UNROLL ?
      this.lon1 : m.AngNormalize(this.lon1);
    if (arcmode)
      vals.a12 = s12_a12;
    else
      vals.s12 = s12_a12;
    if (!( arcmode || (this.caps & g.DISTANCE_IN & g.OUT_MASK) )) {
      // Uninitialized or impossible distance calculation requested
      vals.a12 = NaN;
      return vals;
    }

    // Avoid warning about uninitialized B12.
    B12 = 0; AB1 = 0;
    if (arcmode) {
      // Interpret s12_a12 as spherical arc length
      sig12 = s12_a12 * m.degree;
      t = m.sincosd(s12_a12); ssig12 = t.s; csig12 = t.c;
    } else {
      // Interpret s12_a12 as distance
      tau12 = s12_a12 / (this._b * (1 + this._A1m1));
      s = Math.sin(tau12);
      c = Math.cos(tau12);
      // tau2 = tau1 + tau12
      B12 = -g.SinCosSeries(true,
                            this._stau1 * c + this._ctau1 * s,
                            this._ctau1 * c - this._stau1 * s,
                            this._C1pa);
      sig12 = tau12 - (B12 - this._B11);
      ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
      if (Math.abs(this.f) > 0.01) {
        // Reverted distance series is inaccurate for |f| > 1/100, so correct
        // sig12 with 1 Newton iteration.  The following table shows the
        // approximate maximum error for a = WGS_a() and various f relative to
        // GeodesicExact.
        //     erri = the error in the inverse solution (nm)
        //     errd = the error in the direct solution (series only) (nm)
        //     errda = the error in the direct solution
        //             (series + 1 Newton) (nm)
        //
        //       f     erri  errd errda
        //     -1/5    12e6 1.2e9  69e6
        //     -1/10  123e3  12e6 765e3
        //     -1/20   1110 108e3  7155
        //     -1/50  18.63 200.9 27.12
        //     -1/100 18.63 23.78 23.37
        //     -1/150 18.63 21.05 20.26
        //      1/150 22.35 24.73 25.83
        //      1/100 22.35 25.03 25.31
        //      1/50  29.80 231.9 30.44
        //      1/20   5376 146e3  10e3
        //      1/10  829e3  22e6 1.5e6
        //      1/5   157e6 3.8e9 280e6
        ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
        csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
        B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
        serr = (1 + this._A1m1) * (sig12 + (B12 - this._B11)) -
          s12_a12 / this._b;
        sig12 = sig12 - serr / Math.sqrt(1 + this._k2 * m.sq(ssig2));
        ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
        // Update B12 below
      }
    }

    // sig2 = sig1 + sig12
    ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
    csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
    dn2 = Math.sqrt(1 + this._k2 * m.sq(ssig2));
    if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
      if (arcmode || Math.abs(this.f) > 0.01)
        B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
      AB1 = (1 + this._A1m1) * (B12 - this._B11);
    }
    // sin(bet2) = cos(alp0) * sin(sig2)
    sbet2 = this._calp0 * ssig2;
    // Alt: cbet2 = hypot(csig2, salp0 * ssig2);
    cbet2 = m.hypot(this._salp0, this._calp0 * csig2);
    if (cbet2 === 0)
      // I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case
      cbet2 = csig2 = g.tiny_;
    // tan(alp0) = cos(sig2)*tan(alp2)
    salp2 = this._salp0; calp2 = this._calp0 * csig2; // No need to normalize

    if (arcmode && (outmask & g.DISTANCE))
      vals.s12 = this._b * ((1 + this._A1m1) * sig12 + AB1);

    if (outmask & g.LONGITUDE) {
      // tan(omg2) = sin(alp0) * tan(sig2)
      somg2 = this._salp0 * ssig2; comg2 = csig2; // No need to normalize
      E = m.copysign(1, this._salp0);
      // omg12 = omg2 - omg1
      omg12 = outmask & g.LONG_UNROLL ?
        E * (sig12 -
             (Math.atan2(ssig2, csig2) -
              Math.atan2(this._ssig1, this._csig1)) +
             (Math.atan2(E * somg2, comg2) -
              Math.atan2(E * this._somg1, this._comg1))) :
        Math.atan2(somg2 * this._comg1 - comg2 * this._somg1,
                     comg2 * this._comg1 + somg2 * this._somg1);
      lam12 = omg12 + this._A3c *
        ( sig12 + (g.SinCosSeries(true, ssig2, csig2, this._C3a) -
                   this._B31));
      lon12 = lam12 / m.degree;
      vals.lon2 = outmask & g.LONG_UNROLL ? this.lon1 + lon12 :
        m.AngNormalize(m.AngNormalize(this.lon1) + m.AngNormalize(lon12));
    }

    if (outmask & g.LATITUDE)
      vals.lat2 = m.atan2d(sbet2, this._f1 * cbet2);

    if (outmask & g.AZIMUTH)
      vals.azi2 = m.atan2d(salp2, calp2);

    if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
      B22 = g.SinCosSeries(true, ssig2, csig2, this._C2a);
      AB2 = (1 + this._A2m1) * (B22 - this._B21);
      J12 = (this._A1m1 - this._A2m1) * sig12 + (AB1 - AB2);
      if (outmask & g.REDUCEDLENGTH)
        // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
        // accurate cancellation in the case of coincident points.
        vals.m12 = this._b * ((      dn2 * (this._csig1 * ssig2) -
                               this._dn1 * (this._ssig1 * csig2)) -
                              this._csig1 * csig2 * J12);
      if (outmask & g.GEODESICSCALE) {
        t = this._k2 * (ssig2 - this._ssig1) * (ssig2 + this._ssig1) /
          (this._dn1 + dn2);
        vals.M12 = csig12 +
          (t * ssig2 - csig2 * J12) * this._ssig1 / this._dn1;
        vals.M21 = csig12 -
          (t * this._ssig1 - this._csig1 * J12) * ssig2 / dn2;
      }
    }

    if (outmask & g.AREA) {
      B42 = g.SinCosSeries(false, ssig2, csig2, this._C4a);
      if (this._calp0 === 0 || this._salp0 === 0) {
        // alp12 = alp2 - alp1, used in atan2 so no need to normalize
        salp12 = salp2 * this.calp1 - calp2 * this.salp1;
        calp12 = calp2 * this.calp1 + salp2 * this.salp1;
      } else {
        // tan(alp) = tan(alp0) * sec(sig)
        // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
        // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
        // If csig12 > 0, write
        //   csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
        // else
        //   csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
        // No need to normalize
        salp12 = this._calp0 * this._salp0 *
          (csig12 <= 0 ? this._csig1 * (1 - csig12) + ssig12 * this._ssig1 :
           ssig12 * (this._csig1 * ssig12 / (1 + csig12) + this._ssig1));
        calp12 = m.sq(this._salp0) + m.sq(this._calp0) * this._csig1 * csig2;
      }
      vals.S12 = this._c2 * Math.atan2(salp12, calp12) +
        this._A4 * (B42 - this._B41);
    }

    if (!arcmode)
      vals.a12 = sig12 / m.degree;
    return vals;
  };

  /**
   * @summary Find the position on the line given s12.
   * @param {number} s12 the distance from the first point to the second in
   *   meters.
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @return {object} the requested results.
   * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
   *   always set; s12 is included if arcmode is false.  For details on the
   *   outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  l.GeodesicLine.prototype.Position = function(s12, outmask) {
    return this.GenPosition(false, s12, outmask);
  };

  /**
   * @summary Find the position on the line given a12.
   * @param {number} a12 the arc length from the first point to the second in
   *   degrees.
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @return {object} the requested results.
   * @description The lat1, lon1, azi1, and a12 fields of the result are
   *   always set.  For details on the outmask parameter, see {@tutorial
   *   2-interface}, "The outmask and caps parameters".
   */
  l.GeodesicLine.prototype.ArcPosition = function(a12, outmask) {
    return this.GenPosition(true, a12, outmask);
  };

  /**
   * @summary Specify position of point 3 in terms of either distance or arc
   *   length.
   * @param {bool} arcmode boolean flag determining the meaning of the second
   *   parameter; if arcmode is false, then the GeodesicLine object must have
   *   been constructed with caps |= DISTANCE_IN.
   * @param {number} s13_a13 if arcmode is false, this is the distance from
   *   point 1 to point 3 (meters); otherwise it is the arc length from
   *   point 1 to point 3 (degrees); it can be negative.
   */
  l.GeodesicLine.prototype.GenSetDistance = function(arcmode, s13_a13) {
    if (arcmode)
      this.SetArc(s13_a13);
    else
      this.SetDistance(s13_a13);
  };

  /**
   * @summary Specify position of point 3 in terms distance.
   * @param {number} s13 the distance from point 1 to point 3 (meters); it
   *   can be negative.
   */
  l.GeodesicLine.prototype.SetDistance = function(s13) {
    var r;
    this.s13 = s13;
    r = this.GenPosition(false, this.s13, g.ARC);
    this.a13 = 0 + r.a12;       // the 0+ converts undefined into NaN
  };

  /**
   * @summary Specify position of point 3 in terms of arc length.
   * @param {number} a13 the arc length from point 1 to point 3 (degrees);
   *   it can be negative.
   */
  l.GeodesicLine.prototype.SetArc = function(a13) {
    var r;
    this.a13 = a13;
    r = this.GenPosition(true, this.a13, g.DISTANCE);
    this.s13 = 0 + r.s12;       // the 0+ converts undefined into NaN
  };

})(geodesic.Geodesic, geodesic.GeodesicLine, geodesic.Math);